
PARALLEL SYSTEMS WITH FLEXIBLE TOPOLOGY

by

Akos Ledeczi

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

December, 1995

Nashville, Tennessee

Approved: Date:

___ ___________________

___ ___________________

___ ___________________

___ ___________________

___ ___________________

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my advisor, Janos

Sztipanovits. He has always been there whenever I needed help, guidance, or motivation.

Without him, this work wouldn't have been successful.

Ben Abbott, Ted Bapty, Csaba Biegl and Gabor Karsai form the core of the

Measurement and Computing Systems Group. Their contribution to my education has

been invaluable.

Thanks are in order to the additional committee members, Benoit Dawant, Jerry

Spinrad, and Mitch Wilkes for their helpful advices.

Thanks to Hubertus Franke, Amit Misra, Michael Moore, James "Bubba" Davis and

the rest of the group for putting up with me and my silly jokes.

Many thanks to the organizations providing financial support to this research:

Vanderbilt University for awarding me a University Graduate Fellowship, the US Air

Force for providing funding, and the IBM T. J. Watson Research Center for its summer

internship program.

Thanks to the Department of Measurement and Instrument Engineering of the

Technical University of Budapest for providing me with an excellent engineering

education during my six years there.

Most of all, I would like to thank my wife, Júlia, for her constant love and support.

Without her, this wouldn't have been possible. I owe a great deal to my brother, Tamás,

who has always pushed me into the right direction. Thanks to my parents for their support

and encouragement.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . ii

TABLE OF CONTENTS . iii

LIST OF FIGURES . vi

LIST OF TABLES .viii

Chapter

I. INTRODUCTION . 1

Motivation . 2
Definitions . 4
Dissertation Outline. 5

II. BACKGROUND . 6

Representation of Parallel Programs. 6
Textual Representation. 7
Graphical Representation. 8

Hence for PVM . 8
Express . 9
The Multigraph Architecture. 10
The Starburst Environment. 16

Evaluation. 18
Message Routing. 19

Route Selection. 20
Routing Techniques. 21
Deadlock Avoidance. 24

Structured Buffer Pool. 25
Virtual Channels. 26
Adaptive Wormhole Routing. 27
Topology-Based Deadlock Avoidance. 30

Flow Control . 31
Example Systems. 33

The Torus Routing Chip. 33
The Connection Machine. 34
The CM-5 . 34
The IBM SP2 . 35
The MIT J-Machine . 36
The CRAY T3D . 36

iv

The IMS T9000 . 37
The TI TMS320C40 . 38

Evaluation. 39
Assignment. 40

Cost Functions. 42
Optimal Solution . 44

Graph Theoretical Approaches. 44
Mathematical Programming. 46

General Optimization Methods. 46
Hill Climbing . 46
Simulated Annealing. 47
Genetic Algorithms. 49

Assignment-Specific Heuristics. 50
Fully Connected Processor Graph. 51
The Impact of Message Routing on the Assignment. 52
Topology Synthesis. 54

Evaluation. 55

III. AUTOMATIC PARALLEL APPLICATION SYNTHESIS 58

Problem Statement. 58
Model-Integrated Parallel Application Synthesis. 60

IV. MODELING PARADIGM . 62

Generative Modeling. 62
Modeling Aspects. 65

Signal Flow Aspect . 66
Primitive Model . 68
Compound Model. 70
Generative Attributes. 73

Hardware Aspect. 76
Assignment Constraints Aspect. 80

Reference attribute. 83
Configuration . 85

V. MODEL INTERPRETATION AND ANALYSIS 86

Model Interpretation . 86
The Model Transformation Tool. 87
The Parallel Application Builder. 88

Model Analysis. 91

VI. MESSAGE ROUTING . 96

Topology-Based Deadlock Avoidance. 98

v

Partially Connected Routing. 102
Non-Minimal Routing . 106

Cost Function . 107
Non-Minimal, Partially Connected Routing Algorithm. 109
Spanning Chordal Subgraph. 110
Complexity Analysis . 111
Evaluation. 112
Implementation . 118

VII. ASSIGNMENT . 119

Hierarchical Assignment . 122
Cost function. 122
Algorithm . 123
Complexity Analysis . 129
Evaluation. 130

Hardware Topology Synthesis. 133
Cost Function . 133
Synthesis Algorithm. 134
Complexity Analysis . 141
Evaluation. 142

VIII. EXAMPLE SYSTEM . 143

IX. CONCLUSIONS . 151

Contributions . 151
Modeling Paradigm . 151
Model Interpretation and Analysis. 152

Future Work . 155

REFERENCES . 157

vi

LIST OF FIGURES

Figure Page

1. The Multigraph Architecture . 11

2. Latency of store-and-forward and virtual cut-through. 23

3. Unidirectional four-cycle with virtual channels. 27

4. Taxonomy of process assignment strategies. 42

5. Model-Integrated Approach. 60

6. Model hierarchy example . 68

7. Primitive model attributes . 70

8. Signal flow model example. 72

9. Local parameter example. 73

10. Generative modeling example. 75

11. Automatically generated models. 76

12. Hardware model example. 78

13. Assignment constraints example. 82

14. Reference attribute example. 84

15. Model-Integrated Parallel Application Synthesis. 86

16. Signal flow builder object network. 89

17. The assignment of the dataflow graph. 90

18. The Graphical Configuration Manager. 92

19. The results of network comparison. 93

20. Routing example . 99

vii

21. Chordal graph and corresponding CDG. 101

22. Transformation of the satisfiability problem to the routing problem. . . . 104

23. Example transformation. 106

24. Deadlock-free, non-minimal, partially connected routing algorithm. 109

25. Spanning chordal subgraph algorithm. 111

26. Test topology #1 . 114

27. Test topology #2 . 116

28. Hierarchical assignment algorithm. 124

29. Hardware clustering . 125

30. Assignment example. 128

31. Hierarchical topology synthesis algorithm. 135

32. Degree-bounded graph generation. 139

33. PSA channel I signal flow model. 143

34. PSA signal flow model in the model browser. 144

35. Hardware model. 145

36. Assignment constraints rule model. 146

37. Generated Multigraph command file. 147

38. Hardware topology shown in GCM. 149

39. The Parallel Signal Analyzer. 149

viii

LIST OF TABLES

Table Page

1. Signal flow model structuring concepts. 66

2. Signal flow model atomic components. 67

3. Signal flow model aggregate components. 67

4. Signal flow model signal connections. 71

5. Signal flow model parameter connections. 71

6. Predefined functions for signal flow generative modeling. 74

7. Hardware model structuring concepts. 77

8. Hardware model atomic components. 77

9. Hardware model aggregate components. 77

10. Hardware model connections. 79

11. Predefined functions for hardware generative modeling. 79

12. Assignment constraints model structuring concepts. 80

13. Assignment constraints model atomic components. 80

14. Assignment constraints model aggregate components. 81

15. Predefined functions for assignment constraints generative modeling. . . . 84

16. Results for test #1 . 114

17. Number of iterations for the optimal minimal algorithm. 116

18. Results for test #2 . 117

1

CHAPTER I

INTRODUCTION

Parallel processing offers a way to increase computing power beyond the capabilities

of sequential computers. Conventional supercomputers are being replaced by massively

parallel machines, such as the Thinking Machines CM-5, the Cray T3D, or the IBM SP2.

At the other end of the spectrum, low cost PC plug-in boards with multiple processors

have appeared on the market providing desktop parallel processing. However, parallel

computing is still not widely used, primarily because, as in many other areas of computer

engineering, the software technology lags behind. One of the greatest challenges is

complexity management. Even small parallel programs solving relatively simple problems

are inherently complex. Large-scale parallel applications with thousands of processes and

hundreds of processors are hardly manageable with software engineering techniques

developed for sequential processing.

In recent years several new approaches to parallel processing have been developed.

Parallel programming languages hide some of the complexity from the user and let the

compiler manage it. Automatic parallelization tools try to convert existing sequential

programs to run on parallel machines efficiently. Message passing standards have emerged

providing portability across platforms. The most recent approaches support automatic

parallel program generation. One of the most promising methodologies is model-integrated

computing, where the application is automatically synthesized from high-level models of

the system and its environment.

2

The Multigraph Architecture is one such model-integrated programming environment.

It has been applied successfully in diverse fields, including process monitoring and

control, fault detection, isolation and recovery, and discrete manufacturing. It suits parallel

processing well. The graphical, multiple-aspect, hierarchical system models manage the

software and hardware complexity of the application, while the automatic system

synthesizer and the run-time environment provide process synchronization and

communication transparently. Embedded parallel instrumentation and signal processing

is a relatively new area lacking a mature software engineering technology. Model-

integrated automatic system synthesis is a promising technology that has great potential

in this domain. Applying the Multigraph Architecture to embedded signal processing and

instrumentation on distributed memory multiprocessors with flexible interconnection

topology is in the focus of this dissertation.

Motivation

Parallel computer architectures based on such processors as the Inmos T9000

transputer, the Texas Instruments TMS320C40, or the Analog Devices ADSP21060, have

the following characteristics [35]:

High performance. The individual nodes are fast, state-of-the-art microprocessors.

Scalability. The size of the network can be easily adjusted as the system

requirements change. Nodes can be added one-by-one at any location in the

network with an available communication link.

Flexibility . The topology of the network can be arbitrary, limited only by the

maximum degree of the nodes. The interconnection architecture can be designed

3

specifically for the given application.

High I/O bandwidth . The multiple, high-speed communication links can be used

to interface to external devices. Furthermore, input data can enter the system

already distributed in the network.

Modularity . A wide variety of boards with these processors are readily available.

They can be connected together as modular building blocks to form large systems.

Moreover, processor-memory modules have been introduced with standard

interfaces (TRAM for transputer module, and TIM for TI module). Each module

contains a single or dual processor with varying amount and type of memory.

Motherboards with multiple module sockets are available. This approach provides

an additional degree of flexibility.

Low cost. The price of these processors is similar to that of a general purpose

microprocessor with comparable performance. Since the communication

capabilities are implemented on-chip, no extra hardware is required to put together

a network of these processors.

These favorable characteristics make these processors ideal for embedded parallel

signal processing and instrumentation applications. Systems can contain from a couple of

processors up to hundreds of nodes connected by an interconnection network with flexible

topology. They are able to process data on multiple channels at high data rates in

real-time. The software of such systems is difficult to manage by conventional software

engineering methods because of the complexity of the large-scale parallel application and

the flexibility of the hardware topology.

Multiple-aspect modeling and automatic application generation is a promising new

4

software technology that is able to address the issues associated with these systems.

Previous research efforts left some of the important problems unsolved [5]. In particular,

automatic process assignment and deadlock-free message routing are two key issues that

need to be addressed in the context of model-based application generation for embedded

parallel signal processing and instrumentation systems.

Definitions

There are two major approaches to parallel processing. With data parallel computing

(also called Single Instruction Multiple Data or SIMD), every processor executes the same

program on a different input set. This approach has several favorable characteristics.

Program execution is synchronous, therefore, timing is easier to predict. The approach is

very efficient and scalable. The only significant drawback is that data parallel computing

is only applicable to highly regular problem classes. The best examples are simple image

processing algorithms. When the required transformation involves only a handful of

neighbors of every pixel, a large image can be divided up to small windows. Each

processor in the system executes the same transformation on one window and sends the

result to the master. Unfortunately, many real-world problems are irregular and

asynchronous. Hence, they cannot be solved by the SIMD approach efficiently.

Task parallel computing (also called Multiple Instruction Multiple Data or MIMD) is

able to exploit parallelism in irregular problems. Every processor executes a different

program using a different input set. Processors can have several processes running

concurrently. Consequently, MIMD is harder to implement than SIMD. Synchronization

and communication are major issues. Program execution is asynchronous, the timing and

5

interaction of processes are hard to predict which makes debugging very difficult.

Scalability is highly application dependent. Any software technology applied in the

context of MIMD needs to address these issues.

This dissertation focuses on task parallel processing. Phrases, such as parallel

programming, are used in the context of MIMD throughout the dissertation.

Dissertation Outline

The presentation of the dissertation proceeds in the following manner. Chapter II

surveys previous work in the three areas of parallel processing addressed by this

dissertation. In particular, the representation of parallel programs, message routing, and

process assignment are examined. Chapter III defines the problem domain and presents

the selected solution path. In Chapter IV, the modeling paradigm for embedded parallel

instrumentation systems with flexible interconnection topology is described in the context

of the Multigraph Architecture, the model-integrated approach selected as the framework

for this research effort. Chapter V discusses the model interpretation phase, the process

of automatically synthesizing the application from the system models. In Chapter VI, a

deadlock-free message routing strategy is developed for arbitrary architectures. Chapter

VII discusses automatic process assignment and hardware topology synthesis. Chapter

VIII describes an example application. Finally, a summary and evaluation of the

contributions of this dissertation are presented and future research directions are outlined.

6

CHAPTER II

BACKGROUND

In this chapter, previous work in the research areas in the focus of this dissertation

is surveyed. The first section examines the representation of parallel programs with

special emphasis on complexity management. Next, different issues in message routing

are examined including flow control and deadlock avoidance. Finally, the much studied

process assignment problem is analyzed.

Representation of Parallel Programs

The conventional way of representing a sequential program is writing it in a high-level

language, such as C, Ada, or Fortran. The most basic approaches to parallel programming

use similar techniques: several new languages, such as Occam, language extensions, such

as High Performance Fortran, libraries, such as PVM, have been proposed and used for

parallel processing. These techniques make parallel processing possible. They manage

some of the low-level complexity of parallel programs. For instance, a typical command

in a message passing environment is "send_message". The user does not have to know

how the message is packed, sent out to the communication network, transported through

it, and unpacked at the destination. In a way, it is similar to a subroutine call in a high-

level programming language. The user does not care about how the parameters and the

return address are pushed into the stack. All he knows is that he can use the parameters

in the subroutine and then return to the place of the call. The concept of subroutines is

7

an important step; it makes structured programming possible. But today's complex

applications need much more support.

These basic approaches (languages, language extensions, libraries) are suitable for

writing small to medium size programs and to develop parallel algorithms, but they are

inadequate to address the issues of large-scale, complex parallel processing.

The solution proposed by many research efforts is to provide an additional abstraction

layer on top of one of these approaches. These higher-level representations of the parallel

application can be partially or fully automatically converted into parallel code using the

constructs of the underlying low-level environment.

Textual Representation

The Linda Program Builder (LPB) provides a text-based abstraction layer on top of

Linda, a language extension of either C or Fortran. Linda is based on tuples, a shared

memory concept. However, Linda is available on distributed platforms as well [56]. The

main concept of the LPB is the template, a skeleton Linda program. The LPB provides

templates for the most frequently used parallel constructs, such as the master-worker

model. New templates can be added to the system. A template included in the user

program must be filled with application specific code [8]. Other constructs are also

supported by the LPB.

Several high-level operations smaller than a full template can be included in the

program. These can be expanded, which involves actual code generation, and then

abstracted back again. This feature providing hierarchical decomposition of programs

manages complexity well. The LPB maintains a program database containing the

8

templates, the high-level operations, the expansion level, etc. [8].

The LPB provides a higher abstraction level than a Linda program itself. The

hierarchical decomposition provides visibility control. The templates and other built-in

parallel constructs support reuse. These techniques manage the source code. The LPB

does not deal with the application, it deals with the code. This is appropriate for small to

moderate complexity systems, but large-scale parallel applications require more support.

Graphical Representation

Graphical specification of problems, solutions, designs is commonplace in all

engineering disciplines. Flowcharts, signal flow graphs, state charts are examples just

from software engineering. Providing a graphical abstraction layer on top of lower level

parallel processing approaches is a natural idea. This technique involves not only the

graphical specification of the parallel application, but also automatic transformation of the

graphical constructs into actual parallel code.

Hence for PVM

The Heterogeneous Network Computing Environment (Hence) is a graphical

development environment supporting Parallel Virtual Machine (PVM) application

generation [12]. PVM enables a heterogeneous network of UNIX workstations to work

as a single parallel machine. With PVM, the user can start tasks on the different machines

which are able to communicate and synchronize with each other. Applications can be

written in Fortran or C, and can include PVM library calls to send or receive messages,

etc. PVM is a true heterogeneous environment. For example, it handles data conversion

9

between different machines transparently. It also supports fault tolerance; applications are

able to survive the failure of multiple machines in the network.

Since PVM is just a library, developing large complex applications with it is difficult.

Hence enables the user to specify the application as a computational graph. The nodes of

the graph are the elementary computations at the subroutine level. The edges represent

data dependencies and control flow. Hence also supports several control constructs, such

as looping, conditional dependency, fan-out, and pipelining. They specify how different

parts of the graph are to be executed.

The user sets up the configuration of available machines. A cost matrix can also be

provided specifying the estimated cost of executing different tasks on different machines.

Hence automatically generates the executable programs using PVM calls, installs them

on the different machines, and executes them. The program automatically assigns the

tasks to the machines based on the cost matrix at runtime [12].

By providing a graphical user interface to PVM, Hence helps application development.

However, it does not support hierarchical decomposition or any other technique to manage

complex applications.

Express

The Express toolset provides an environment to develop efficient and portable

programs for distributed computer platforms. Some of the key features of Express are

[56]: hardware independent communication system, high-level communication library,

static and dynamic load balancing, and heterogeneous system capability.

One target hardware platform of Express is transputer networks. The Cnftool program

10

aids in the configuration of the system. After running a worm program, the Cnftool

displays the network in a graphical format. It can be modified (or created from scratch

without running the worm) by adding and connecting nodes with the built-in graphical

editor. Message routes are automatically generated and can be displayed as well. Note that

deadlock-freedom is only guaranteed for hypercubes, meshes, and trees. The program also

generates configuration information for the network loader [3].

Despite the lack of a high-level application specification layer, the Express toolset is

quite popular. The Cnftool is a big step forward from the traditional manual configuration

of reconfigurable networks by editing textual description files. Large processor networks,

however, are hard to manage with the program. Hierarchical decomposition would help

in this respect. Furthermore, Cnftool does not provide support to verify the topology of

the network.

The Multigraph Architecture

The Multigraph Architecture (MGA) provides a unified software architecture and tools

for: (1) building, testing, and storing multi-aspect, graphical domain models, and (2)

transforming the models into executable programs and/or extracting information for

system engineering tools [33]. The MGA has the following functional components

(Figure 1):

Graphical Model Builder (GMB) . The modeling paradigm supported by the

GMB includes concepts, relationships, model composition principles, constraints,

and representation techniques that are accepted and used in the application

domain. The GMB tool provides a customizable model building environment for

11

Figure 1 The Multigraph Architecture

domain experts. It enforces domain-specific constraints during model building,

uses domain-specific graphical formalism, and supports checking the models

against consistency and completeness criteria.

Model Database. The model database stores the complex, multiple-aspect models.

Typically, off-the-shelf or public domain object oriented databases are used for

this purpose.

Model Interpreters . Model interpreters synthesize executable programs from

domain models and generate data structures for system engineering tools that

perform various analyses of the systems to be built. Since the model interpreters

12

capture the relationship between the problem space and the solution space, they

are specific to the domain.

Multigraph Kernel . The executable programs are composed in terms of the

Multigraph Computational Model (MCM). The MCM is a macro-dataflow model

providing a unified system integration layer above heterogeneous computing

environments, including open system platforms, parallel/distributed computers, and

signal processors. The run-time support of the MCM is the Multigraph Kernel

(MGK). The MGK provides scheduling, synchronization, and communication. The

elementary computations are carefully defined reusable code components that are

part of application specific run-time libraries. The model interpreters synthesize

the applications by building the dataflow graph and setting the parameters of the

elementary computation blocks.

The Graphical Model Builder (GMB) is a configurable, visual model building

environment. The general model organization principles provided by the GMB are [33]:

Connectivity. The GMB supports a graph-based modeling approach. All models

are, in essence, nothing else but nodes with ports and connections between them.

Attributes . Graphical representation cannot express every aspect of a system.

Therefore, model components can have numerical and textual attributes. These

may include differential equations for process models, data types for signals,

pieces of code for computational objects, etc.

Multiple aspects. Systems can be modeled from different aspects. For example,

a plant can have a process model representing material, energy, and information

transfer processes, and an equipment model describing the actual hardware of the

13

plant [33]. The GMB allows as many modeling aspects of the same system as

required by the domain.

Hierarchy . Complex systems tend to have complex models. To help manage the

complexity of the models themselves, the GMB supports hierarchical model

building. Hierarchical models can represent the system with varying degrees of

detail.

Multiple views. At any one level of the hierarchy, the complexity of the models

can still be overwhelming. Many times the models can be partitioned into different

views. For example, a model of a plant can have one view for electrical signals,

and another for hydraulic signals. Interactions between different views is modeled

by components appearing in multiple views. The GMB enforces the consistency

of the views.

References. Interactions between different aspects can be modeled by reference

objects linking components from two (or more) aspects together.

The configuration of the generic GMB for a new domain requires the specification of

the domain concepts (e.g. predefined objects, how models are organized, what connections

are allowed, etc.). A Model Definition File (MDF) must be created containing these

specifications written in a declarative language designed for this purpose. The built-in

parser of GMB reads this file and configures itself accordingly. Another program

generates the model database interface codes.

The Multigraph Computational Model (MCM) is a macro-dataflow model [13,6]. The

computations in the MCM are described as a directed, bipartite graph. The main

components of the MCM are:

14

Actornodes. They are the computational operators of the dataflow graph. They

have several components:

State. An actornode can be disabled, waiting, ready, or running.

Script. The script is a (preferably) reentrant routine written in a procedural or

functional language that performs the necessary computations on the data

received by the node and propagates the results.

Context. The context is a static local memory available to the actor. It is used

to provide parameters for the actor by the builder and/or to save the state of

the actor between successive firings.

Ports. Input and output ports provide interfaces for the actornodes to the

datanodes. The number of ports available to an actor is decided at build time.

Control principle. The control principle determines when an actornode is ready

for execution. An "ifall" actor can be fired only after data is available at all

of its input ports. An "ifany" actor is ready whenever there is data at any one

of its input ports. An adder actor, for example, must be "ifall", while a merger

actor must be "ifany".

Datanodes. They provide queuing and connection functions between actornodes.

Actors can only be connected to datanodes and vice versa. Any number of actor

output ports can be connected to a datanode. A datanode can be connected to any

number of actor input ports. Datanodes provide a straightforward interface to

build, control, and monitor the dataflow graph.

Environments. They are used to protect system resources and to prioritize the

graph. Every actor is assigned to an environment. Only one actor per environment

15

is executed at any one time. Actors are scheduled based on the priority of their

environment.

Tasks. Tasks provide a generic interface to the basic computational resources of

the underlying hardware. In a multitasking environment, they are simply the

different processing threads available to the Multigraph Kernel. In a

multiprocessor system, tasks are the processors themselves. Environments are

attached to tasks.

Abbott utilizes the Multigraph Architecture for the automatic synthesis of parallel

software systems [5]. He specifically targets complex signal processing and

instrumentation applications running on parallel architectures with flexible interconnection

topology. One such application is the Computer Assisted Dynamic Data Monitoring and

Analysis System (CADDMAS) used for turbine engine testing at Arnold Engineering

Development Center [10].

He uses the Multigraph Architecture comprised of an earlier set of tools, including a

Lisp-based Graphical Model Builder and Model Database. They do not provide the

flexibility and richness of the new environment. Model building and model interpretation

are much slower.

Abbott models the parallel systems from two aspects. The signal flow aspect describes

the building blocks and the structure of the signal flow of the application. Since every

application can have a different hardware configuration, the available computing resources

and their interconnection topology is modeled as well.

Bapty utilizes the Multigraph Architecture for the automatic synthesis of parallel real-

time systems [11]. He proposes a multi-phase modeling and model interpretation approach

16

to adapt the environment to the different classes of users involved in the different steps

of the system development process. Real-time constraints are explicitly modeled. The

model interpreters automatically synthesize the application providing automatic process

assignment and static scheduling that guarantees real-time performance.

The Starburst Environment

The Starburst parallel programming environment is implemented on top of the

Processing Graph Method (PGM). The PGM is a dataflow computational model targeted

at signal processing [31]. A PGM application consists of a processing graph describing

the signal flow of the system and a command program managing the graph execution. The

main components of processing graphs are [31]:

Nodes. Nodes can represent one computation element, such as an FFT routine, or

whole subgraphs creating a hierarchical structure. Nodes have the following parts:

Ports. Each node must have at least one input port and may have any number

of output ports. A set of Node Execution Parameters is associated with each

input port. When the number of data elements available for each of the node

inputs are greater than or equal to the correspondingthreshold amounts, the

node is ready for execution. At each firing, the node skips a number of input

data elements specified by theoffset amount, reads a number of data elements

determined by theread amount, and removes a number of data elements

specified by theconsume amount.

Primitives. The primitive specifies the computation that the node executes.

Queues. The directed edges of processing graphs represent queues. Queues are

17

strongly typed FIFO data structures. At most one node output port can be

connected to a queue input. The queue output can be connected to at most one

node input port.

Graph variables. A graph variable is a global variable accessible by multiple

nodes. Its value can be modified by any node or the command program.

Command programs run on the host system. They are used to start and stop the graph

execution, enter parameters, flush the data from queues, etc. Processing graphs can be

specified by the Signal Processing Graph Notation language.

Starburst is a graphical development environment for parallel signal processing

applications. Its target hardware platform is the Intel i860-based Mercury RACE shared

memory multiprocessor. The Application Designer program is used to specify the signal

flow graph of the system. Nodes can represent a single computation unit, such as a filter

or an adder, or a subgraph. Nodes have input and output ports connected by streams.

Static parameters can also be assigned to nodes. The depth of a node is an integer

specifying the number of instances of the node. This is a technique to simplify the

specification of repetitive structures. The inside and outside connections of these node

instances must be exactly the same [4].

With Starburst, process assignment must be done manually. The program

automatically builds the application using the integrated Processing Graph Method and

executes it on the multiprocessor. It also provides debugging support on the host computer

[4].

Starburst has some common characteristics with the Multigraph Architecture. They

both automatically generate executable code based on a dataflow computation model from

18

high-level graphical specifications. The scope of Starburst is quite narrow, it targets signal

processing applications on one specific architecture.

Evaluation

New languages, language extensions, and libraries make parallel processing possible

by providing basic constructs for communication and synchronization transparently to the

user. To manage the complexity of large-scale applications, however, a higher level

abstraction is needed. Most textual representation techniques provide support to write,

handle, and look at the source code more effectively. The problem is described by the

source code, not in terms of the application domain. A radically different approach is

needed to manage the complexity of large-scale parallel programs.

A lot of information specifying a complex parallel application is inherently

topological. Graphical representation, therefore, is a natural way of describing such

systems. Simple approaches to specify the application by a computation graph, where

nodes represent processing at the subroutine level and edges correspond to data and

control flow and data dependency, provide a clean abstraction layer. However, the

computation graph of an application quickly becomes unmanageable as the system size

increases. Additional techniques are needed for complexity management. Hierarchical

decomposition aids in this respect. A node of a hierarchical computation graph may hide

a subgraph which may itself be hierarchical. The graph can be examined at the currently

required level of detail.

While hierarchy helps, it alone is not able to handle the complexity of large-scale

applications. As Harel points out, multi-aspect modeling, coupled with hierarchical

19

decomposition and automatic application generation, offers an excellent solution to

complex system development [29]. The Starburst programming environment and other

approaches utilize some of these elements. The Multigraph Architecture is customizable

to radically different application domains and incorporates a wide variety of techniques

to manage the complexity of the application and the system models themselves. As

previous experience shows [5, 6, 11], the Multigraph Architecture is particularly suitable

for large-scale parallel processing. On the other hand, some important issues have not yet

been addressed satisfactorily. How the requirements of automatic process assignment and

deadlock-free message routing affects the modeling paradigm needs to be studied.

Message Routing

In distributed memory systems, processors communicate with each other by sending

messages. Interconnection networks consist of nodes with a limited number of

communication channels. A fully interconnected topology, therefore, is not possible for

larger systems. Several regular topologies have been proposed in the literature, including

k-ary n-cubes (e.g. hypercube, toroid) and n-dimensional meshes (e.g. 2D and 3D meshes)

[46]. A processor can send messages directly to its neighbors using their common

communication channel. Messages to processors further away in the network have to pass

through intermediate nodes. Message routing is the process of selecting the path to take

through the network and transporting the message from the source to the destination

accordingly.

If the message path is always one of the shortest paths for all source destination node

pairs, the routing isminimal, otherwise it is non-minimal. With minimal routing, as a

20

message moves through the network, its distance to the destination is always decreasing,

i.e. it is always one step closer to the destination after every hop.

If the routing supports sending messages between any two nodes, it is said to be

connected. If only selected sets of processors need to communicate with each other in the

given application, the message paths can be optimized by not considering the unneeded

paths. Such message routing is calledpartially connected.

There are two basic interconnection strategies for multicomputers:direct and indirect

networks. There are two types of nodes in indirect networks: processing and switching (or

routing) nodes. Messages between processors are routed indirectly through the switching

nodes. Direct networks, on the other hand, consist of one type of node. All switching is

performed in the processing nodes [20].

Route Selection

There are two different ways of specifying the route a message must take in the

network. With source routing, the whole route is decided at the source node and the

routing information is included in the message header. Each intermediate node must read

this header and decide whether to keep the message or forward it through the specified

communication link. The routing information included in the message is an overhead

which must minimized. A good technique is called street-sign routing because of its

similarity to directions given to a driver in a city. There is a default forwarding channel

at every node for every incoming link. The header only contains information for a node

if a different channel must be taken, i.e. the message must "turn" [42].

In distributed routing, a routing decision is made at every node. The simplest method

21

uses routing tables. One such table is stored at every node containing forwarding

information for every possible destination node. Routing here is a simple table lookup

using the destination node address included in the message header as an index. When the

routing is implemented in hardware by a routing chip, the available memory for the

routing table limits the size of the network. Therefore, the table size must be reduced.

One good method is assigning addresses to the nodes in such a way that the same

outgoing channel corresponds to a whole range of addresses [42]. This technique is called

interval labeling. Instead of table lookup, more complicated algorithms can be applied in

distributed routing. The algorithm must be fast and easily implementable in hardware.

When the message paths taken depend only on the source and destination nodes, the

routing is deterministic. Better performance and fault tolerance can be achieved by

adapting the routes to network conditions. Such routing is referred to asadaptive routing.

Usually, decisions are made based on local network conditions. Gathering global state

information would add communication overhead to the system [42]. If the routing allows

any of the shortest paths, it is fully adaptive, otherwise it is partially adaptive. An

intermediate solution calledoblivious routingselects a path from the available set of paths

based not on network conditions but some other information. Most frequently the choice

is random or pseudo-random.

Routing Techniques

Messages are usually divided into smaller units called packets before transmission.

This way the utilization of communication bandwidth is more efficient and fair. The

packet is the smallest unit of communication which contains routing and sequencing

22

information [42]. There are four different methods for transporting the packets to their

destination.

The oldest approach isstore-and-forward routing. Here the entire packet is stored in

a buffer upon arriving at an intermediate node. When the required output link and an

appropriate buffer at the next node is available, the packet is forwarded to the specified

neighbor. Store-and-forward routing is the simplest, but the least efficient method. Since

every packet has to be received in its entirety before forwarding it out, the network

latency is

T = (Lp / B) D (1)

where Lp is the packet length, B is the communication bandwidth, and D is the distance

between the source and destination node (i.e. the path length) [42]. With

store-and-forward routing, the network topology is very important because the path length

is a multiplicative factor in the message latency. The other disadvantage of this approach

is the relatively high memory usage for packet buffers.

With virtual cut-through, a packet is forwarded directly from the input link to the

output, unless the latter is busy, in which case the packet is stored in a buffer. The

latency, assuming no other traffic in the network, is

T = (Lh / B) D + Lp / B (2)

where Lh is the length of the header [42]. The header is typically much smaller than a

packet, therefore, the path length has very little effect on the latency. See Figure 2 for a

comparison of latency with store-and-forward and virtual cut-through routing.

With circuit switching, the packet transmission is divided into three phases. During

the circuit establishment phase, the whole path between the source and destination node

23

Figure 2 Latency of store-and-forward and virtual cut-through

is reserved for the message. Then the packets are transmitted all the way to the

destination one by one. Consequently, no buffering is necessary on intermediate nodes.

In the last phase, the communication links are freed as the last packet of the message is

being transmitted [42]. If the whole path cannot be established because of a busy

communication link, the partial path is either torn down or it stays reserved until the link

becomes available. In the former case, message delivery will be attempted later. The

latency with circuit switching is

T = (Lc / B) D + Lp / B (3)

where Lc is the length of the control packet [42]. Similarly to virtual cut-through, the

dominant factor is Lp/B, since Lc << L. Therefore, the path length has negligible effect

on the latency.

Most modern distributed memory multicomputers usewormhole routing. This

24

approach is similar to virtual cut-through, but the packets are further divided into small

flow-control digits, or flits. Only a limited number of flits are buffered on every

intermediate node. The first couple of flits of a packet contain routing information. After

examining these flits, every node starts to forward them down the next communication

link in a pipeline fashion. This way, the whole packet spreads across the path. Except for

the header, flits do not contain routing information, therefore, messages cannot be

interleaved on communication links. When the first flit is blocked because of a busy

channel, the flits stop advancing and remain distributed in the flit buffers across the path.

The involved links stay blocked until the message can be delivered [18]. The latency of

wormhole routing is

T = (Lf / B) D + Lp / B (4)

where Lf is the flit length [42]. Similarly to circuit switching and virtual cut-through, the

path length has little effect on the latency, because the flit size is small.

The network latency of virtual cut-through, circuit switching, and wormhole routing

are quite similar. Virtual cut-through requires more memory for storing buffers at

intermediate nodes than wormhole routing, which stores only a couple of flits at any one

node. Circuit switching reserves every communication link along a message path. Other

messages cannot use these until the whole message is transported. We shall see later that

wormhole routing, on the other hand, supports sharing of physical channels by many

packets. In the next two sections, the concept of virtual channels and their use in deadlock

avoidance and flow control will be described.

Deadlock Avoidance

25

A deadlock occurs when there is a cyclic dependency for resources in the network.

With store-and-forward or virtual cut-through routing, the shared resources are packet

buffers. Imagine a unidirectional ring of four nodes. When every node is trying to send

a message to the node the furthest away, if every node allocates the single packet buffer

on its neighbor, none of the messages can progress, a deadlock occurs. A message routing

scheme in distributed memory multiprocessors must not allow deadlocks.

Structured Buffer Pool

A straightforward way to avoid deadlocks is to prevent cyclic dependencies between

buffers by structured buffer pools [20]. A packet in a buffer on a given node can be

stored only in a limited set of buffers on the next node. This relationship between packet

buffers can be best described by a directed graph. The nodes of the graph are the buffers.

There is an edge from a node Ni to another node Nj if a packet can move from buffer Ni

to buffer Nj. This graph is called the buffer dependency graph. The message routing is

deadlock-free if and only if the buffer dependency graph is acyclic [20]. An acyclic buffer

dependency graph defines a partial order of the shared resources.

An acyclic buffer dependency graph can be achieved by allocating DG number of

buffers on each node, where DG is the diameter of the network. Packets use buffers based

on the current distance from the destination: if a packet is n hops away it is stored in

buffer #n. Cycles cannot be formed if the routing is minimal [20].

The large amount of storage required for structured buffer pools makes this approach

unattractive. A better solution can be achieved using wormhole routing with virtual

channels.

26

Virtual Channels

Dally and Seitz introduces virtual channels for deadlock-free, connected, deterministic

wormhole routing [18]. They use the following notation. The interconnection network, I=

G(N,C) is a directed graph. The vertices N represent the processing nodes, the edges C

the communication channels. Routing is a function R: C× N → C. It maps the current

channel and the destination node to the next channel. Traditionally, deterministic routing

has been a function R': N× N → C, i.e. at an intermediate node, the current and the

destination node determined the forwarding channel. With their new approach, the input

channel and the destination determines the output channel allowing them to introduce the

idea of channel dependence. Thechannel dependency graphD for a given interconnection

network I and routing function R is a directed graph. The vertices of D are the channels

of I. The edges of D are the pairs of channels connected by R.

Deadlocks can occur when there are cyclic dependencies in the routing which result

in cycles in the channel dependency graph. A routing function R for an interconnection

network I is deadlock-free if and only if there are no cycles in the channel dependency

graph D. Cycles in D can be broken by using multiplevirtual channelsper physical link

[18].

A group of virtual channels shares the same physical link, but each virtual channel

requires its own queue of flit buffers. A blocked message holds a virtual channel, but

messages using other virtual channels sharing the same physical link can progress.

Consider a unidirectional four-cycle. The channel dependency graph is cyclic. After

27

Figure 3 Unidirectional four-cycle with virtual
channels

splitting each physical link to two virtual channels, a high c1i and a low c0i (Figure 3), and

routing messages at a node numbered less than their destination node on the high channel

and vice versa, the cycles are broken [18].

Multiplexing several virtual channels on the same physical link requires hardware

support in the form of additional control logic and lines. Therefore, the number of virtual

channels is bound by the available hardware.

In addition to helping deadlock avoidance, virtual channels increase the connectivity

of the network facilitating mapping logical topologies required by certain applications to

the given physical topology. They can be used in adaptive wormhole routing as well.

Adaptive Wormhole Routing

Duato develops a theoretical background for the design of deadlock-free adaptive

routing algorithms for wormhole routing [24]. His work is based on the methodology of

28

Dally and Seitz described in the previous section. However, he allows adaptive routing,

therefore, his routing function maps to P(C), the power set of C. More formally the

routing function is R: N×N → P(C). Note that the domain of R is N×N instead of C×N

as in [18]. A selection function S:P(C×F) → C selects a free output channel (if any) from

the set provided by R. Here F is the channel status: F = {free, busy}. The channel

dependency graph is defined as in [18].

He proves the straightforward extension of the theory in [18] for adaptive routing: an

adaptive connected routing function R for an interconnection network I is deadlock-free

if there are no cycles in the channel dependency graph D. Notice that an acyclic channel

dependency graph here is only a sufficient condition for deadlock-free routing.

Duato goes on to introduce a routing subfunction and indirect channel dependency.

A routing subfunction R1 for a given routing function R and channel subset C1⊆ C is

a routing function

R1: N × N → P(C1) where R1(x,y) = R(x,y)∩ C1 for all x, y ∈ N. (5)

There is an indirect dependency from nonadjacent channels ci to cj if and only if it

is possible to establish a path from the source node of ci to the destination node of cj. ci

and cj are the first and last channels in the path and the only ones belonging to C1. In

other words, an indirect dependency is a dependency between two channels in the channel

subset that exists only because of the intermediate use of one or more channels not in the

subset. An extended channel dependency graph DE for a given interconnection network

and routing subfunction R1 is a directed graph. The vertices of DE are the channels that

define R1. The edges of DE are the pairs of channels (ci,cj), such that there is a direct or

an indirect dependency from ci to cj.

29

Duato proves in [24] that a connected adaptive routing function R for an

interconnection network I is deadlock-free if there exists a subset of channels C1⊆ C that

defines a routing subfunction R1 which is connected and has no cycles in its extended

channel dependency graph DE. In other words, one can have an adaptive routing function

with cyclic dependencies between channels as long as there are alternative paths without

cyclic dependencies to send a given flit towards its destination. Physical channels can be

split to multiple virtual channels to provide greater flexibility.

Duato provides two general methodologies to construct deadlock-free adaptive routing

functions based on his new theorem. He supplies results of extensive simulation and

concludes that his approach results in much lower latency than static routing and it

improves throughput as well [24]. Schwiebert and Jayasihma develops an optimal routing

algorithm for meshes based on Duato's work in [48].

Lin et al. proposes a methodology to prove deadlock freedom. If every packet that

uses a given channel is guaranteed to reach its destination, then no deadlock can occur

from the use of this channel. The routing is deadlock-free if no channel can be held

forever by any packet regardless of the destination and path taken [39].

Duato proposes a necessary and sufficient condition for deadlock-free adaptive

wormhole routing [23]. His proof technique applies only to routing relations of the form

R: N × N → C(P). Schwiebert et al. propose a necessary and sufficient condition for the

more general routing relation R: C× N → P(C). Routing relation of this latter form can

always be converted to the first form, but not the other way around.

Schwiebert et al. define a variation of the channel dependency graph called the

Channel Waiting Graph (CWG). The nodes of the CWG are the channels of the

30

interconnection network. There is a directed edge from ci to cj if the routing relation R

allows a packet to wait for channel cj after using ci (not necessarily immediately after)

[47]. The idea behind the CWG is that the routing allows a node to select an output

channel from a set of available channels. When all possible channels are busy, however,

the routing allows the packet to wait for a channel selected from a smaller set of

channels. Note that the idea of the CWG is similar to that of Duato's routing subfunction

R1.

Schwiebert et al. prove that a routing is deadlock-free if and only if it is

wait-connected and its CWG has no True Cycles. A routing is wait-connected if for every

input channel on a path, there exists a waiting channel through which the message can

reach its destination. What are True Cycles? When creating the CWG, the specific

intermediate channels are not considered between two dependent channels defining and

edge in the CWG. Therefore, there can be cycles in the CWG which require a channel

to be used more than once as an intermediate channel. Obviously, a deadlock cannot be

caused by a cycle like this because a channel cannot be used by more than one packet at

the same time. A True Cycle is a cycle in the CWG that allows every packet in the cycle

to use channels not used by any other packet in the cycle. Schwiebert et al. use their

necessary and sufficient condition for deadlock-free adaptive wormhole routing to develop

a fully adaptive routing algorithm for hypercubes [47].

Topology-Based Deadlock Avoidance

Certain architectures have deadlock-free minimal routing strategies. A tree is a trivial

example. Since there are no cycles in the network, there cannot be any cycles in the

31

channel dependency graph. Hence, any routing is deadlock-free. Meshes and hypercubes,

on the other hand, have chordless 4-cycles in the network. Therefore, there are minimal

routing strategies that are not deadlock-free. However, the so-called dimension ordered

routing is guaranteed to be free of deadlocks for both meshes and hypercubes.

In a 2-D mesh, for example, if every message path is such that first the message

travels in the X dimension all the way to correct column and then in the Y direction all

the way to the destination, then it is easy to show that the channel dependency graph is

acyclic.

The e-cube routing in hypercubes is a similar strategy. The nodes in a hypercube can

be labeled with a binary number in a way that the Hamming distance of any two

neighbors is 1. The bit positions of the labels are the dimensions. The routing algorithm

takes the labels of the source and destination nodes and compares the bits from MSB to

LSB (or in any other fixed order). If a difference is encountered, the message is sent to

the neighbor with the label that differs from the current node in the given dimension. The

channel dependency graph can be shown to be acyclic.

Flow Control

Flow control deals with the allocation of resources to packets as they travel across the

network. Flow control methods are distinguished by how they resolve packet collisions.

A collision occurs when a packet requests a resource held by another packet. A good flow

control policy must avoid channel congestion and reduce network latency [42]. There are

four basic flow control techniques [20]:

Buffering . The whole packet is received at the intermediate node and stored in a

32

buffer. Virtual cut-through employs this technique. The drawback of this approach

is the large amount of storage required. Moreover, the buffers must be allocated

in an acyclic manner to avoid deadlocks (structured buffer pool). The biggest

advantage of buffering is that no network resources are wasted when a packet is

blocked.

Blocking. The packet stops advancing holding the network resources already

allocated and waiting for the busy resource. Wormhole routing follows this

technique. Blocking flow control with a small number of flit buffers gives good

performance for a given set of storage and communication resources.

Dropping. The whole packet is received at the intermediate node and thrown

away. The packet must be retransmitted later. Dropping is inefficient because it

wastes network resources. Beyond a certain level of network traffic, the

throughput decreases, only a few messages are delivered. Dropping requires

acknowledgement of delivered messages, further wasting bandwidth.

Misrouting . The packet is routed to an available but incorrect channel. This

method results in non-minimal routing. Livelocks must be avoided with

misrouting. A livelock occurs when a packet continues to be routed through the

network but never reaches its destination.

Most networks combine some of these basic flow control techniques [20]. Dally

proposes to use virtual channels not only for deadlock avoidance, but also for flow control

[21]. There are minimal deadlock-free routing algorithms for certain topologies without

using virtual channels (e.g. 2D meshes). For some others, two virtual channels per

physical channel are enough. Dally's idea is to split every physical channel into several

33

virtual channels regardless. This way blocked packets can be passed, dramatically

improving network performance.

Flow control is performed at two levels with virtual channel flow control. Virtual

channels are assigned on a packet-by-packet basis. Physical channel bandwidth is

allocated at the flit level. The routing algorithm assigns an arriving packet to an output

virtual channel. The virtual channels associated with a physical channel arbitrate for

bandwidth on a flit-by-flit basis. Decoupling resource allocation allows for more flexible

physical channel utilization. Bandwidth may be allocated on the basis of type, age, or

deadline. This advantage is especially important for real-time systems [21].

Example Systems

The Torus Routing Chip

The first implementation of wormhole routing with virtual channels was the torus

routing chip (TRC) [19]. The TRC employs dimension order routing. A packet header

contains two address bytes, one for the X direction and one for the Y direction. The

addresses are relative, they contain a count of the number of channels the packet must

traverse to reach the address of the destination in that dimension. First packets are routed

in the X direction. The relative address is decremented at each step. When the address

becomes 0, the correct X coordinate has been reached and the packet is routed in the Y

direction until it arrives at the destination [19].

Both the X and Y physical channels are split into two virtual channels. In each

dimension, a packet is routed on virtual channel 1 until it reaches its destination or

34

address 0 in the direction of routing. After a packet crosses address 0, it is routed on

virtual channel 0. This routing strategy results in an acyclic channel dependency graph,

therefore, it is deadlock-free [19].

The Torus Routing Chip is the result of Dally's and Seitz's groundbreaking work in

message routing. Wormhole routing and virtual channels are two key elements in most

of today's message passing parallel machines.

The Connection Machine

The original Connection Machine supports fine-grain parallelism. The prototype, the

CM-1, consists of 64K extremely simple processing elements. Each unit has 8 bits of

internal state information. Data paths are one bit wide. An operation consists of

combining one bit of state information with two bits from external memory according to

some specified logical operation generating two result bits [30].

The interconnection network of the Connection Machine is indirect. A router is

connected to 16 processing elements. The 4096 routers form 12 dimensional hypercube.

Every message contains the relative address of the destination. The router cycles through

the dimensions. At step K, it searches all messages it has. It selects the oldest available

message that has its bit K set in the address and forwards it along dimension K. Messages

that are not sent in the given cycle are buffered. When the router runs out of buffers

space, newly arriving messages can be misrouted [30].

The CM-5

The Connection Machine Model CM-5 contains between 32 and 16K processing

35

nodes. Each node consists of a SPARC processor, memory, and a high-performance

vector processing unit. The machine contains three communication networks: a data

network, a control network, and a diagnostic network. The control network provides

cooperative operations, e.g. synchronization. The diagnostic network allows independent

access to all hardware resources to detect and isolate errors [38].

The data network provides fast point-to-point communication between processing

elements. The topology of this indirect network is a 4-ary fat tree. Each processor is

connected to two routers. Routers at the first two levels are connected to two routers at

the next level. Routers higher up are connected to four routers at the next level. The

network bandwidth scales linearly up to 16K nodes.

Routing in the data network is partially adaptive, minimal wormhole routing.

Messages progressing upward have several possible paths to take to reach the level of the

least common ancestor of the source and destination nodes. The message header contains

routing instructions allowing the routers to select an available channel pseudo-randomly.

Then messages move along the single available path down the tree to the destination [38].

The IBM SP2

The IBM Scalable POWERparallel Systems SP2 is an indirect network connecting

RS6000 workstations. The routing chip, called the High-Performance Switch, provides

high communication bandwidth [54]. In the SP2, multiple 4-way to 4-way bidirectional

switching elements are used. Except for nodes directly attached to the same switch, there

are multiple shortest paths for all node pairs. For SP2 topologies, any minimal routing is

inherently deadlock-free [54].

36

SP2 employs deterministic (and supports oblivious) source wormhole routing. Before

sending out a message, each node performs a routing table-lookup and inserts routing

information into the packet headers. The routing tables are generated by a breadth-first

search performed on the network detected by a worm program providing fault-tolerance.

The SP2 flow control strategy differs from traditional wormhole routing. Each

switching element contains a relatively large buffer to store blocked messages. This

central queue is shared among input channels. Storage is allocated dynamically according

to demand. This strategy reduces the impact of network contention [54].

The MIT J-Machine

The J-Machine is an experimental multicomputer developed at the MIT Artificial

Intelligence Laboratory. The system provides low level support for synchronization of

threads, data communication, and global naming of objects [44]. The processing node of

the J-Machine is the Message Driven Processor (MDP). The MDP consists of a

fixed-point CPU, a memory management unit, a router, a network interface, some SRAM,

and a DRAM controller, all integrated on a single VLSI chip. The topology of the

interconnection network is a 3D mesh. The J-Machine employs deterministic, dimension

order wormhole routing [44].

The CRAY T3D

The CRAY T3D is one of the most powerful supercomputers. A 3 dimensional torus

network connects from 32 up to 2048 processing elements. A node contains two 64-bit

DEC RISC processors. Both has up to 8 Mbytes of local memory. Each node has a

37

network router chip. The CRAY T3D employs dimension order deterministic wormhole

routing. Packets are transported first in the X dimension in either positive or negative

direction. Then the Y and finally the Z dimension follows. Deadlocks are avoided by

splitting each physical channel into two virtual channels. In each dimension, there is one

selected physical channel called the dateline communication link. Packets that will cross

that channel use exclusively the lower virtual channels in that dimension. Packets that will

not cross the "dateline" use the higher channels in that dimension. The channel

dependency graph is, therefore, acyclic.

The IMS T9000

The IMS T9000 represents the new generation of transputers from Inmos. The

processor has superscalar architecture, hardware scheduler, on-chip cache, and a

communication processor. Multiple processes are scheduled by the T9000; they can

communicate via channels. The four bidirectional communication links of the T9000

allow multiple transputers to be connected together. Processes running on different

processors can communicate with each other transparently. Each communicating process

pair has its own virtual channel. Multiple virtual channels are multiplexed onto the same

physical link. The T9000 does not support message forwarding in hardware. Inmos

provides this capability in a separate routing chip, the IMS C104, for T9000 systems [41].

The IMS C104 includes a full 32 x 32 non-blocking crossbar switch. It implements

wormhole routing, however, it does not support virtual channels. Therefore, deadlock

avoidance must be solved by other means. The router employs interval labeling. Labeling

algorithms for meshes, hypercubes, and trees can be found in [41].

38

The T9000 is a good parallel processor. It employs state-of-the-art concepts, such as

wormhole routing with virtual channels. The concept of virtual channel flow control

advocated by Dally [21] is already implemented in the T9000. Moreover, Inmos realized

the need for a separate chip to support message routing. Unfortunately, there is a

mismatch between the processor and the routing chip, since the latter does not support

virtual channels. This decreases the usefulness of the T9000 as a building block for large

parallel systems.

The TI TMS320C40

The Texas Instruments TMS320C40 is a 32-bit floating-point digital signal processor.

It has six bidirectional communication ports driven by independent DMA engines. These

ports allow glueless point-to-point connection between processors [52]. Multicomputer

networks of arbitrary size and topology (limited by the maximum degree of one node) can

be constructed from C40s. Unfortunately, the processor does not provide any additional

support for message routing. Physical channels cannot be split to multiple virtual

channels.

A message routing library for C40 networks is available from TI. The routing is

software controlled, the CPU makes routing decisions and keeps track of the status of the

communication links. The routing is distributed and wormhole-like except for a specific

case, when buffering the message is necessary to avoid a deadlock condition due the C40

communication channel protocol [1].

The TI TMS320C40 is a fast floating-point processor. Its six bidirectional

communication channels driven by DMA engines make the processor a good candidate

39

for parallel processing. Message routing, however, is not supported in hardware. There

is no routing chip available for the C40. Bus synchronization issues make it very hard to

implement routing without interaction with the CPU. Without virtual channels, deadlock

avoidance must be achieved by other means.

Evaluation

Wormhole routing is the clear choice for message routing in today's parallel machines.

The two key characteristics of it are the small message latency and the low buffer

memory requirement. Wormhole routing with virtual channel flow control offers even

better capabilities, including deadlock avoidance, traffic isolation and protection, and

improved network efficiency and performance. Suresh, however, points out that they are

expensive to support [43]. Currently, only a handful of commercial machines implement

virtual channels. The Cray T3D, for example, use them only for deadlock avoidance in

its torus network. The Inmos T9000 is the only industrial product that utilizes virtual

channel flow control. On the other, the accompanying router chip does not support virtual

channels at all.

Most experts agree that adaptive routing has good potentials [43]. Scott observes that

this approach offers greater bandwidth and better worst-case behavior than deterministic

routing [43]. The only drawback is the need for more complicated routers to handle,

among other things, out of order arrival. The CM-5 is one of the few machines to support

adaptive routing.

Most high-end parallel machines employ regular topologies with guaranteed

deadlock-free routing, such as hypercubes or meshes. Some apply other topologies and

40

virtual channels to avoid deadlocks. Current trends indicate that the next generation

parallel supercomputer will employ a 3D mesh (or torus) or a fat-tree like multistage

topology, fully adaptive wormhole routing, and virtual channel flow control.

Nowadays building inexpensive, dedicated parallel machines is possible with such

building blocks as the transputer or the TMS320C40. They do not support virtual channels

or adaptive routing in hardware. Existing solutions use either deadlock-free topologies or

avoid wormhole routing altogether. Since one of the advantages of these systems is their

flexible topology, restricting the possible topologies to a narrow class of graphs is not

acceptable. Since wormhole routing provides the best performance of all routing

techniques, it would be desirable to use it with these systems. How to provide deadlock-

free wormhole routing in these networks with flexible topology is an open problem.

Assignment

The assignment problem (also known as the mapping problem) is the placement of

the processes of a parallel program on a network of processors in such a way that the

program execution time is minimized. The goal can be achieved by balancing two factors:

(1) distributing the computational load on the nodes evenly, and (2) minimizing

interprocessor communication. These factors, however, are not orthogonal. For example,

assigning all the processes to a single processor results in zero communication overhead,

but the load distribution is the worst possible.

Since generating candidate solutions for the problem and measuring their execution

time is not feasible in most cases, a cost function must be defined. The cost function

describes the quality of the solution. It should be correlated to the actual execution time

41

as closely as possible. The more complicated the cost function is, the better it can

describe the assignment, but the more time it takes to compute. The next sections

describes several cost functions proposed in the literature.

A program consisting of multiple communicating processes can be best described by

a directed weighted graph. The nodes of the graph are the processes. A directed edge

between node A and B specifies that A is sending messages to B. The weights of the

edges represent the communication rate on the given edge, while the weights on nodes

specify the estimated execution time of the process. Similarly, the processor

interconnection network can be described as a directed weighted graph. The nodes are the

processors, the edges are the communication channels between the processors. The

weights of the edges represent the capacity of the channels, the node weights specify the

computational capacity of the nodes. In addition to specifying communication between

processes, the edges of the process graph can also specify precedence constraints.

The assignment problem is the mapping of one graph to another minimizing a cost

function. This is a well-known NP-complete problem [27, 25]. Several different

approaches have been proposed in the literature. Talbi and Muntean give a taxonomy of

mapping strategies in [55] (Figure 4). Optimal solutions find the global minimum, but

they can be used only for small problems because of the required time. General

optimization methods, such as genetic algorithms or simulated annealing, have been

successfully applied to the assignment problem. Most approaches, however, apply

heuristics specifically designed for the problem.

One interesting approach generates an initial assignment and improves it during

runtime based on the actual timing of the executing system. This technique is called

42

Figure 4 Taxonomy of process assignment strategies

dynamic load balancing. Moving a process from a processor to a different node is referred

to as process migration. This dissertation concentrates on static assignment.

Cost Functions

There are two somewhat contradictory requirements for a good cost function. First,

it must describe the assignment configurations as accurately as possible, i.e. there must

be a strong correlation between the value of the cost function and the execution time of

the program for a given assignment. Second, the cost function must be inexpensive to

compute. The faster the cost can be computed the more possibilities the search algorithm

can evaluate in a limited time.

The simplest cost function is proposed by Bokhari in [14]. He assumes that the

number of processes is equal to the number of processors. Hence, the computational load

43

does not need to be balanced. The cost function is defined as the cardinality of the

assignment which means the number of process graph edges falling on single processor

graph edges. This cost function does not consider any weights on any of the graphs.

Moreover, it does not take the distance between non-neighbor processors having

communicating processes assigned to them into account. The main advantage of this

approach is its simplicity.

A better measure of the communication cost is the sum of the products of the weights

of process graph edges and the corresponding distances in the processor graph [37].

However, this cost function does not take shared physical links into account. Two or more

process graph edges may share the same physical channel causing delays. The actual

communication overhead depends on the particular assignment, the timing of the

communication between the processes, and the communication control rules of the system

[37]. Even if the necessary information is available, such an elaborate cost function would

be computationally expensive.

Lee proposes to sort the process graph edges into sets corresponding to phases in the

communication. Edges in the same set are needed at the same time, while edges in

different sets do not overlap [37]. His cost function is the sum of the maximum

communication overhead in the same set over all sets. This measure is quite reasonable,

but the timing information may not be available or accurate enough to partition the

process graph edges into sets. Non-overlapping phases may not even exist in the system.

The cost function for computation overhead is typically the variance of the processor

loads [55]. The measure for the communication and computation overheads are usually

combined according to the simple formula:

44

C = Ccomm + W Ccomp (6)

where W is an empirical constant, Ccomm is the communication cost, and Ccomp is the

computational cost.

Optimal Solutions

Several methods finding the global minimum of the cost function have been proposed.

Some interesting approaches are based on graph theoretic foundation. Others employ

mathematical programming or queuing theory (Figure 4).

Graph Theoretical Approaches

Stone applies network flow algorithms to solve the assignment problem [53]. The

maximum flow problem involves directed acyclic graphs. Nodes having outgoing edges

only are called source nodes. Nodes with incoming edges only are called sink nodes.

Source nodes are capable of producing an infinite amount of commodity. Similarly, sink

nodes can absorb an infinite amount of commodity. The edges of the graph are labeled

by integer pairs. The first number specifies the capacity of edges, i.e. the maximum

amount of commodity flow it can transport. The second number specifies the amount of

the current flow. A feasible flow in the network originating from the sources and ending

at the sinks has the following properties [53]:

The sum of flows into an intermediate (i.e. neither source, nor sink) node equals

to the flow out of the node.

The flow on any edge in the network is non-negative and does not exceed the

capacity of the edge.

45

The value of a flow is the sum of the flows out of the source nodes which must be

equal to the flow incoming to sink nodes. The maximum flow is a feasible flow with the

highest value. The max-flow, min-cut theorem states that value of the maximum flow in

a network equals to the weight of the minimum weight cutset. There are several efficient

algorithms for finding the maximum flow (and the minimum cut) in a network [53].

Stone describes a program consisting of communicating processes by a directed

acyclic graph. There are weights on the edges representing the communication

requirements between the processes. Stone observes that the minimum cut of this graph

is the optimal assignment of the processes on two processors if only the communication

overhead is considered. He wants to incorporate the process execution time on the

different processors into his model. He adds two nodes to the network, one representing

each processor. The first node P1 is a source, the second P2 is a sink. He adds an edge

between every original node and the two new ones. The weight on the edges of P1

represent the execution time if the process is assigned to the second (!) node and vice

versa. The minimum cut of this graph is the optimal assignment of the program on two

processors [53].

Stone tries to generalize his results for N processors. While he succeeds in formalizing

the problem in terms of minimum cutsets, no efficient algorithm is found. This is not

surprising, since the general assignment problem is NP-complete. Bokhari discusses

several efficient algorithms for special cases of the assignment problem, including

tree-structured process graphs and single-host multiple-satellite computer systems [15].

Shen and Tsai propose to use a type of graph matching called weak homomorphism

for the assignment problem [49]: Let G1 = (V1 , E1) and G2 = (V2 , E2) be two graphs.

46

G1 is weakly homomorphic to G2 if there exist a mapping M: V1 → V2 such that if edge

(a , b) ∈ E1, then edge (M(a) , M(b))∈ E2. They propose to find the weak

homomorphism with the smallest cost between process graph and a processor network.

In order for this approach to work, they need to add a self loop to each node in the

processor graph when there are more processes than processors. Note that neighboring

processes will be assigned to neighboring processors which may not result in the optimal

solution. Since the best algorithm for finding the minimal cost weak homomorphism has

exponential time complexity, Shen and Tsai propose a heuristic search method that is not

guaranteed to find the best solution.

Mathematical Programming

Ma et al. apply the branch-and-bound technique to solve the assignment problem [40].

The search space is represented by a tree. The levels of the tree correspond to processes.

An allocation decision represents a branching at a node. For example, there are N

branches (where N is the number of processors) at any node. Branch k of any node on

level m means that process m is assigned to processor k. A path from the root to a leaf

represents a complete assignment. Although Ma et al. propose several constraints pruning

the search tree, the time complexity of the algorithm is still exponential [40].

General Optimization Methods

Hill Climbing

Hill climbing is a simple general combinatorial optimization method. The algorithm

47

starts from a complete solution and tries to improve it by local transformations. A new

configuration is accepted only if it provides a better solution than the previous one. This

process is repeated until no improvement is possible. The algorithm finds a local

minimum of the cost function. The usual way to find a better solution is to repeat the

whole procedure several times starting from different randomly generated initial

configurations. A hill climbing algorithm applied to the assignment problem is described

in [55].

Simulated Annealing

Annealing is the process of heating a substance and then cooling it down to reach a

low-energy state of the matter. Lowering the temperature must be done slowly, and

increasing amount of time must be spent at lower temperatures. Otherwise, the substance

gets out of equilibrium, the resulting crystal will have defects, or the substance may form

glass containing only metastable, locally optimal structures [34].

Kirkpatrick et al. propose to apply the Metropolis algorithm used for approximate

numerical simulation of annealing for combinatorial optimization problems [34]. The cost

function is defined to represent the "energy" of the system, while the "temperature" is a

control parameter having the same unit as the cost function. The process starts in a

high-temperature state. The system is "cooled down" slowly. At each step, small random

changes are applied to the system. Changes resulting in a lower-energy state (i.e. smaller

cost) are always accepted. Higher energy states are accepted with a finite probability. This

feature prevents simulated annealing to get stuck in a local minimum. The probability of

the acceptance of increased energy state is decreasing with the temperature. The process

48

ends in a low energy state, which may not be the global minimum [16].

The simulated annealing method applied to a combinatorial optimization problem has

four elements [16]:

The System Configurationmust be a good description of the problem allowing

for easy specification of system perturbations and efficient calculation of the cost

function.

The Move Set is the collection of allowed rearrangement operations. Having a

large number of moves is desirable, therefore, they must be simple to generate and

evaluate.

The Cost Function must be incrementally computable for efficiency.

The Annealing Schedule defines how the temperature is changed during

annealing including initial and final temperatures, cooling rate, and the time spent

at each temperature value.

Bollinger and Midkiff apply simulated annealing to the assignment problem [16]. They

assume that the number of processors and processes are the same, and every process is

assigned to a unique processor. Therefore, their cost functions represent only

communication overhead. They apply a two-stage approach using simulated annealing in

both cases. First they optimize the processor placement using a simple cost function. In

the second stage, they generate the message routes to avoid congestion.

The annealing schedule in both phases is based on a simple logarithmic formula:

Tn = αn Tn-1 (7)

where the annealing factorα is at least 0.9 ensuring a slow cooling rate. For the processor

placement, the cost function combines the average and the maximum communication

49

time. The moves are simple pairwise exchanges of processes. In the second phase, the

communication links between processes are mapped onto the physical channels. Minimal

routing is not required. The move set is more complicated in this phase because of the

nature of the problem. The cost function is computed from the average and maximum

distances between communicating processes.

Bollinger and Midkiff provides test cases with encouraging results. Their method finds

near optimal solutions in most cases. However, the assumption that the number of

processes equals to the number of processors is a severe limitation. In general, simulated

annealing is a good optimization approach. It works well for the assignment problem. The

biggest drawback is the required time because of the large number of steps required for

real size problems.

Genetic Algorithms

In his famous paper, Holland proposes the idea of genetic algorithms – search

strategies based on the mechanics of natural selection and genetics [32]. They differ from

traditional optimization procedures in several ways [28]:

They work with acodingof the parameter set, not the parameters themselves.

They search from aset of points(called population), not a single point.

They useprobabilistic transition rules, not deterministic ones.

Genetic algorithms require the parameter set of the optimization problem to be coded

as a finite-length string over some finite alphabet [28]. The search starts from a set of

configurations. The basic genetic operators (reproduction, crossover, mutation) are applied

to them to generate a new population. With reproduction, individual strings are copied

50

based on their cost function (fitness value). The higher the fitness, the more likely the

string will contribute one or more offsprings to the next generation. With crossover, pairs

of strings are selected randomly and their characters are swapped at a randomly selected

position. For example, when the two strings ABCDEF and UVWXYZ are crossed at

position number 3, the two new strings generated are ABCXYZ and UVWDEF.

Reproduction and crossover give genetic algorithms much of their power. However,

occasionally they may lose some important genetic material (i.e. a letter at a particular

location) [28]. The third operator, mutation is designed to overcome this problem.

Mutation is the random alteration of the value at a selected string location. Mutation,

however, should be used sparingly [28].

Talbi and Muntean apply genetic algorithms for the assignment problem [55]. They

label each processor by a unique symbol; the set of these symbols constitute the alphabet.

A string describing a configuration is of length N, where N is the number of processes.

A symbol S at position k means that process k is assigned to processor S. They

implement a standard genetic algorithm in parallel. They compare the approach to

hill-climbing and simulated annealing.

In general, genetic algorithms and simulated annealing provide good solutions to the

assignment problem. Genetic algorithms are faster, mainly because they are easier to

parallelize.

Assignment-Specific Heuristics

A popular solution to the assignment problem consists of two phases. First, an initial

assignment is generated using either a simple cost function, or a simple search method,

51

or both. In the second phase, the initial assignment is improved by local transformations.

Usually, a more complicated cost function is used than in the first phase. The initial

assignment cuts the search space allowing a more expensive search in the second phase.

Such an approach is taken by Lee and Aggarwal [37].

They define the communication intensity of a process node by adding the weights of

all of its edges. The mapping algorithm starts by assigning the node with the highest

intensity to a processor. Then they repeatedly assign the highest communication intensity

process that is adjacent to at least one of the already assigned processes. At each step, the

assignment is made in such a way that the cost function is minimized [37].

In the second phase, they try to improve the assignment by pairwise exchanges of

processes. They select a promising process according to a criterion derived from the cost

function (which may be different than the one applied in the first phase). Then they check

every pair involving the selected process and perform the exchange with the process

giving the smallest cost if it is smaller than the original cost. The algorithm stops when

the cost is acceptable or no further improvement is possible.

Fully Connected Processor Graph

A popular and widely available distributed processing platform is local area networks

connecting workstations. They employ broadcast-based communication, hence the

processor graph is uniform and fully connected. In this case, there is no need for a

processor graph at all. The assignment problem is to divide the process graph into n

subgraphs where n is the number of processors. Unfortunately, this problem is still

NP-complete [9].

52

Paralex is a programming environment for distributed workstations [9]. Programs in

Paralex can be specified as weighted directed acyclic graphs. The graph represents

dataflow, therefore, the edges not only specify communication between processes, but

precedence constraints as well. Nodes lying along a chain of edges must be executed

sequentially. A straightforward approach to the assignment problem is to try the group

chains of nodes together [9].

Paralex employs a greedy heuristic algorithm to identify chains. First, every node is

put into a chain by itself. Then Paralex selects the two non-parallel nodes communicating

most intensely and puts them in a single chain. Edges originating in the first node of the

new chain are deleted. This step is repeated until no more chains are found [9]. Note that

the number of chains found is not necessarily equal to the number of available processors.

Paralex is able to incorporate assignment constraints set by the user. Certain processes can

be specified to be (or not to be) assigned to certain nodes.

The Impact of Message Routing on the Assignment

Message routing has a considerable impact on the communication load in

interconnection networks. Therefore, some approaches incorporate message routing into

their assignment strategy. Shen assigns arbitrary process graphs to a 2D torus network of

transputers [50]. He applies a three-phase strategy. First, he groups the processes into

clusters to get the same number of processes as processors. His message routing strategy

requires edge-disjoint paths between communicating processors, therefore, no process in

the clustered process graph can have more edges than the number of physical channels

the processors have. The grouping algorithm must satisfy these constraints, while

53

balancing computation and communication load.

In the second phase, a one-to-one assignment of the processes to processors is

generated. The algorithm tries to minimize the average distance between communicating

processors. Shen applies a neighbor-first heuristic. The search starts by placing the most

I/O intensive process on the host node and placing neighbor processes on neighboring

processors if possible. In the last phase, a heuristic search for edge-disjoint message

routes is performed.

Shen's approach has two major drawbacks. First, edge-disjoint routing is not possible

for all process graphs. Second, even when there exists one, his algorithm is not

guaranteed to find it. He realizes this problem and suggest the placement and routing

phases to be run iteratively until a solution is found. The quality of the assignment is

questionable, since all three phases of his approach relies heavily on heuristics.

Dixit-Radiya and Panda propose a task assignment strategy for systems with adaptive

wormhole routing [22]. They employ a Temporal Communication Graph (TCG) to model

task graphs and to identify communication steps that conflict both temporally and

spatially. A TCG is a directed acyclic connected graph. Nodes represent computation

stages of processes. Edges between nodes corresponding to the same process are called

sequence edges. Edges between nodes corresponding to different processes are called

communication edges. Weights on edges specify communication load. The weight of

sequence edges are zero. Weights on nodes represent computation load.

TCG representation incorporates sufficient temporal information to estimate the timing

of computational and communication steps of the application [22]. Dixit-Radiya and

Panda define parameters, such as Earliest Start Time, Earliest Finish Time, Latest Start

54

Time, and Latest Finish Time. Channel contention delays are assumed to be zero when

computing these estimates. The actual value of these parameters are obtained by running

the TCG on a simulator. The Actual Earliest Finish Time is the cost function itself. The

difference between the actual and estimated parameters gives information about link

contention in the system.

The assignment is carried out in two phases. The initial assignment phase uses a

simple heuristic trying to minimize the distance between heavily communicating

processes. This heuristic does not consider link contention. The second phase starts from

the solution provided by the initial assignment. The objective is to minimize the

maximum link contention. The algorithm locates the edge in the TCG with maximum link

contention and tries to decrease the distance between the involved processes by pairwise

exchanges.

The merit of this approach is that it utilizes information on the actual communication

overhead by considering link contention. However, it relies heavily on the accuracy of the

temporal information captured in the TCG. Other limitations include the process graph

being acyclic and the need to simulate the application to gather temporal information.

Topology Synthesis

Lee and Smitley take a significantly different approach. They try to solve the

assignment problem for reconfigurable interconnection networks. Instead of assigning the

process graph to a fixed architecture, they configure the topology of the processor

network to match the process graph [36].

They assume that they have n processors, each with d communication channels, and

55

a process graph with n processes. Moreover, they assume that the amount of

communication between connected processes are the same. Their objective is to synthesize

a processor graph maximizing the number of pairs of intercommunicating processes that

fall on neighboring processors, while keeping the maximum degree smaller than or equal

to d. Furthermore, the resulting processors network must be connected. Unfortunately,

they show that the problem is NP-complete [36].

However, a polynomial time complexity algorithm exists if the restriction that the

resultant graph be connected is removed. They develop a two-phase approach. First, they

employ the algorithm to find the optimal solution consisting of possibly unconnected

components. Then they apply a heuristic technique to connect the components. The first

straightforward step is to connect components which have communicating processors and

also have nodes with degrees smaller than d. If the graph is still not connected, some

edges have to be removed to connect the remaining components [36].

The approach attacks the problem from an interesting new angle. It can be generalized

for weighted process graphs [36]. The most important limitation of the technique is that

the number of processors and processes must be equal. The heuristic, that the more

neighboring processes are assigned to neighboring processors the better the solution is,

is too simplistic.

Evaluation

The assignment is a well-known, much studied problem of computer engineering. The

time complexity of finding the global minimum of the cost function is exponential.

Therefore, optimal solutions are feasible for small systems only. Different heuristic

56

approaches have different advantages and drawbacks. In general, a particular solution

must be tailored to the constraints and requirements of the given application.

A good balance must be found between the accuracy and computational price of the

applied cost function. A more extensive search can be done with a simple cost function.

On the other hand, is finding even the global minimum of a cheap cost function

worthwhile if it does not describe the quality of the assignment accurately? A more

complicated cost function is more desirable even at the expense of the search strategy.

A good cost function must describe the overhead of interprocessor communication as

accurately as possible. Since physical communication channels are shared resources, it is

not enough to consider the distance a message must take or even the specific route itself,

message contention must be taken into account. Two approaches discussed earlier address

this issue. Shen allows only edge disjoint message paths eliminating message contention

entirely. This is, however, a severe restriction. Dixit-Radiya and Panda require extensive

timing information of the application and compute the level of message contention.

Without running the application, however, the timing information is not accurate enough

to provide a good description of the communication patterns of the program. Finding an

accurate estimate of the communication overhead is still an open problem.

The time complexity of general optimization techniques, such as simulated annealing

or genetic algorithms, is high. Large number of configurations must be evaluated before

an acceptable solutions can be found. Even with simple cost functions, the price of these

approaches can be prohibitive.

Assignment-specific heuristics have the advantage of utilizing the constraints and other

attributes of the given problem. Most such approaches divide the problem into several

57

phases. First, they cluster the processes, so that the number of processors and processes

become equal. Then the assignment is generated. Finally, the message routes are

produced. Unfortunately, these parts of the problem have strong correlation with each

other. A unified approach, if feasible, would provide a better solution.

For parallel architectures with flexible topology, synthesizing the processor network

to match the topology of the process graph has its merits. The same considerations

regarding the cost function and the search strategy apply here as well.

58

CHAPTER III

AUTOMATIC PARALLEL APPLICATION SYNTHESIS

Problem Statement

The objective of this dissertation research is to develop a framework for automatic

synthesis of large-scale, parallel instrumentation and signal processing applications

characterized by high I/O bandwidth, computationally intensive processing requirements,

and frequently changing software specifications and hardware configurations. The target

hardware platform is distributed memory multiprocessors with flexible interconnection

topology. To achieve this goal, the following issues are addressed:

Representation.The application specifications must be represented in a computer

readable format to facilitate automatic application synthesis. Furthermore, the

representation format must be easily comprehensible by humans. In order to

manage the complexity introduced by low level parallel processing and systems

engineering issues, high level system descriptions are needed. The specifications

must include the application requirements and the available software and hardware

resources. The representation technique must provide means to manage the

complexity of the specifications themselves.

Automatic application synthesis.The parallel instrumentation application must

be automatically synthesized from the high level system specifications. The

software system needs to be partitioned and assigned to the hardware platform.

Executables, message routing information, and network loader configuration are

59

to be automatically generated. The specific requirements of the process assignment

and the message routing strategy are as follows:

Process assignment.Process assignment must be carried out automatically in

order to optimize the performance of the synthesized system. A cost function is

needed that accurately describes the quality of the assignment. Locating the

optimal solution cannot be guaranteed because the problem is NP-complete. The

search space must be restricted to keep system synthesis time polynomially bound.

Message routing.Deadlock-free wormhole routing in networks with arbitrary

topologies is an open problem. Deadlock-freedom must be guaranteed. Minimizing

the communication overhead is critical to the performance of the system.

The following restrictions are placed on the problem domain to keep the research well

focused and the problems in the preceding list manageable:

Signal flow dominance.The class of targeted applications are limited to signal

flow dominant systems. The structure of such systems can be described by a

signal flow graph.

Static structure. The signal flow graph of the system is static. Dynamic

reconfiguration is not permitted.

Continuous execution.The execution of the signal flow graph is continuous.

Processing of consecutive input sets overlap in a pipeline fashion.

Throughput . The objective of the system synthesis process is to maximize system

throughput. Real-time constraints are not considered.

The solution domain is restricted by the following factors:

Task parallelism. The data parallel computational model is not considered.

60

Hardware platform. The target hardware platform is distributed memory

multiprocessors with flexible interconnection topology.

Model-Integrated Parallel Application Synthesis

The problem of automatically synthesizing large-scale, parallel instrumentation and

signal processing applications for distributed memory multiprocessors with flexible

interconnection topology is solved in the framework of the Multigraph Architecture

(MGA). Figure 5 illustrates the approach. The Model-Integrated Parallel Application

Synthesizer (MIPAS) includes the configurable graphical modeling environment and the

61

model database of the MGA along with the domain-specific model interpreters.

In order to manage the high complexity of the system models, the declarative

modeling capabilities of the MGA are augmented by an additional model organization

principle: generative model building. The parallel instrumentation domain mandates three

modeling aspects: signal flow, hardware, and assignment constraints aspects. It is the task

of the model interpreters to partition the signal flow graph and assign the partitions to the

nodes of the processor network while satisfying the assignment constraints. A

deadlock-free wormhole routing strategy for networks with arbitrary topologies is

developed and integrated into the model interpreters. The output of the MIPAS includes

an executable, a dataflow graph partition, and a message routing map for each processor

in the system.

62

CHAPTER IV

MODELING PARADIGM

The Multigraph Architecture (MGA) supports declarative modeling of complex

systems. It provides several model organizational principles to manage the complexity of

the system models. Multiple aspects, model types and instances support modular

modeling. Model references aid in the description of interactions between modeling

aspects. Hierarchy and multiple views provide visibility control. While these are powerful

techniques that help the management of the complexity of the system models, experience

shows that there is a clear need for an additional model organization principle primarily

for modeling repetitive structures. The following section describes how generative

modeling can satisfy this need, and how it can be incorporated into the declarative

modeling environment of the Multigraph Architecture.

Generative Modeling

When several parts of a model have the same components and structure, simple

replicators could reduce the complexity of the models. Instead of repetitively building the

same model for every occurrence, one copy and the desired number of replications could

be specified. However, the interface of such replicators poses problems. Since there is

only one actual copy of the model, only one connection can be made to each of its ports.

Such a connection could be interpreted as one connection to each replicated instance or

as a single connection to the first instance. Some complicated constructs could be defined

63

for different cases, but the solution would not be intuitive and easy to use. A situation

similar to that of the replicators exists with conditional model components whose

existence depend on some condition.

Conditional models are very useful for modeling complex systems. For example,

changing requirements and varying resources may force the user to change the system

models frequently. The required "size" of the system changes most often. For instance,

the number of channels required in a multi-channel system can vary from day to day.

Similarly, the number of available hardware resources, such as processing nodes, disk

drives, printers, etc., can also change frequently. Editing the system models often is

cumbersome and error-prone. A simple solution is to model the biggest expected

configuration and conditionalize parts of it. Conditionals are similar to replicators because

they specify the number of occurrences of a model component, which can be zero or one.

These two modeling constructs, replicators and conditionals, can be combined and

implemented with generative modeling.

With generative modeling, the user can specify model structure, i.e. components and

connections, by writing a program in some language. Generative modeling is similar to

the generate statements of VHDL [45]. To interface this style of model building to the

declarative (graphical) modeling paradigm of the MGA, the textual attribute feature of the

modeling environment is utilized.

Each component of a Multigraph model can have multiple textual attributes to capture

information that cannot be represented graphically. A varying number of textual attributes

are dedicated to generative modeling depending on the type of the model component.

Model components with inner structure have astructure attributethat is used to create

64

new, or destroy existing connections between parts of the given model. Every model

component has arepetition attribute,which expresses the number of repetitions of the

current model. Areference attributeis assigned to models that contain references to

components in other aspects. Since model references can be made only to graphically

specified model components, this attribute is used to refer to components specified by

generative modeling.

These textual attributes are calledgenerative attributes. The language selected for

generative modeling is the C++ programming language because it is widely used and

compilers are readily available.

The primary modeling methodology in the Model-Integrated Parallel Application

Synthesizer is the only method supported directly by the MGA: declarative modeling.

Generative modeling plays a secondary role. It is reflected in the fact that generative

modeling is implemented through textual attributes which are assigned to graphical model

components. A totally new model component cannot be generated, only replications of

an existing graphical model can be. This is intentional; declarative modeling is a powerful

methodology and its usage is favored in the MIPAS. Generative modeling is supported

only to augment the capabilities of graphical model building. Its main purpose is the

compact description of repetitive structures and the flexible specification of conditional

components.

This double paradigm, declarative and generative, has a minor drawback. Neither the

graphical, nor the textual model representation contains all the information about the

system. Consequently, the models are hard to comprehend by humans. The MIPAS

contains a special model interpreter dedicated to overcome this problem. The Model

65

Transformation Tool (MTT) converts these mixed models to purely graphical

representation by evaluating the generative attributes and creating a new model database.

The MTT is described in greater detail in the following chapter.

Generative modeling is very useful for reducing complexity and speeding up the

modeling process. Along with the MTT, it transforms modeling into a two-stage process.

The user first creates the models with the mixed declarative and generative specifications.

Then the MTT is used to transform the models. Then the user can apply the Graphical

Model Builder again to check the models visually. While it is possible to modify the

automatically generated models, it is not considered to be a good modeling practice, since

the automatic transformation works in one direction only. There is no support provided

to modify the original models automatically based on the manual changes of the models

generated by the MTT.

Modeling Aspects

The objective of this research is to automatically synthesize large-scale

instrumentation systems running on distributed memory multiprocessors with flexible

interconnection topology. What do the system models need to contain to achieve this

goal? There are two main aspects of the problem: the software and the hardware, i.e. the

signal processing and other computations that need to be performed and the target

hardware architecture. Consequently, one modeling aspect is assigned to each.

The signal flow graph is a widely accepted way of describing instrumentation/signal

processing systems. The first modeling aspect, theSignal Flow Aspect,closely resembles

a signal flow graph. TheHardware Aspectdescribes the available hardware resources and

66

their interconnection topology. These two aspects of the system are not independent.

Different elements of the signal flow graph may have certain hardware resource

requirements. They constitute assignment constraints that must be satisfied during system

synthesis. The third and final aspect of the system models describe these resource

requirements. It is called theAssignment Constraints Aspect.

Signal Flow Aspect

The signal flow models consist of predefined atomic and user-defined aggregate

components. The model structuring concepts applied in this aspect are summarized in

Table 1. The atomic components are listed in Table 2. The primitive and the compound

are the aggregate model components of the Signal Flow Aspect (Table 3).

Table 1 Signal flow model structuring concepts

Structure Description

Part-whole hierarchy predefined atomic and user-defined aggregate components;
aggregates contain atomic and/or aggregate components

Module interconnection connections between selected type of atomic components
and selected parts of aggregate components

Generative modeling textual description of model components and structure

The primitive is the lowest level computational block. It contains atomic objects only.

It does not have any connections. It has different textual and numerical attributes

associated with it, such as a script, a priority, etc. In addition to atomic objects, the

compound contains user-defined components, i.e. previously defined primitives and

compounds. Compounds containing compounds create the model hierarchy.

67

Table 2 Signal flow model atomic components

Components Description

Input signal input data interface of aggregate components

Output signal output data interface of aggregate components

Local signal data queuing, merging, splitting;
corresponds to datanodes in the MCM

Local parameter static parameter for aggregate components;
corresponds to contexts in the MCM

Input parameter parameter interface of aggregate components

Condition condition specification

Table 3 Signal flow model aggregate components

Components Description

Primitive elementary computational unit;
only atomic parts; no local signal or condition part;
no connections;
corresponds to actors in the MCM

Compound aggregate (primitive and/or compound) and atomic parts;
signal and parameter connections

The signal flow model of a system must have exactly one top level compound model

containing every lower level model. This hierarchy is best described by a tree whose

nodes are the compound and primitive models. The children of a node are the aggregate

models it contains. The root of the tree is the top level compound model. The leaves are

the primitive models (Figure 6).

68

Figure 6 Model hierarchy example

Primitive Model

Primitive models correspond to actornodes in the MCM. The most important attribute

a primitive model has is the script. The script is a subroutine written in a procedural or

functional language that is executed every time the actornode is fired. The script attribute

contains the name of the subroutine and the object or library file name where it is located.

A related attribute is the estimated execution time. This is needed by the system

synthesizer to ensure good processor allocation.

The atomic objects that primitives can contain are the input and output signals, and

the input and local parameters. The input and output signals constitute the data interface

69

of the primitive. They correspond to actornode ports in the Multigraph Computational

Model (MCM). The Multigraph Kernel (MGK) provides a set of functions to access these

"data ports" to receive or propagate data at runtime. At higher levels of the model

hierarchy, the icons corresponding to the input and output signals are connected to create

the signal flow graph. The attributes of input and output signals include data rates. These

are needed by the system synthesizer to ensure good allocation of communication

resources.

The local and input parameters of the primitive model are used to assemble the

actornode context. Local parameters have data types and values specified by the user.

Input parameters are used to propagate the value of a local parameter specified at a higher

level of the model hierarchy down to the primitive model. The local and input parameters

can have simple data types, e.g. integers or doubles, or pointers to more complicated,

user-defined types.

The primitive model has an optional attribute, the init-script. This is a subroutine that

is called before the execution of the dataflow graph starts. It can be used to initialize the

context of the actornode, or to reset a hardware device, etc. Another optional attribute is

the so-called secondary script. It supports the real-time actornode construct of the MCM.

Further attributes include static priority and firing condition. These are used by the MGK

for scheduling. The attribute editor for primitive models is shown in Figure 7.

Note that at this level, i.e. inside the primitive model, there are no connections. The

primitives are the elementary building blocks of the signal flow graph. All the connections

are at higher levels of the hierarchy. The input signals and the input and local parameters

are simply consumed; the output signals are generated by the script of the primitive.

70

Figure 7 Primitive model attributes

Compound Model

Compounds may contain primitives, compounds, and atomic objects. These atomic

objects can be input, output and local signals, input and local parameters, and conditions

(Table 2). Local signals correspond to datanodes in the MCM. Their attributes include

data type and buffer length. Input and output signals describe the data interface of the

compound model. Icons representing primitive and compound components have ports for

their input and output signals (and for their input parameters). The signal flow is modeled

by connections between selected types of atomic components and ports of aggregate

components (primitives and compounds). The valid signal connections are listed in Table

4. These connection constraints ensure that the resulting dataflow graph is bipartite as

required by the MCM: actornodes are connected to datanodes and vice versa.

71

Table 4 Signal flow model signal connections

From To

input signal input port of a component

output port of a component output signal

local signal input port of a component

output port of a component local signal

output port of a component input port of a component

Table 5 Signal flow model parameter connections

From To

local parameter input parameter port of a component

input parameter input parameter port of a component

Ultimately, connections are between primitives. Because of the model hierarchy,

however, intermediate connections are needed. Input signals and input ports of

compounds are used to propagate data down the hierarchy to the input port of a primitive

model. Similarly, output signals and output ports of compounds are used to propagate data

up the hierarchy. An output port can be directly connected to an input port, or a local

signal can be inserted. The latter method is necessary when the default queuing behavior

is not acceptable for the given data connection, or merging or splitting of data streams

are required.

Figure 8 shows the top level compound model in the model editor (and the model

browser) of the example depicted in Figure 6.

72

Figure 8 Signal flow model example

The value of each local parameter needs to be propagated down all the way to the

primitive, where it becomes a parameter for the script as part of its context. This is

modeled by connections between local and input parameters (Table 5). As an example,

consider a primitive model corresponding to a simple amplifier actornode. It has one input

signal for the input data, one input parameter for the gain, and one output signal for the

output data. Several instances of this model can be used in different compound models.

For each instance, a local parameter needs to be defined and connected to the input

parameter of the amplifier primitive. The value of this local parameter is the gain, which

can be different for each instance of the amplifier (Figure 9).

73

Figure 9 Local parameter example

Generative Attributes

Generative modeling is supported through generative attributes in the MIPAS. In the

signal flow aspect, every primitive, compound, input, output and local signal, and input

and local parameter has a repetition textual attribute. This is specified as a C++ function

body that returns an integer, the number of repetitions of the model component. The

repetition generative attribute defaults to "return 1;".

Model connections can be specified in the structure attribute. Only compound models

have inner structure, therefore, only they have this attribute. The structure attribute is

specified as a C++ function body. In the code, components of the current model can be

accessed by name. Connections can be created or destroyed by calling the predefined

functions Connect(a,b) and Disconnect(a). These are overloaded C++ functions. They

74

allow parameter type combinations for all legal connection types. For example, input

signal to input signal port, output signal port to local signal etc. Other predefined

functions include Rep(modelname) that returns the actual number of repetitions of the

specified model, and Connected(a) that returns the object connected to the specified part

allowing indirect references to models. The available predefined functions are listed in

Table 6.

Note that the replication of a model type definition is meaningless. Therefore, the

repetition attributes of model types are ignored by the model interpreters.

Compound models can contain one or more conditions. Conditions are atomic objects.

They contain a user specified numerical value. This value can be accessed by name in the

repetition and structure attributes. Generative modeling and conditions provide a very

flexible and powerful modeling technique.

Table 6 Predefined functions for signal flow generative modeling

Function Description

Connect(a,b) connects atomic parts and/or ports a and b

Disconnect(a) deletes existing connections of atomic part or port a

Disconnect_all(m) deletes every connection of model m

Connected(a) returns the atomic part or port connected to a

Input_signal(m,i) returns the #i input port of model m

Output_signal(m,i) returns the #i output port of model m

Input_parameter(m,i) returns the #i input parameter of model m

Rep(m) returns the number of repetitions of model m

75

Figure 10 Generative modeling example

Figure 10 shows a simple example of the technique. The repetition attribute of model

A depends on conditionX and evaluates to 3. The repetition attributes of input signalI

and local signalL depend on the number of repetitions ofA. They also evaluate to 3. By

convention, the graphically specified connections always correspond to the first instance

of the model. The structure specifications of compoundC start with deleting all graphical

connections (Figure 10). The only purpose for this is to control every connection from the

code. The next line is for error recovery. If somehow the number of repetitions specified

for modelA is greater than 3, still no connection is made to more than 3 of modelB's

76

Figure 11 Automatically generated models

input ports, since it has only 3. Next the appropriate input signals are connected to the

corresponding input ports of modelA, the output ports of modelA to the local signals,

and finally, the local signals to the input ports of modelB. The last line specifies the

connection between local parameterLP and the input parameters of the second instance

of modelA. The generated model is shown in Figure 11.

Hardware Aspect

The MIPAS target hardware platforms are distributed memory multiprocessors with

flexible interconnection topology, such as TMS320C40 or T9000 networks. The key

information the models need to capture are the topology of the network and the available

resources. Tables 7 through 9 list the components and structuring concepts applied in the

hardware aspect.

77

Table 7 Hardware model structuring concepts

Structure Description

Part-whole hierarchy predefined atomic and user-defined aggregate components;
aggregates contain atomic and/or aggregate components

Module interconnection connections between selected type of atomic components
and selected parts of aggregate components

Generative modeling textual description of model components and structure

Table 8 Hardware model atomic components

Components Description

Communication link interface between aggregate components

Resource capabilities of aggregate components

Table 9 Hardware model aggregate components

Components Description

Node elementary aggregate component; only atomic parts;
corresponds to processors

Network aggregate (node and/or network) and atomic parts

The hierarchy of the hardware aspect is organized in a manner similar to that of the

signal flow. The concept of the two user-defined components, the node and the network,

is similar to that of the primitive and the compound. A node can have only atomic parts,

e.g. communication links, while a network can have node and network components as

well. Node models correspond to processors, while network models describe uni- or

multiprocessor boards, subsystems, systems, etc.

78

Figure 12 Hardware model example

The communication links of nodes have maximum data rate attributes specifying their

speed. The nodes have attributes specifying their performance. These are needed by the

system synthesizer for resource allocation.

Networks can have node, network, as well as communication link components. As all

connections in the physical network are between processors, the communication link parts

of networks serve simply as tools to propagate connections up and then down the

hierarchy from one node to another. The valid connections are listed in Table 10.

Figure 12 shows a top level network model with a host computer (Host, node model) and

several boards (network models).

79

Table 10 Hardware model connections

From To

communication link communication link port of
component

communication link port of component communication link

communication link port of component communication link port of
component

Nodes and networks can have resources attached to them. Resources are atomic

objects. Their only attributes are their names. They represent special capabilities of nodes

or networks, for example, such devices as A/D converters, disks, or printers attached to

them. They can be used in the assignment constraints aspect to express resource

requirements of different blocks of the signal flow model.

Generative modeling in the hardware aspect is similar to that in the signal flow aspect.

Nodes, networks, and ports have the repetition attribute. Networks have the structure

attribute as well. The predefined functions accessible in the generative attributes are listed

in Table 11.

Table 11 Predefined functions for hardware generative modeling

Function Description

Connect(a,b) connects atomic parts and/or ports a and b

Disconnect(a) deletes existing connections of atomic part or port a

Disconnect_all(m) deletes every connection of model m

Connected(a) returns the atomic part or port connected to a

Link(m,i) returns the #i communication link of model m

Rep(m) returns the number of repetitions of model m

80

Assignment Constraints Aspect

The Assignment Constraints Aspect constitutes a two-level hierarchy. The top level

model, called configuration, contains a set of lower level models, called rules and the

bans (Tables 12-13). Rules specify positive assignment constraints, e.g. that a given signal

flow module must be assigned to a given hardware module. Bans specify negative

assignment constraints, e.g. that a given signal flow module must not be assigned to a

given hardware module.

Table 12 Assignment constraints model structuring concepts

Structure Description

Two-level part-whole
hierarchy

1st level aggregates contain atomic parts;
2nd level aggregate contains 1st level aggregates

Generative modeling Textual specifications of references to generative model
components in different aspects

Table 13 Assignment constraints model atomic components

Components Description

Reference to signal
flow model aggregates

group of signal flow components

Reference to hardware
model aggregates

group of hardware components

Resource requirements capability requirements

Rules and bans can have references to user-defined signal flow model components and

to user-defined hardware model components. Rules can have resource requirement parts.

81

Resource requirements are atomic objects, they represent special needs of the signal flow

components. A model component can be referenced as a type or as an instance. Assigning

a specific computation to a specific processor requires instance references. But assigning

a type of computation, e.g. a generic FFT primitive, to a class of nodes, e.g. digital signal

processors, requires type references.

Table 14 Assignment constraints model aggregate components

Components Description

Rule one positive assignment constraint; only atomic parts

Ban one negative assignment constraint; only atomic parts;
no resource requirement part

Configuration set of all assignment constraints; only rule and ban parts

A rule must contain one or more signal flow references, and can contain one or more

hardware references (Table 14, Figure 13). The signal flow references of a rule mean that

the run-time objects corresponding to the (type of) signal flow components must be

assigned to the same node. If the rule contains a hardware reference that means that the

run-time objects must be assigned to one of the processors specified by the reference. If

there are more then one hardware references, then the assignment can be made to any one

of them. If the rule contains resources requirements, that means that the assignment must

be made to a node containing all the specified resources or to a node specified by a

hardware reference.

82

Figure 13 Assignment constraints example

These relations can be expressed by the logical expression:

[SF1 ∧ ... ∧ SFn] → [HW1 ∨... ∨ HWm ∨ HWnode{RS1 ∧ ... ∧ RSl}] (8)

meaning that run-time objects corresponding to SFi signal flow component references

(type or instance) must be assigned together to one of the processors corresponding to

HWj hardware model component references (type or instance) or any of the processors

having every RSk resource. The hardware and/or the resource component part can be

omitted, but at least one signal flow component must be present.

A ban must contain one or more signal flow references, and one or more hardware

references (Table 14). The signal flow references of a rule mean that none of the run-time

objects corresponding to the (type of) signal flow components may be assigned to any of

the processors specified by the hardware references.

These relations can be expressed by the logical expression:

~{[SF1 ∨ ... ∨ SFn] → [HW1 ∨... ∨ HWm]} (9)

83

meaning that none of the run-time objects corresponding to SFi signal flow component

references (type or instance) may be assigned to any of the processors corresponding to

HWj hardware model component references (type or instance).

Reference attribute

Every rule and ban has a reference generative attribute. It is used to reference

generative model components of other aspects. The reference attribute specializes the

meaning of the graphically generated references. It can either modify the current rule

(ban) or create a new one.

The reference attribute contains a C++ function body. The predefined function

Refer(ref,i) is used to specify the instance of a model the graphical reference points to.

Hereref is the name of the reference andi is an integer. For instance, if a rule contains

a referenceFFT to a signal flow compoundFFT and the repetition attribute of this model

specifies 5 instances, then the reference attributeRefer(FFT,3) specifies that theFFT

reference points to the fourth instance of theFFT compound (C convention). A single

reference can have several instantiations by multipleRefer(ref,i) calls.

However, if a separate rule is necessary to specify, for example, that instance #i of

the FFT compound must (not) run on nodeC40 #i, then theRule andRule_end (Ban,

Ban_end) macros can be used. Figure 14 illustrates the concept through an example.

The for loop is executed as many times as there areFFT compounds. TheModel(ref)

function is called to return the model referenced byref. Rep(m) returns the number of

repetitions of the model. Each call to theRule macro generates a new rule. For i=0, for

example, the new rule states that the first instance of the signal flow compoundFFT must

84

int i;
for(i = 0; i < Rep(Model(FFT)); i++) {

Rule {
Refer(FFT,i);
Refer(C40,i);

} Rule_end;
}

Figure 14 Reference attribute example

be assigned to the first instance of the hardware nodeC40.

This example assumes that the value the repetition attribute of theC40 model

evaluates to is greater than or equal to the value of the repetition attribute of theFFT

compound. Otherwise, the assignment constraint specification are erroneous. Such errors

are detected by the model interpreters. Table 15 lists the predefined macros and functions

available in the reference attribute.

Table 15 Predefined functions for assignment constraints generative modeling

Function Description

Refer(ref,i) specifies that model instance #i is referenced by ref

Rule macro; starts a rule definition

Rule_end macro; ends a rule definition

Ban macro; starts a ban definition

Ban_end macro; ends a ban definition

Model(ref) returns the model referenced by ref

Rep(m) returns the number of repetitions of model m

85

Note that only instance references are allowed in the reference attribute, since

repetition of a model type definition is not meaningful.

Configuration

The top level assignment constraints model, the configuration, is a collection of rules

and bans.

86

Figure 15 Model-Integrated Parallel Application Synthesis

CHAPTER V

MODEL INTERPRETATION AND ANALYSIS

Model Interpretation

The task of the model interpretation in the Multigraph Architecture is to synthesize

applications from the domain models and run-time libraries, and to produce input to

various system engineering tools. In the case of the parallel signal processing domain,

there are two different model interpreters and a model analysis tool responsible for

distinct tasks. Figure 15 illustrates their location in the overall structure of the Model-

Integrated Parallel Application Synthesizer (MIPAS).

87

The Model Transformation Tool

The task of the Model Transformation Tool (MTT) is to visualize generative models

to help debug system models. The models in the MIPAS are mixed declarative (graphical)

and generative (textual). It is relatively easy to make a mistake, which can go undetected

in the modeling phase, because of this double paradigm. The MTT takes the system

models, evaluates the generative attributes of the model components, and generates a new

set of models that are purely declarative (graphical) and, therefore, easier to debug.

The MTT has two main parts. The first one evaluates the models and creates the

second part, a C++ program, automatically. It generates data structures based on the

models, and writes wrappers around the function bodies specified by the user as

generative attributes. The generated program contains the predefined functions for each

aspect and a main function. The main function creates the appropriate number of

replications for each model component by calling the functions created from the repetition

attributes, makes the additional connections using the functions generated from the

structure attributes, and creates the references specified by the reference attributes. This

second part lays out the model components and routes the connections automatically for

the GUI of the model builder. The generated C++ program is compiled, linked, and

executed. Syntax errors in the user-specified attributes cause compiler or linker errors.

Since these errors are not easy to trace back to the models, a tool is needed to locate the

original errors in the model specifications automatically.

88

The Parallel Application Builder

The primary model interpreter in the MIPAS is the Parallel Application Builder

(PAB). It is responsible for: (1) creating the macro dataflow graph corresponding to the

signal flow models, (2) partitioning the graph, (3) assigning the partitions to the nodes of

the processor network specified in the hardware models while satisfying the requirements

specified in the assignment constraint models, (4) creating the executables for the nodes,

and (5) providing the hardware description and communication information to the

Graphical Configuration Manager (GCM), the model analysis tool responsible for

hardware diagnostics and model verification, message routing, and network loader

configuration (Figure 15).

The PAB first creates a signal flow builder object network corresponding to the signal

flow models residing in the model database. There is a builder object corresponding to

every model object, including compounds, primitives, signals, parameters, and conditions.

The generative attributes are evaluated to create the currently required number of builder

objects. Either the original models, or the models generated by the Model Transformation

Tool (MTT) can be provided to the PAB. The resulting builder object network is a tree,

the root of which is the top level model builder corresponding to the top level signal flow

model. Figure 16 shows the builder tree for the example introduced in Figure 6 and

Figure 8.

The PAB creates the connections specified in the generative attributes of the models.

The program checks every model connection (signal and parameter) for datatype

consistency and creates the appropriate connections in the builder network as well. All

direct connections (between primitive input and output signals and local signals, and

89

between local parameters and primitive input parameters) corresponding to the

connections in the dataflow graph are generated bypassing the hierarchy. Next the

corresponding MCM objects are created: actornodes for primitives, datanodes for direct

signal connections (or local signals), and contexts for parameters. Then the actornodes and

datanodes are connected to form the dataflow graph.

The next step is to make a builder network for the hardware models. This is

performed similarly to the signal flow model interpretation: a builder tree is created,

where the nodes are the network, node, communication link, and resource component

builders. All the connections between model components and the direct node to node

connections are generated as well.

The PAB evaluates the rules and bans of the assignment constraints configuration and

provides each signal flow primitive builder with a list of hardware node builders the

corresponding actor can be assigned to. Infeasible requirements are detected at this point.

90

Figure 17 The assignment of the dataflow graph

Since the assignment problem is NP-complete, the PAB employs a heuristic procedure to

partition the dataflow graph and assign the subgraphs to the hardware nodes. It utilizes

the hierarchy of the signal flow models to cut the search space and guide the search. The

assignment problem in the MIPAS is illustrated in Figure 17. Chapter VII is dedicated to

the assignment problem. The whole approach, including the selected cost function and the

algorithm assigning signal flow primitives to hardware nodes, is described in detail.

An alternative to the traditional assignment procedure, where one assigns processes

to a preconfigured hardware platform, is hardware topology synthesis. The input to this

procedure is the signal flow graph and a set of nodes. Hardware topology synthesis

creates the processor interconnection network. It tries to match the topology of it to that

of the signal flow graph. This problem is NP-complete as well, therefore, a heuristic

approach must be used. The PAB implements hardware topology synthesis utilizing the

91

hierarchy of the signal flow models as a user-defined heuristic. The approach is described

in Chapter VII.

Once the assignment is completed, the PAB generates a makefile to link the

appropriate MGK and the required object and library files to create the executable for

each processor. Then the make utility is executed.

At this point, the user has the option to save the builder networks into the database

of the PAB. This is useful when the application needs to be executed more than once

without changing the system models, since considerable time can be saved by not

performing the building and assignment related tasks. The possibility of performing the

model interpretation itself in parallel in order to speed it up is examined in [26].

The last step is to create the environments and tasks for the MGK according to the

assignment. Before activating the dataflow graph and starting the execution of the

application, message route generation and network loader configuration needs to be

performed. These tasks are carried out by a model analysis tool, the Graphical

Configuration Manager.

Model Analysis

The PAB generates input information required by the Graphical Configuration

Manager (GCM), a model analysis tool. The GCM is capable of comparing the actual

hardware configuration to the hardware models, generating network loader configuration

files and deadlock-free message routing for wormhole and store-and-forward routers [35].

Figure 18 shows the same processor network loaded into the GCM as was shown in

Figure 12 in the GMB. Notice that the hierarchy of the hardware models has been

92

unrolled. GCM utilizes a flat processor network model because it suits its tasks the best.

The purpose of comparing the hardware models to the actual processor network is

twofold. First, it validates the models and second, it diagnoses the hardware itself. The

GCM uses a worm program (the standard INMOS check program for transputers, and

TICK, the worm/loader/debugger for TMS320C40 networks developed at Vanderbilt [7])

to explore the network. The GCM is capable of detecting missing (or broken) processors,

missing (or broken) communication links, and swapped links as well.

The output of the worm is transformed into a graph similar to the processor network

model. The two graphs are then compared. This task is not equivalent to the NP-complete

general graph isomorphism problem [27] for two reasons. First, the mapping between two

nodes is known beforehand, since the host computer is fixed. Second, all graph edges

have associated port numbers. To test isomorphism, a simple breadth-first search can

93

provide a yes/no answer. However, if the two graphs are not isomorphic, the type and

exact location of their differences are not straightforward to find.

The applied algorithm is able to locate the three most common types of errors:

missing nodes, missing connections, and swapped connections. First, it decides whether

the physical network is a subgraph of the modeled one. If so, it locates any missing nodes

and connections. If not, it repeatedly transforms the graph corresponding to the physical

network by swapping selected links until it becomes a valid subgraph of the model graph.

If a transformation is not possible, the procedure is aborted. Otherwise, a detailed report

is generated (Figure 19).

Notice that an error message, such as "Missing node #31", is much more meaningful

with the GCM than when manually analyzing the output of a worm program. In general,

node numbers are meaningless; they are assigned incrementally as the worm finds the

processors. A small change in the topology can alter most of them. GCM supports node

94

attributes along with numerical identifiers. Since they include unique node names

extracted from the models by the PAB, no additional time is needed to locate the errors.

Another important task of the GCM is network loader configuration.

Network loaders require information on the processor interconnection network and the

processes of the application in the form of a configuration file. Each loader has its own

requirements and configuration language. A configuration file is typically big and

complicated. The GCM is capable of generating configuration files for four different

loaders: the Logical Systems and the Inmos loader for transputers, the 3L environment

for transputers and C40s, and the C40 loader TICK [7]. The most important task of the

GCM is deadlock-free message route generation.

Deadlock avoidance with store-and-forward and virtual cut-through routing is simple

with a careful message buffer allocation strategy. Wormhole routing, the most efficient

message routing method, is, however, deadlock-prone. The two known deadlock

avoidance methods cannot be utilized. Virtual channels require hardware support not

available on the MIPAS target platforms. Topology-based deadlock avoidance is too

restrictive for the purposes of the MIPAS.

Partially connected message routing can be used in the MIPAS because the PAB

provides not only the description of the hardware, but also the list of processors that need

to communicate with each other. Chapter VI is dedicated to message routing in the

MIPAS. It is shown that partially connected minimal deadlock-free routing is NP-

complete. Consequently, a non-minimal approach must be used. A partially connected,

non-minimal message routing strategy, that guarantees deadlock-freedom and provides

comparable, in many cases smaller, communication overhead than minimal routing

95

strategies, is introduced and evaluated in Chapter VI. The GCM incorporates this

algorithm to generate deadlock-free message routing for wormhole routed networks.

Another system engineering tool can be used to predict the performance of the

generated application. The program loads the system description generated by the PAB

and produces a Generalized Stochastic Petri Net, which is solved for various performance

metrics, such as processor utilization and application response time [17].

96

CHAPTER VI

MESSAGE ROUTING

Wormhole routing is the most efficient message routing technique [42]. There are two

different methods for deadlock avoidance in wormhole routed networks: virtual channels

and topology-based deadlock avoidance. Virtual channels not only help in deadlock

avoidance, but also in flow control. However, they require hardware support not available

on the target platform of this work. Topology-based deadlock avoidance restricts the

possible topologies to the known deadlock-free configurations, but requires no special

hardware support.

The known deadlock-free configurations are hypercube-, mesh-, or tree-based

networks. They are the only known direct networks with deadlock-free minimal routing

strategies. The class of deadlock-free, indirect network topologies is wider. This is only

possible because indirect networks have two types of nodes: processing and switching.

Processing nodes do not route messages, and switching nodes do not send or receive

them. This fact simplifies routing. This dissertation focuses on direct networks because

of the target hardware platform.

There are very few known deadlock-free, direct network topologies. Since one of the

biggest advantages of the target hardware platform is its flexibility, restricting the

interconnection network to these topologies is not acceptable. In the next section, a wider

class of graphs is identified as inherently deadlock-free. Any minimal routing is shown

to be deadlock-free if and only if the network is chordal. While chordal graphs constitute

97

a much wider class of deadlock-free topologies than was known before, they still do not

provide enough flexibility. Therefore, other means of deadlock avoidance need to be

provided.

Since all communication requirements of the application are captured in the system

models, connected routing is not required. However, as is shown in this chapter, partially

connected minimal routing is an NP-complete problem. The only requirement that can be

removed in order to achieve a solution is the minimality of the routing. This does not

have any adverse effects on message routing performance for two reasons. First, message

path length is a negligible factor in message latency with wormhole routing (see Chapter

II). Second, a non-minimal routing strategy is not forced to use a shortest path, and is

therefore able to decrease message contention in certain situations when minimal routing

is not able to.

This dissertation introduces a non-minimal, partially connected routing algorithm that

employs a novel approach for deadlock avoidance. It generates a deadlock-free routing

in a chordal subgraph of the network. A message path from this routing is used only if

there is no path with less cost in the whole network that does not result in a deadlocked

configuration. The algorithm was compared to minimal routing algorithms which do not

guarantee deadlock-freedom and have exponential time complexity. In the majority of the

test cases, the new algorithm produced equal or better results.

The presentation of the work takes the following path. First, topology-based deadlock

avoidance is examined with special emphasis on chordal graphs. Next, the partially

connected minimal routing problem is classified as NP-complete. Finally, a non-minimal

routing algorithm is developed and analyzed.

98

Note that throughout the chapter message routing refers to deterministic message

routing. Adaptive routing may provide a better solution, but one needs to develop results

for deterministic routing before applying them to adaptive routing.

Topology-Based Deadlock Avoidance

Dally and Seitz provide the necessary and sufficient condition for deadlock-free

routing in [18]. They use the following notation. The interconnection network I = G(N,C)

is a directed graph. The verticesN represent the processing nodes, and the edgesC the

communication channels. A routing is a function R: C×N → C. It maps the current

channel and the destination node to the next channel. The channel dependency graph

CDG for a given interconnection networkI and routing function R is a directed graph.

The vertices of CDG are the channels of I. The edges of CDG are the pairs of channels

connected by R. A routing function R for an interconnection network I is deadlock-free

if and only if there are no cycles in the channel dependency graph CDG [18].

The authors assume unidirectional communication channels. However, it is easy to

generalize their results for bidirectional links. For every communication channel, two

nodes need to be added to the channel dependency graph, one for each direction.

Furthermore, the routing function needs to be restricted, so that a message cannot be

routed back to the node from which it has just arrived. Formally,

R(cij,nd) =⁄ cji (10)

where ckl denotes the edge from nk to nl. This causes the interconnection network I to be

undirected. The channel dependency graph CDG is still directed. There are more

generalizations possible, as described below.

99

Figure 20 Routing example

Multiple links between two nodes must be allowed. Furthermore, the routing must not

be restricted unnecessarily. The routing function R assigns an outgoing channel to an

incoming channel destination node pair. Consider the situation depicted in Figure 20.

NodesA andB send messages to nodeG. They reachD on the same incoming channel.

Their destination nodes are also the same. The routing function R forces the messages of

both A andB to be routed to the same outgoing channel. However, it would be clearly

better to route messages to different channels. For example, messages fromA could be

routed through nodeE and messages fromB through nodeF. Therefore, a modified

routing function R:N×C×N → C is used that assigns an outgoing channel to a source

node, incoming channel, destination node trio. The channel dependency graph is

constructed as before: if the routing function connects channel ci to channel cj, a directed

edge is added between the corresponding nodes in the channel dependency graph. Dally's

and Seitz's theorem and proof are still valid with these generalizations.

Deadlock-freedom depends on the topology of the interconnection network and the

selected routing function. For topology-based deadlock avoidance, the class of networks

100

with deadlock-free routing strategies must be identified. The next theorem states a trivial

result.

Theorem I In a processor interconnection network I, any routing R is deadlock-free if

and only if I is a tree.

Proof: The nodes of the channel dependency graph CDG are the edges of the network

I. Neighboring nodes of a cycle in CDG are adjoining edges of I. Therefore, they form

a cycle in I. There are no cycles possible in a tree. Hence, there are no cycles possible

in CDG.

If I is not a tree, then it has at least one cycle. Consider that cycle. Since minimal

routing is not required, the following routing strategy can be selected. From each node

in the cycle to its left hand neighbor, messages are routed all around the cycle and not

through their shared link. Each such route adds at least one edge in the channel

dependency graph CDG. These edges form a cycle in CDG, which has the same size as

the cycle in I. The routing is not deadlock-free. QED

If the routing is restricted to be minimal, the class of graphs with deadlock-free

routing becomes wider:

Theorem II In a processor interconnection network I, any minimal routing R is

deadlock-free if and only if I is chordal.

In other words, chordal graphs are the only inherently deadlock-free topologies. By

101

definition, chordal graphs are graphs with no chordless cycles. Chordal graphs are also

called triangulated, because any cycle in a chordal graph must consist of triangles. Since

trees are chordal, Theorem II does not contradict Theorem I.

Proof: Let I be a chordal interconnection network, R be a routing function, and CDG

be the resulting channel dependency graph with at least one cycle. Consider a cycle in

CDG. There are two cases. If the size of the cycle is greater than 3, then the

corresponding cycle in I must have at least one chord forming a triangle with two

neighboring edges in the cycle in I. Otherwise, I would have a chordless 4-cycle. In

Figure 21, the nodes on the cycle areA, B, andC and the chord isAC. In CDG, the

nodes corresponding toAB andBC have an edge connecting them. This edge is part of

the cycle in CDG. This means that the routing function assigns the output channelBC to

channelAB. In other words, it routes some messages fromA to C throughB, not through

channelAC. Therefore, the routing is not minimal.

102

In the second case, the size of the cycle in CDG is 3. The corresponding cycle in I

is a triangle too. Consider the triangleABC in Figure 21. The exact same argument

applies here for this triangle: sinceAB andBC are connected in CDG, some messages

from A to C are routed throughB. Therefore, the routing is not minimal.

If I is not chordal, then it has at least one chordless cycle with size at least 4.

Consider that cycle. The following routing strategy can be selected. From each node in

the cycle to the second node on the right hand side, route to the right. Since the cycle is

chordless and its size is at least 4, this is a shortest path. Each such route adds one edge

in the channel dependency graph. These edges form a cycle in CDG. The routing is not

deadlock-free. QED

Chordal graphs are the only inherently deadlock-free class of topologies. They are the

only graphs in which every minimal routing is deadlock-free. Chordal graphs, however,

form only a small subset of all possible topologies. Limiting the choice of topologies to

these would be too restrictive. There are other topologies, i.e. meshes and hypercubes, that

have minimal routing strategies. However, they tend to have a limited number of known

deadlock-free message routing algorithms. That does not leave room for optimization.

Consequently, other means of deadlock avoidance must be identified.

Partially Connected Routing

Partially connected, deadlock-free, minimal routing is possible even in networks where

connected routing is not, depending on which nodes must communicate with each other.

In the Model-Integrated Parallel Application Synthesizer (MIPAS), the system models and

the automatically generated assignment determine the required message source-destination

103

node pairs. Therefore, partially connected routing can be used. However, the problem is

NP-complete.

Theorem III Given a processor interconnection network I(N,C) and a set of message

source-destination pairs L = {(ni nj) ni, nj ∈ N, ni =⁄ nj}, identifying a deadlock-free,

minimal, partially connected routing for I and L is NP-complete.

Proof: For each pair in L, there are a finite number of possible shortest paths. A

nondeterministic algorithm needs to pick one for each and check in polynomial time

whether the generated channel dependency graph is acyclic. Therefore, the problem is in

NP.

The satisfiability problem can be transformed to the partially connected routing

problem. The satisfiability problem is defined in [27] as follows:

Given a set of Boolean variables V = { v1, v2 ... vn }, a truth assignment t is a

function t:V→{True, False}. vi is True if and only if t(vi) = True. ~vi is True if and only

if t(v i) = False. A clause over V is a set of literals representing their disjunction. A clause

is satisfied by a truth assignment if and only if at least one of its literals is True. A

collection C of clauses over V is satisfiable if and only if there exists some truth

assignment for V that simultaneously satisfies all the clauses in C. Given a set V of

Boolean variables and a set C of clauses finding a satisfying truth assignment is the

satisfiability problem. Cook's Theorem states that the satisfiability problem is

NP-complete [27].

Given a set V of Boolean variables and a set C of clauses, a corresponding processor

104

interconnection network I and a set L of message source-destination pairs can be

constructed. For each variable vi in V, construct a 6-cycle. Let the nodes be vi1, vi2, vi3,

vi4, vi5, vi6 as shown in Figure 22. For each clause cj in C, add two nodes cj1 and cj2.

For each variable vk in cj, connect cj1 and vk6, and vk4 and cj2. For each variable negate

~vp in cj, connect cj1 and vp3, and vp1 and cj2. See Figure 22. For each clause cj, add (cj1

cj2) to the set of message source-destination node pairs. For each variable vi, add (vi2,vi6),

(vi1,vi5), (vi5,vi3) and (vi4,vi2), as well.

105

The partially connected routing problem for the resulting I and L is equivalent to the

satisfiability problem of C on V. A deadlock-free minimal routing for I and L (if it exists)

provides a truth assignment that satisfies C. For each clause, there exists a route from cj1

to cj2. It goes through vi5 (vi2), where vi (~vi) is one of the variables in the clause cj.

Assign True (False) to that variable. Since the routing is deadlock-free, there cannot be

a route through vi2 (vi5). That would result in a cycle in the channel dependency graph,

because of the four routes added for each variable in its corresponding 6-cycle. This

means that if vi is assigned True (False) because of clause cj, then no other clause forces

vi to be False (True). Since there is a route for all cj1, cj2 pairs, a truth assignment that

satisfies every clause has been found.

If there is no possible deadlock-free minimal routing for I and L, then C is not

satisfiable. If a truth assignment that satisfied C exists, then a route from cj1 to cj2 can

be selected based on that assignment. If vi (~vi) in cj is True, this route is cj1, vi6, vi5, vi4,

cj2 (cj1, vi3, vi2, vi1, cj2). No other clause forces vi (~vi) to be False, therefore, there is

no route through vi2 (vi5). Consequently, there are no cycles in the channel dependency

graph (because of the construction of I and L, the only cycles possible are the 6-cycles

corresponding to variables). The routing is deadlock-free. Hence, C is not satisfiable. QED

For an example of this transformation, see Figure 23.

The only requirement that can be removed in order to achieve a deadlock-free solution

in polynomial time is the minimality of the routing. In the following section, a partially

connected, non-minimal routing algorithm is developed that guarantees deadlock-freedom

and minimizes message contention.

106

Non-Minimal Routing

Non-minimal, connected or partially connected, deadlock-free routing can be achieved

in polynomial time. The simplest method is to route along a spanning tree of the network.

This is highly inefficient, since only (n-1) links are used. (These networks usually have

Kn/2 links, where n is the number of nodes and K is typically 4 to 6.) As was shown

earlier, chordal graphs are inherently deadlock-free with respect to minimal routing.

107

Instead of a spanning tree, a spanning chordal subgraph could be used. For certain

topologies, it would be much better. For some others, it would not be better at all. For

instance, there are no triangles in a 2D mesh, therefore, a spanning chordal subgraph is

a spanning tree.

But the chordal subgraph is needed only for deadlock-avoidance.It is possible to route

directly in the full network and use the chordal subgraph as a backup if and when a cycle

in the channel dependency graph would be created.

First, a spanning chordal subgraph is created. Then a minimal routing in this graph

and its corresponding channel dependency graph CDG is generated. Note that CDG is

guaranteed to be acyclic at this point. Then the routing is started again using the whole

network. When a path is added to the routing, the channel dependency graph is checked.

If a cycle is found, another path is selected. This step is performed iteratively until a path

is found that does not add a cycle to CDG. The existence of at least one such path is

guaranteed, since the route in the chordal subgraph is already in the channel dependency

graph.

Cost Function

Before the details of the algorithms are described, consider the input parameters of

the message routing. These are the interconnection network I and the list of source-

destination node pairs L specifying the communication requirements of the application.

An estimated load of each communication pair is also available, which enables the

definition of a meaningful cost function for message route optimization.

As was shown in Chapter II, the distance a message covers has only a minor effect

108

on the latency with wormhole routing. However, that formula was developed assuming

no other traffic in the network. The usage of paths other than the shortest ones increases

the traffic. The more distance a message has to cover, the more likely it will block or be

blocked by other messages. Therefore, message path length must be integrated into the

cost function.

The load and the distance can be combined together in the following manner. For each

link, the loads of the messages that use the given link are added together. Then the

average load of the links in the whole network is computed. Longer messages increase

the average load more than shorter ones. Messages with higher load have a larger effect

on the cost. However, this cost function in itself is one sided.

Any minimal routing yields the same minimal cost for the given communication

requirements. However, a system with a small average load can still perform poorly if one

or more links are heavily loaded. The link with the maximum load represents a bottleneck

in the system, and thus needs to be integrated into the cost function. The following

formula is used:

C = Wa La + Wh Lh (11)

where La is the average load, Lh is the maximum load, and Wa and Wh are empirical

constants.

This cost function utilizes all the available information in the models. Other

advantages include its low computational cost and its possibility of being incrementally

computed as new message paths are added to the routing.

109

order communication pairs with decreasing load
create the nodes of channel dependency graph CDG for I
find chordal subgraph C for I
for every communication pair {

select the shortest path with minimal cost in C
route along that path
add path to CDG

}
reset cost to 0
for every communication pair {

find a set of A paths with increasing length in I
while(set is not empty) {

select path with minimal cost
add path to CDG
if CDG is acyclic then

break loop
delete path from CDG and set

}
if no path selected then

route along the one selected in C

Non-Minimal, Partially Connected Routing Algorithm

Figure 24 shows the routing algorithm in detail. The first step is to order the list of

communication pairs with decreasing load. Since there is no backtracking, the more

important message routes must be considered first. This way, they have a better chance

to use shorter paths. Next, the channel dependency graph (CDG) is initialized. All the

nodes are added, but initially there are no links in it. Then a spanning chordal subgraph

C is found. The algorithm locating C is described in the following section.

Then a minimal routing in C is generated. The channel dependency graph is updated

accordingly. The cost function is used to select a path in case of multiple shortest paths.

At this point, CDG is guaranteed to be deadlock-free. CDG is used to store the load

110

values for each link in I, which are reset at this point, since the routes in C may not be

used at all.

Next, a route for each communication pair in I is created. In general, every possible

path cannot be evaluated, since the number of paths is not polynomial in the worst case.

The number of paths considered is limited by a constant that is set high enough to have

a rich set from which to select. The path resulting in the lowest overall cost is chosen.

The channel dependency graph is searched for cycles. If no cycle is found, the path is

accepted. Otherwise, the next best path is chosen repeatedly until the resulting channel

dependency graph is acyclic. If none of the paths are acceptable, then the original path

in the chordless subgraph C is selected. Since it is already included in CDG, the routing

remains deadlock-free.

CDG remains acyclic during the entire process. Therefore, the routing is

deadlock-free. A detailed evaluation of the algorithm is presented at the end of the

chapter.

Spanning Chordal Subgraph

Figure 25 shows the algorithm for finding a spanning chordal subgraph in detail. First,

every triangle of I is added to the chordal subgraph C if it does not introduce a chordless

cycle in C. After this phase, C may be disconnected. To connect the components, the

communication pairs are used to add those links to C that are likely to be needed in the

routing. If a shortest path for a communication pair includes a link connecting two

components, it is added to C, merging the two components. Since the communication

pairs are ordered, the ones with higher loads are used first.

111

for each triangle in I {
if triangle does not add a chordless cycle to C then

add triangle to C
}
while C is disconnected {

select next communication pair
find a shortest path in I
if any link in the path connects two components of C then

connect the components using that link
}
while C is disconnected {

for every link in I {
if link connects two components of C then {

connect the components using that link
if C is connected then

break the loop
}

}
}

After evaluating all the communication pairs, C may still be disconnected. This means

that all necessary routing could be done in the components separately. However, the

spanning chordal subgraph needs to be connected. Any links can be used to connect the

components, since they are not likely to be used in the routing.

Complexity Analysis

Let the number of nodes in I be n. Since every node has a constant number of links,

the number of links in I is O(n). Let the number of communication pairs be p. What is

the time complexity of finding a spanning chordal subgraph?

The number of triangles in I is O(n), since a node has a constant number of neighbors.

Therefore, it can only be part of a constant number of triangles. Searching for possible

112

chordless cycles takes O(n2) time. The complexity of this phase is, therefore, O(n3).

There are p communication pairs. Finding a shortest path and checking whether it

connects components takes O(n) time. The complexity of this phase is O(pn). In the final

phase, every link is checked which takes O(n) time. The overall time complexity of the

algorithm is, therefore, O(n3) + O(np). However, p is at most O(n2). Hence, the time

complexity of finding a spanning chordal subgraph is O(n3).

The time complexity of the routing algorithm consists of the following components.

Ordering the communication pairs takes O(p logp) time. Creating the channel dependency

graph is O(n). Finding the chordal subgraph is O(n3). In the worst case, there may be an

exponential number of shortest paths between two nodes. The algorithm can be modified

to search only for a constant number of shortest paths. In this case, finding the paths takes

O(n) time. Selecting the best path, routing, and updating CDG are each O(n). Therefore,

routing in the subgraph takes O(np) + O(n3) time, which is O(n3) in the worst case.

In the second phase, a constant number of paths are found for each communication

pair. This takes O(n) time. Selecting the best path and updating CDG are each O(n).

Searching for cycles in the CDG takes O(n2) time. Therefore, the complexity of this phase

is O(pn2).

The overall time complexity of the non-minimal, partially connected routing algorithm

is

O(n3) + O(pn2) (12)

Evaluation

The algorithm simultaneously avoids deadlocks and optimizes a cost function. The

113

optimization is a hill climbing procedure. As such, it finds only a local minimum.

Nonetheless, the algorithm produces good results because the communication pairs are

ordered.

The time complexity of the algorithm is O(n4) in the worst case. However, p is

typically O(n), not O(n2), making the complexity O(n3). In practical cases, n is at most

a few hundred. The exponential time complexity of optimal algorithms is prohibitive with

this size. O(n3) is comparatively fast.

The algorithm has been compared to two others. Both are minimal routing algorithms,

hence, neither guarantees deadlock-freedom. The first is a similar hill-climbing procedure,

but it only allows shortest paths. If at a certain point all shortest paths result in cyclic

CDG, the algorithm backtracks which makes the time complexity exponential. This

algorithm is calledminimal.

The optimal minimalalgorithm generates all shortest paths for every communication

pair and finds the deadlock-free configuration (if one exists) which produces the global

minimum of the cost function. Its time complexity is consequently exponential. On

average, its performance is even worse than that of the minimal algorithm, since it

evaluates every combination all the time, while the other quickly finds a configuration if

no deadlocks are encountered.

All three algorithms employs the same cost function as described above. The constants

Wa and Wh have each been set to 0.5. The list of communication pairs has been generated

randomly. The same pair could appear in the list more than once. This corresponds to the

fact that more than one processes can be assigned to a node.

The first series of tests has been performed on the graph shown in Figure 26. There

114

is no deadlock-free, minimal, connected routing possible in this topology. The small size

makes it possible to execute the exponential time complexity algorithms. However, the

graph is slightly more complex than a simple 5-cycle. Table 16 summarizes the values

of the cost function for the three different algorithms.

Table 16 Results for test #1

p Optimal Minimal Minimal Non-minimal

128 x x 174.50

64 87.53 90.53 86.59

32 41.12 42.12 42.25

16 54.50 54.50 46.53

8 20.19 20.19 17.09

4 8.62 8.62 8.62

2 7.34 7.34 7.34

1 7.97 7.97 7.97

For small p (i.e. few communication pairs), there is no difference between the three

115

algorithms, as expected. For p=16, the two minimal algorithms produced the same result,

but the non-minimal found a better solution in terms of the cost function. Since the

non-minimal algorithm always has a higher (or equal) average load than the minimal

ones, it is the highest load that makes the difference. The non-minimal algorithm is not

restricted to shortest paths. It can select a longer path and avoid hot spots in the system.

On the other hand, because it is a hill-climbing procedure, it can get stuck in a local

minimum. For p=32, the optimal minimal algorithm found the best solution. The minimal

one provided a slightly worse result, while the non-minimal had the highest cost.

However, the difference between the costs was negligible.

At p=64, the non-minimal provided the best solution. At p=128, the minimal

algorithms failed to find a deadlock-free configuration, because no such solution existed

for the input set. Note that the routing found by the non-minimal algorithm has a cost that

is about twice as much as for p=64. Since the amount of communication approximately

doubled, this means that finding a deadlock-free solution did not cause any additional cost

increase.

For the second series of tests, a 5 by 5torus has been selected as shown in Figure 27.

There is no deadlock-free, minimal, connected routing for this topology. The size of the

graph does not allow to run the optimal minimal algorithm for large p. Table 17 shows

the number of iterations of the optimal minimum algorithm in the test cases. Table 18

summarizes the results.

For p=8 and below, the three algorithms produced the same results. For bigger p's, the

optimal minimal could not be tested. For p=16, the minimal and non-minimal algorithms

found the same solutions.

116

Table 17 Number of iterations for the optimal minimal algorithm

p Iterations

256 2E80

128 3E42

64 2E20

32 2E8

16 3E6

8 1296

4 4

2 6

1 3

Table 18 Results for test #2

117

p Optimal minimal Minimal Non-minimal

256 x x 105.80

128 x 45.37 54.07

64 x 29.33 25.89

32 x 20.47 14.66

16 x 21.24 21.24

8 9.42 9.42 9.42

4 8.25 8.25 8.25

2 5.11 5.11 5.11

1 3.60 3.60 3.60

For p=32 and p=64, the non-minimal proved to be better. Note that for p=32, the cost

of the non-minimal solution is 50% better. For p=128, the minimal was able to find a

20% better solution. For p=256, the minimal did not finish in a reasonable time, probably

because no deadlock-free configuration was found and it had to evaluate every possible

combination (2E80 of them). The non-minimal algorithm produced a solution with a cost

about twice as much as for p=128.

The analysis and the test results show that the presented non-minimal, partially

connected routing algorithm is indeed a good solution to the routing problem in networks

with arbitrary topologies. The solution guarantees deadlock-freedom and finds a good

routing strategy in terms of the defined cost function. The time complexity of the

algorithm is O(n4) which provides for fast execution in practical cases. Note that the

algorithm is not limited to the signal processing domain. It is applicable to any domain

where the communication requirements of the applications are known before runtime.

118

Implementation

The non-minimal, partially connected routing algorithm has been implemented as part

of the Graphical Configuration Manager (GCM). The model interpreter, the Parallel

Application Builder (PAB), generates the hardware description file for the GCM, the list

of required message source-destination node pairs, and the load information. The GCM

performs the routing and generates message routing maps for each node in the system.

119

CHAPTER VII

ASSIGNMENT

One of the most important phases of the model interpretation is the assignment of

signal flow primitives to hardware nodes. The goal is to maximize the throughput of the

system. The system models contain information relevant to the assignment problem. The

signal flow models describe the computational blocks with their estimated execution time,

and the communication between them with the required bandwidth. The hardware models

describe the available processors and their interconnection topology. In case of

heterogeneous networks, the speed of the individual nodes and the bandwidth of the

communication channels are also available. The assignment constraints models represent

different restrictions on the assignment. In Chapter II, three general methods for solving

the assignment problem were described: optimal solutions, general optimization

techniques, and assignment specific heuristic methods.

Optimal methods are only feasible for very small systems. General optimization

techniques, such as simulated annealing or genetic algorithms, are restricted to relatively

simple cost functions because of the size of the search they perform. A simplistic cost

function cannot describe the solution of such a complicated problem as the process

assignment accurately. It is not worthwhile to find even the global minimum of an

inaccurate measure. The information available in the system models makes the definition

of a more accurate, though computationally more expensive, cost function possible.

Furthermore, the assignment constraints can guide a deterministic procedure, but they are

120

no help in a random search that simulated annealing and genetic algorithms employ. An

assignment specific heuristic search offers the best solution for the Model-Integrated

Parallel Application Synthesizer (MIPAS).

The role of the heuristic is to reduce the size of the exponential search space.

Decomposing the problem into smaller subproblems, solving them independently, and

combining the results together to get the overall solution is a widely used technique in

optimization. The quality of the solution depends greatly on the decomposition of the

problem. The coupling among the subproblems must be weak, while they must contain

strongly coupled components. This decomposition technique is itself a heuristic approach.

Identifying the subproblems, however, can be done quantitatively.

The technique of nested epsilon decompositions is proposed by Siljak [51]. The

underlying idea is to disconnect the edges of the problem graph with a weight smaller

than a given threshold , and identify the resulting subgraphs. This step is performed

iteratively on the subgraphs with increasing thresholds. The result is a nested, i.e.

hierarchical, decomposition of the problem. , the strength of coupling, plays an important

role determining the size and number of subproblems. The epsilon decomposition

algorithm is a simple, but powerful technique. Its only significant drawback is that it is

not guaranteed to find a decomposition of the problem. There are simple example graphs

that are not epsilon decomposable. Consider, for example, a graph with a spanning tree

having all edges with the maximum weight w in the system. If is smaller than w, then

no decomposition is possible. If is greater than w, then all the edges of the graph are

removed. A typical parallel instrumentation system with a single host collecting processed

data from the network has a signal flow graph with a structure similar to this example.

121

Hence, nested epsilon decompositions cannot be applied in the domain of the MIPAS,

nonetheless, they illustrate the strength of hierarchical decomposition.

The models of the system in the Multigraph Architecture are organized into

hierarchies. In the MIPAS, the low-level signal flow models, the primitives, are grouped

together to form compounds. Compounds are clustered to construct higher level

compounds. The hierarchical tree structure of the signal flow models provides a

decomposition of the graph similar to nested epsilon decompositions. The hierarchy is not

based on the selection of thresholds, it is user-defined. Utilizing the hierarchy of the

models for solving the assignment problem assumes that the decomposition of the signal

flow graph groups strongly coupled components together. The relation between these

components may not always be based on the weight of their connection, i.e. the

communication between them, but some other criterium. The hierarchy typically reflects

how the structure of the signal flow graph is logical to the user. This is not necessarily

a problem, since a logical decomposition can provide a good assignment. Furthermore,

the topology of the multiprocessor interconnection network is usually designed to match

that of the signal flow graph. Since there are more signal flow primitives than hardware

nodes, the hardware topology usually reflects the clustering of the signal flow models.

Nevertheless, utilizing the hierarchical decomposition of the signal flow models for

solving the assignment problem is a heuristic approach. As such, it is not guaranteed to

find the optimal solution.

The chapter is organized as follows. The first section describes and analyzes the

hierarchical assignment procedure. Next, an alternative to the traditional assignment

technique, a processor interconnection network synthesis approach is presented.

122

Hierarchical Assignment

Cost function

In general, the cost function describes the quality of an assignment. A delicate balance

must be found between the accuracy and the computational cost of the cost function. The

more accurately it describes the assignment, the better the expected results will be.

However, a cheaper function allows more possibilities to be evaluated making the search

space less restricted. The cost function consists of two parts: one corresponds to the

computational load balance, the other describes the interprocessor communication

overhead.

The variance of the loads of the individual processors captures the computational load

balance accurately and it is computationally inexpensive. Note that the loads of the

individual hardware nodes are normalized according to their performance attribute. The

function employed in the previous chapter describes the cost of the interprocessor

communication as accurately as possible in the absence of measured timing information.

The computational expense of the function is low when used for message routing.

However, using the function for the assignment would require generating the message

routes as part of the cost function. The time complexity of the routing algorithm is

prohibitive for this purpose; this cost function cannot be applied.

A reasonable compromise is computing the sum of the products of the communication

loads and the corresponding distances in the processor graph, as proposed by Aggarwal

[37]. Even though this cost function does not consider shared physical links, the message

routing strategy will minimize their effect by employing the more accurate cost function

123

and optimizing message paths.

The communication and computation costs are combined and the overall cost is

computed according to the following formula:

C = ∑ (cj dj) + W ∑ (lavg - li)
2 (13)

where cj is the load of communication between two processes, dj is the corresponding

distance in the processor interconnection network, W is an empirical constant, lavg is the

average computational load in the system, and li is the load of processor i.

Algorithm

The assignment algorithm uses the hierarchy of the signal flow models to guide its

search. Note that the hierarchy of the hardware models are not considered; the flat

topology consisting of nodes is used. The hardware nodes are organized into a hierarchy

according to their physical location. Two processors on the same board are grouped

together, for example. A direct connection between two processors in two different racks

is just as important as a connection between two nodes on the same board. The hierarchy

of the hardware models do not contain any useful information for the assignment.

Figure 28 shows the hierarchical assignment algorithm in detail. The procedure starts

at the top level of the signal flow hierarchy. It considers one compound model at a time

at a given level. The hardware topology assigned to the top level signal flow model is the

whole network. Successive levels use the part of the network that was assigned to the

compound at the previous level. The first step is to check whether an exhaustive search

is possible.

124

level = top level
repeat {

for every SF compound and corresponding HW topology at level {
while exhaustive search is not possible {

if (number of HW nodes > number of SF components) then
cluster HW topology

else
cluster SF topology

}
try every possible assignment satisfying the constraints
select the one with the minimal cost
expand HW topology
expand SF topology

}
if more levels then

go to next lower level
else

break loop
repeat {

select best one from every possible (k < K) local transformations
if there is no cost improvement then

break loop;
}

}

For N signal flow components and M hardware nodes, the number of possible

assignments is, in general, MN. Because of the assignment constraints, the actual number

can be considerably less. A constant limit on this number must be set depending on the

available time and computing power. If there are too many possibilities to evaluate in a

reasonable time, then the size of either the signal flow or the hardware topology needs

to be decreased by an appropriate clustering algorithm. The procedure clustering the

hardware topology is as follows.

It repeatedly finds the simple node, a node that has not yet been clustered, with the

smallest number of simple node neighbors. The algorithm selects one of those neighbors

125

and merges the two nodes together. It updates their and their neighbors' connection lists

accordingly. The procedure stops when no more change is possible. Note that the host

node must not be clustered and the procedure may leave other simple nodes unchanged.

Whenever the size of the network gets small enough to make an exhaustive search

possible, the procedure is aborted. See Figure 29 for an example transformation.

Note that the communication link attribute specifying the speed of the given link may

be changed during this procedure. For example, nodesA and B in Figure 29 have two

original links between them, therefore, their speed must be added together. Similarly, the

performance attribute of the individual nodes are updated when they are merged.

Clustering the signal flow graph proceeds differently. The strength of relationships

between signal flow components vary. Strongly coupled components need to be identified

for clustering. The coupling is defined by a function, which includes the communication

rate between the two selected components, the combined communication rate of the two

126

nodes (other than between each other), and their computational loads. The strength of

coupling is increased by more communication between each other and less communication

to or from other components. The computational load is included in the function to keep

the resolution as high as possible. Components with small loads are better candidates for

clustering than blocks with high loads. Note that the assignment constraints must be

considered as well. If the lists of available hardware nodes for two signal flow

components do not have common elements, then the two nodes cannot be merged at all.

The more common elements they have, the better it is to merge them. The following

formula is used:

Costij = Wcout ∑(Cik + Cki + Cjk + Ckj) - Wcin (Cij + Cji) + Wl (Li + Lj) - Wn Nij (14)

where Cmn represents the communication rate from signal flow component m to n, Lm is

the computation load (e.g. estimated execution time) of signal flow component m, Nij is

the number of common hardware nodes the given components can be assigned to, and

Wcout, Wcin, Wl, and Wn are constants. The minimum of this function, which may be

negative, represents the best candidate for merging. Note that if Nij = 0, then the nodes

cannot be clustered.

After merging two components, two things are checked. If an exhaustive search is

possible for the assignment, then the clustering is aborted. Otherwise, if the number of

hardware nodes becomes greater than the number of signal flow components, the

hardware topology clustering algorithm is started.

When an exhaustive search becomes feasible, every possible assignment that satisfies

the assignment constraints is evaluated. The one with the minimal cost is selected. Note

that in one case, i.e. when no clustering is necessary before the exhaustive search, the

127

number of hardware nodes may be greater than that of the signal flow components. Since

the assignment procedure does not cluster hardware nodes, i.e. it assigns a signal flow

component to one hardware node, this would result in nodes with no assigned

components. Instead, the direction of the assignment is reversed: hardware nodes are

assigned to signal flow components. The only constraint that needs to be satisfied is that

the signal flow primitives are not divisible, they must be assigned to a single hardware

node. After the optimal solution has been found for the given level and compound, the

original signal flow and hardware topologies, i.e. the ones before clustering, are restored.

Then the process is repeated for the next compound at the current level.

After the level has been finished, the signal flow topology is refined by going to the

next lower level. First, the current assignment is improved by local transformations. Even

if the optimal solution was found for all the compounds at the previous level, there is a

good chance for improvement, since the granularity is finer at this point. A local

transformation is defined as follows.

A signal flow component at either end of a connection spanning different hardware

nodes is moved to the other node. The new cost is computed incrementally. All possible

(k < K) transformations are performed and evaluated. The constant K is typically not

more than 2, because of the large number of possible combinations. The best set of

transformations is selected, i.e. the one which improves the cost by the largest amount.

This is commonly called a hill climbing procedure.

A simple example of the assignment procedure is shown in Figure 30. The top level

signal flow model consists of two componentsA andB. A consists ofC, D, andE. E,

in turn, has two more componentsF andG. The load for each component is shown as

128

well. The communication load is uniform for every connection. The hardware topology

is a 2 by 2mesh. At every step, an exhaustive search is possible, there is no need for

clustering any of the topologies.

At the top level,B is assigned to nodeW; the remaining three nodes are assigned to

A. The load is well balanced. Hence, no local transformations are carried out after going

to the next level. At this point,B is left alone, since it is a primitive.X and Y are

assigned toE, Z to C andD. At the lowest level, no local transformations are necessary.

X is assigned toF, andY to G. The resulting assignment is optimal.

129

Complexity Analysis

The size of the assignment problem is hard to characterize in this case. Let nsf denote

the number of signal flow primitives. Let nhw denote the number of hardware nodes. A

compound model typically contains at least two user-defined components, i.e. compounds

and/or primitives. In theory, a compound may contain only one primitive adding an

artificial level to the hierarchy. A compound containing only one compound is

meaningless. Therefore, the number of hierarchy levels is O(log nsf). The number of

components in a compound may be O(nsf) in the worst case. The most likely candidate

for such a case is the top level signal flow compound model.

Clustering the hardware topology once takes O(nhw) time. Note that the number of

edges in the network is O(nhw) because of the fixed degree of the nodes. Since the

resulting graph has approximately half the size of the original one, there are at most log

nhw steps necessary. Finding and merging two signal flow components takes O(msf) time.

That step reduces the size by one. Therefore, the time complexity of clustering the signal

flow graph is O(msf
2). Note, however, that clustering the whole signal flow graph is never

attempted. Only one compound is considered at a time. The size of that compound,

however, may be O(nsf) making the complexity the same. Note that the average case is

much better, i.e. constant.

The exhaustive search takes constant time, since the search space is limited. Note that

the limiting constant is potentially large. The procedure optimizing the assignment by

local transformations has exponential time complexity in the worst case. On the other

hand, the hill climbing procedure going through an exponential number of steps is

extremely unlikely. The starting assignment is already good, there is not much room for

130

improvement. Nevertheless, the number of transformations must be limited. For one step,

a single transformation is selected from the msf
K possible ones. A constant number of

steps are carried out at most. Since K is typically 2, the time complexity is O(msf
2).

For one hierarchy level, the hardware topology clustering is O(nhw log nhw), the signal

flow topology clustering is O(msf
2), and the optimization by local transformations is

O(msf
2). Since a signal flow primitive cannot be divided further, nsf ≥ nhw. In addition, msf

= O(nsf
2), since there is no limit on the degree of a signal flow primitive. Furthermore,

there are log nsf hierarchy levels. The overall time complexity is, therefore,

O(nsf
4 log nsf). (15)

Evaluation

The hierarchical assignment algorithm has been implemented as part of the model

interpreter. Thorough evaluation of the approach is a hard problem for two reasons. While

it would be beneficial to compare the results produced by the algorithm to the optimal

solutions for a different set of problems, it is not feasible. Optimal solutions can be

attained for small problems only because of the exponential time complexity. The

hierarchical assignment algorithm performs an exhaustive search whenever it is feasible.

Therefore, it finds the optimal solutions for small problems. There is nothing to be gained

from this kind of comparison.

Second, a comparison with another heuristic approach or a general optimization

technique, e.g. simulated annealing or a genetic algorithm, would provide valuable

information about the characteristics of the hierarchical assignment algorithm. However,

none of these techniques has a readily available implementation. The unique requirements

131

of the Model-Integrated Application Synthesizer (MIPAS), especially the explicitly

modeled assignment constraints, make it even more difficult to port an existing algorithm

and integrate it into the MIPAS. Implementing another approach from scratch would

require as much effort as the implementation of the hierarchical assignment algorithm did.

Therefore, the only tests that could be carried out were comparisons with results produced

by manual assignment.

The problem size was limited, though not as severely as for optimal algorithms,

because the complexity of the problem can become overwhelming for humans. The signal

flow model of the test cases was that of the example application described in the next

chapter. It contains approximately 50 primitives, i.e. actornodes. The hardware

configuration varied from as low as 5 nodes up to 25.

The test results look promising. For small hardware configuration the automatically

generated assignments were almost identical to the manual ones. The small variations

were mainly due to the optimization by local transformations. Actors with small loads

were moved to neighboring nodes because the cost function had a slightly smaller value.

For bigger hardware configurations, the automatically generated assignments were

significantly different than the manual results. The hierarchical assignment algorithm even

left some hardware nodes idle because the advantages of less interprocessor

communication outweighed the advantages of better computational load balance. Note that

the application has some actors with very small loads but relatively high communication

rates.

Manual analysis of the automatic assignments did not reveal any problems. The

algorithm does not follow the same path that human intuition suggests. Hence, the results

132

are different. In terms of the cost function, however, the hierarchical assignment algorithm

produced better results than the manual process. Note that with a small number of

strategically placed assignment constraints, the algorithm can be forced the follow the

general structure of the manual solution. Further quantitative analysis is necessary to

identify the weaknesses of the algorithm. A qualitative evaluation leads to the following

observations.

The cost function is reasonably accurate and computationally cheap. Its most

important drawback is that it does not consider the actual message paths, only their

minimal lengths. This problem is corrected by the message routing strategy that minimizes

message contention. Using the signal flow hierarchy as a heuristic to cut the search space

is very useful. It makes the heuristic itself application dependent, since it utilizes the

knowledge of the user about the application.

In most cases, an exhaustive search can be used directly. Sometimes, most probably

at the top level, clustering one or both of the hierarchies may be necessary. The merging

of signal flow components utilizes all the available information, i.e. the computation and

communication loads. The weak point of the algorithm is the hardware topology

clustering procedure. It is ad hoc in that it does not utilize any assignment related

information. A better algorithm is needed to reduce the size of the hardware network

when it is necessary.

133

Hardware Topology Synthesis

An alternative approach to the assignment problem is hardware topology synthesis.

The idea is to automatically match the topology of the processor interconnection network

to that of the signal flow graph. This approach is only possible if the topology of the

available hardware is flexible. Smitley and Lee show that the problem is NP-complete,

even with strong simplifications [36].

A heuristic hardware topology synthesis algorithm has been developed as part of the

MIPAS. The applied heuristic is based on the hierarchical structure of the signal flow

models, similarly to the assignment algorithm. For the sake of simplicity, a homogeneous

set of processors is assumed (there are no computational or communication performance

differences) and the assignment constraints are not considered.

Cost Function

The cost function is simpler than the function applied in the assignment algorithm.

The first phase of the algorithm does not consider the topology of the hardware. It

optimizes the computational load balance, i.e. it determines the number of processors that

need to be assigned to the different (clusters of) nodes. It assumes that if two signal flow

components are assigned to different nodes, then those nodes are directly connected.

Topological constraints are considered in the second phase only. Therefore, the distance

of hardware nodes is not included in the function. The cost is a combination of the sum

of interprocessor communication loads and the variance of the computational loads. The

formula is

C = ∑ cj + W ∑ (lavg - li)
2 (16)

134

where cj is the load of communication between two processes assigned to different nodes,

W is an empirical constant, lavg is the average computational load in the system, and li is

the load of processor i. Note that a signal flow component may have more than one

hardware nodes assigned to it, in which case, the load of the signal flow block is divided

equally among the nodes.

Synthesis Algorithm

Figure 31 shows the hierarchical hardware topology synthesis algorithm in detail. The

procedure is started at the top level of the signal flow hierarchy. It considers one

compound model at a time at a given level. First, the algorithm assigns every available

node to the top level signal flow model.

The average load of a signal flow component of the given compound model is

computed by adding all the loads together and dividing the sum by the number of

assigned nodes. Then the load of every component is compared to the average load. If the

load is greater than K times the average load for the greatest possible integer K, then K

nodes are assigned to the given block. Furthermore, the number of available nodes is

decreased by K. After this procedure is completed, there are typically some more

hardware nodes available.

The goal is to perform an exhaustive search. This may not be possible because of the

exponential search space. The number of different assignments is MN / M!, where N is

the number of signal flow components, M is the number of hardware nodes. The reason

for dividing by M! is that differentiating between processors is not necessary.

135

level = top level
assign the number of available HW nodes to the top level SF compound
repeat {

for every SF compound and assigned number of HW nodes at level {
compute avgload
for every SF component in current compound {

if (load >= K avgload AND load < (K+1) avgload) then {
assign K nodes to component
decrease the number of available HW nodes by K

}
}
while exhaustive search is not possible

cluster SF components
try every possible assignment
select the one with the minimal cost

}
if more levels then

go to next lower level
else

break loop
repeat {

select best one from every possible (k < K) local transformations
if there is no cost improvement then

break loop;
}

}
create optimal HW topology
find spanning subgraph with maximum degree D

If the number of possible assignments is too big, the search space needs to be

reduced. This is accomplished by clustering signal flow components incrementally until

an exhaustive search is possible. A cost function is defined to select the best candidates

for clustering. There are two factors worth considering. First, two signal flow components

are strongly coupled if the amount of communication between them is relatively large.

Second, the sum of the loads of the components needs to be close to an integer multiple

136

of the average load. The cost function used in this phase of the algorithm is based on

these two factors. The algorithm evaluates every possible pair of signal flow components,

selects the one with the minimal cost, and merges the blocks. This step is repeated until

an exhaustive search is possible.

The cost function mandates some restrictions on the assignment strategy. If every

signal flow component was clustered into a single group and every node was assigned to

it, the cost would be minimal because the load would be evenly distributed and there

would be no interprocessor communication, since no communication is considered inside

a cluster. In a previous phase, nodes were assigned to components having loads greater

than the average load. Those can be called "big" components and the blocks with loads

lower than the average "small" blocks. The following restrictions must be made. If there

are only small components and K available hardware nodes, exactly K clusters must be

created. Consequently, each cluster will have one assigned node. If there are a mixture

of small and big components, then only one big component per cluster is allowed.

Furthermore, any cluster can have only one additional hardware node assigned to it. This

means that a cluster consisting of small components can have only one assigned node. A

cluster with one big and some more small components can have the same number of

nodes originally assigned to the big component or one more. Note that these restrictions

are not severe, they are logical. Furthermore, they are absolutely necessary to produce

some results at this level of the hierarchy. Allowing bigger clusters would push the

problem down the hierarchy where the search space is much bigger.

During the exhaustive search, every possible clustering and assignment satisfying these

restrictions are evaluated and the one with the minimal cost is selected. The load balance

137

may not be good at this point because of the granularity. At the next level, the signal flow

graph is refined and the assignment is improved by using the same method based on local

transformations as was used in the hierarchical assignment algorithm. The only difference

is the cost function.

This procedure goes on until the lowest level of the hierarchy is reached resulting in

the signal flow graph with primitives clustered into as many groups as there are available

hardware nodes. The topology of the processor interconnection network can be

constructed by assigning one node to each cluster of signal flow primitives and

connecting two nodes together if there is a connection between the corresponding clusters

in the signal flow graph. This topology would be optimal, every pair of communicating

processors would have a direct link. Message routing would not even be necessary.

However, the number of communication links of a single node is limited. In other words,

the degree of each node in the network is bounded by a constant. Therefore, a

degree-bounded, connected, spanning subgraph of the network must be found.

This problem is NP-complete [27]. Assuming that there are no hardwired connections

between any processors, the easiest way to find a degree-bounded subgraph is to delete

the appropriate number of links at every node having a higher than allowed degree.

Deciding which links to delete is an optimization problem requiring a cost function.

Link with small communication loads are the best candidates for deletion. However,

that communication still needs to take place. The consequence of a link deletion must be

considered. A good and simple measure is the distance of the two nodes after the deletion

of their common link. Multiplying the communication load and the resulting distance

constitutes a reasonable cost function. There is one more factor worth considering. A link

138

connecting two nodes both having higher than allowed degrees is a better candidate than

a link with only one such node. The deletion of the former decreases the degree of two

nodes. The applied cost function is

Cij = lij dij wij (17)

where lij is the communication load between nodes ni and nj, dij is the distance after

deleting the link, and wij is 0.5 if the degree of both ni and nj is greater than the limit,

infinite if the degree of none of them is greater than the limit, and 1 otherwise.

Figure 32 shows the algorithm in detail. In the first phase, the search process finds

the link with the minimum cost and deletes it. This step is repeated until the degree

bounded subgraph has been found. This phase of the algorithm could be made more

complicated. A link deletion not only affects the given link, but possibly any

communication with a previously deleted link. How deleting a link changes the distance

of every pair of nodes whose common link has been deleted before could be checked.

This extra step would make the time complexity less attractive and is not worth doing.

At the end of Phase I, there can be nodes with too high degree and only such links

that deleting any one of them would disconnect the graph. Consequently, their costs are

infinite, since the distance after deleting such a link would be infinite. In this case, the

problem is redefined. Instead of finding a subgraph, new links are added that were not

present in the original graph.

At the beginning of Phase II, the only nodes that have high degree are these special

ones because any lower cost links are already deleted. One of these links with infinite

cost is selected and deleted and a new link is added to connect the two components.

When selecting the location of the new link, the cost is not considered because this case

139

Phase I:
create original graph based on SF clusters
while there are nodes with higher than allowed degree {

find the link with the minimal cost
if cost is infinite then

break loop
delete link

}

Phase II:
for every node with higher than allowed degree {

while degree is high {
delete a link creating two components
for each component {

find a node with lower than allowed degree
if not found then {

find a node with allowed degree that
has a link that can be deleted

delete the link
}

}
connect nodes

}
}

Phase III:
while there are more than one node with lower than allowed degree {

for every link that can be added {
add link
compute distance for every node pair

that had a link in original graph but not any more
delete link
compute distances again
compute the difference

}
select link with greatest difference
add it to the graph

}

is very unlikely in real applications.

If no new link can be added because every node in one component has the highest

140

allowed (or higher) degree, then a link is deleted in that component. Note that there must

be a link that can be deleted in the component. It is not possible to have a graph with all

the nodes having the maximum degree and with every link being and edge-cut. This

procedure is repeated until a degree-bounded graph is reached.

At the end of Phase II, an appropriate hardware topology is available. However, there

can be nodes with less than the allowed degree. Links can be added to the graph just by

connecting these nodes together as they are found. Phase III follows a better approach.

The best link to add can be chosen by comparing the distance of two nodes that were

connected in the original graph, before and after adding the given link for all such node

pairs. The one decreasing the sum of the distances the most is selected. The load can be

factored in as well.

The situation is more complicated when there are hardwired connections between

hardware nodes. In this case, there are small networks of nodes instead of individual

processors. These graphs are ordered based on the number of links each has. The

procedure starts with the one which has the greatest number of links and tries to find a

subgraph of the desired network generated by the hierarchical topology synthesis

procedure, which is isomorphic to it. If a perfect match cannot be found, the best one is

selected, i.e. the one with the highest number of matching edges. The non-matching links

are added to the network. The value of wij of each of the links in the subgraph is set to

infinity. In other words, those links cannot be deleted. This procedure is repeated for

every small hardwired network. Then the same search process is followed as shown in

Figure 32 until a degree-bounded graph is generated.

141

Complexity Analysis

Most of the same assumptions as in the analysis of the hierarchical assignment

algorithm can be made. Let nsf denote the number of signal flow primitives. Let nhw

denote the number of hardware nodes. The number of hierarchy levels is O(log nsf). The

number of components in a compound is O(nsf).

Computing the average load and comparing it to the individual loads takes O(nsf) time.

The complexity of the incremental clustering algorithm is O(nsf
2). The exhaustive search

needs to be limited by a constant. The optimization step based on local transformations

needs O(msf
2) time, similarly to the assignment algorithm. The time complexity of the first

phase is, therefore,

O(msf
2 lognsf) = O(nsf

4 log nsf). (18)

Originally, there are O(nhw
2) links in the hardware topology. Links need to be deleted

to get O(mhw) = O(nhw) edges. The number of deleted links is O(nhw
2) in the worst case.

The time complexity of deleting an edge is O(nhw). Deleting all the necessary edges takes

O(nhw
3) time.

In the next phase, there may be O(nhw
2) edges with infinite cost that need to be

deleted. Finding another link to connect the components takes O(nhw
2) time. The

complexity is then O(nhw
4). In the last phase, there are at most O(nhw) edges to add. The

distances of O(nhw
2) node pairs are checked. That takes O(nhw) time for one pair, O(nhw

3)

for all the pairs. Altogether, creating the degree bounded graph takes O(nhw
4) time. The

overall time complexity is O(nsf
4 log nsf + nhw

4). Since nhw < nsf, the result is

O(nsf
4 log nsf). (19)

If there are hardwired connections, the maximum number of nodes in any one

142

hardwired network needs to be limited because of the exponential time complexity. Based

on typical board configurations, a reasonable limit is 4. Finding one matching subgraph

takes at most O(nhw
4) time. There are O(nhw) hardwired networks. The time complexity

is O(nhw
5), which may be greater than O(nsf

4 log nsf).

Evaluation

The hardware topology synthesis algorithm incorporates several novel ideas. Using the

hierarchy of the signal flow models to reduce the search space makes the core of the

algorithm, the heuristic, application dependent. Furthermore, the user has control over the

algorithm this way. Breaking the problem into two distinct phases, i.e. balancing the

computational load and minimizing communication overhead, greatly simplifies the

problem and does not have any significant drawbacks. The time complexity is polynomial,

but high. Note, however, that the complexity of the average case is much better.

The hierarchical hardware topology synthesis algorithm has not been implemented yet.

Generalization of the strategy to work with a heterogeneous set of processors and satisfy

the assignment constraints is the subject of future research.

143

CHAPTER VIII

EXAMPLE SYSTEM

The technique of automatically synthesizing large-scale, parallel instrumentation

systems can be best illustrated through an example. The Parallel Signal Analyzer (PSA)

program is a multi-channel signal processing/instrumentation system running on transputer

or C40 networks with a PC host. The PSA is automatically synthesized from high-level

models utilizing a general signal processing library and an application-specific user

interface.

Figure 33 shows the signal flow compound model for one channel in the Graphical

Model Builder (GMB). Data is coming through input signalData. It enters primitivesplit,

which splits the data stream as many ways as specified by local parameter3way. In this

144

case, its value is 3. One data stream leaves through output signalOut0. Another one goes

through local signalL0 to primitive fft . The output spectral data goes to output signal

Out2. The third data stream of the splitter goes through local signalL1 to primitive lpf ,

which represents a low-pass filter. The output of the filter propagates through local signal

L2 to compoundSfft. This model has two outputs. One is the original input data, the

other is its spectrum. They propagate to output signalsOut1 andOut3, respectively.

The same model of channel I and the corresponding plot generation modules are

shown in the model browser in Figure 34. The model identifiers have the form "instance

name : type name". The compoundCH-04 contains two compound models:ch-I and

Chtrig . ch-I contains all the components described above. Note that by using types,

145

several instances of the same model can be used, even at different levels of the hierarchy.

See, for example,fft directly underch-I and in Sfft. Chtrig contains several plot

generator primitives (calledTriggers), one for each output ofch-I. Altogether,CH-04

contains 11 primitives.

This example configuration of the PSA contains 4 channels, each with 10-15

primitives, a user interface, and a plotter. Altogether, the system consists of approximately

50 primitives. Adding an arbitrary number of additional channels is easy. Their signal

flow must be modeled and added to the top level model. The model interpreter generates

the new configuration automatically.

146

The PSA can be executed on arbitrary transputer or C40 networks with a PC host. An

example hardware configuration is depicted in Figure 35. The model browser shows the

whole hierarchy. The network modelSystem consists of a nodeHost of PC type, a

network MX of PC-T4 type, and three additional network models ofVME type, each

containing fourC40 nodes. There are 16 C40 processors and a PC in the system.

There are two constraints the automatic assignment strategy needs to satisfy. The user

interface and the plotter must run on the host, since only that node has a display. The

assignment constraint rule specifying the latter requirement is shown in Figure 36. The

signal flow referenceServer corresponding to the plotter is associated with the hardware

model referencePC corresponding to aPC type model. Note that hardware type reference

is used, since the plotter does not have to run on the host, it could run on any other PC

if there were more in the system. The top level assignment constraint model contains this

rule and another one corresponding to the assignment of the user interface. Note that this

configuration of the PSA collects data generated by a program, not sampled by A/D

147

tsk_attach "host" 1 -> tsk1
tsk_attach "host" 2 -> tsk2
tsk_attach "host" 3 -> tsk3
...
act_create "trigger_script" 2 2 AT_IFANY tsk7 -> Trigger0_act58
act_setcontext Trigger0_act58 6
act_create "split" 1 4 AT_IFALL tsk3 -> split_act51
act_setcontext split_act51 3
act_create "cfft" 1 1 AT_IFALL tsk3 -> fft_act53
act_setcontext fft_act53 7
...
dnd_create 10 DT_STREAM DS_DEALLOC tsk6 -> d1_dnd97
dnd_create 10 DT_STREAM DS_DEALLOC tsk5 -> d2_dnd30
dnd_create 10 DT_STREAM DS_DEALLOC tsk7 -> c00_dnd96
...
nde_connect c33_dnd25 Trigger3_act8 0 CM_NORMAL
nde_connect c20_dnd91 Trigger0_act25 0 CM_NORMAL
nde_connect c21_dnd24 Trigger1_act24 0 CM_NORMAL
...
dnd_enable L1_dnd15
dnd_enable L2_dnd11
dnd_enable L3_dnd14
...
act_activate split_act11
act_activate bpf_act10
act_activate Trigger0_act7
...

converters. Therefore, the data input do not create any additional assignment constraints.

The model interpreter, the Parallel Application Builder (PAB), evaluates the three

aspects of the system models. It automatically assigns the primitives of the signal flow

models to the nodes of the hardware models as described in the previous chapter. The

PAB generates two output files. One is written in the Multigraph Kernel Command

Language. A small fraction of the generated file is shown in Figure 37.

148

First, one task for each hardware node is generated. Then one actornode for each

signal flow primitive is created. Each actornode is assigned to a specific task, i.e.

processor. Its script and number of input and output ports are specified. A unique name

is assigned to each actor. Their contexts are set according to the input parameters of the

signal flow primitives. Then the datanodes are generated. Their length, type, task, and

unique name are specified as well. Next, the connections between datanodes and

actornodes (and vice versa) are created. Finally, the datanodes and actornodes are enabled.

That step starts up the application. The Multigraph command file for this 4-channel PSA

consists of approximately 1000 lines.

The other output of the PAB is a hardware description file along with a list of

communicating processor pairs. This information can be loaded into the hardware model

analyzer tool, the Graphical Configuration Manager (GCM). The hardware topology of

this configuration of the PSA inside the GCM is shown in Figure 38. The GCM compares

the models to the actual hardware network, generates network loader information and

deadlock-free message routing maps, as described in Chapter V.

The user interface of the PSA is shown in Figure 39. There are three main areas of

the screen. The window in the upper left corner is used to set up the plots. The data

source, scaling information, labels, and plot attributes can be specified. The window in

the lower left corner is used to set screen configurations. The signal display window can

be set to contain a single large window or any n by m configuration up to 4x4, using the

graphical buttons. Screen and window configurations can be stored to disk.

149

150

The signal display in Figure 39 is configured to contain a plot for every data source

available in this configuration of the PSA. The lowest row of windows contains the plots

corresponding to channel 0 (ch-I in the signal flow models). The leftmost window

contains the original input data, a sweeping sine wave. The next window shows the data

after the low-pass filter. The two rightmost windows display the corresponding spectrums.

151

CHAPTER IX

CONCLUSIONS

This dissertation has discussed the adoption of a model-integrated programming

environment, the Multigraph Architecture, to the parallel instrumentation and signal

processing domain. The target hardware architecture is distributed memory

multiprocessors with flexible interconnection topology. While certain aspects of the

problem have been addressed before, crucial parts were missing. The declarative modeling

methodology of the Multigraph Architecture (MGA) has been extended by generative

capabilities providing a powerful new paradigm. This dissertation has solved the

previously open problem of deadlock-free wormhole routing in networks with arbitrary

topologies. Process assignment has been solved automatically by a non-optimal, heuristic

search procedure and by hardware topology synthesis. Both algorithms utilize the

hierarchical structure of the system models providing a user-defined, application-specific

heuristic. The next section summarizes the specific contributions of this work.

Contributions

Modeling Paradigm

Generative modeling. The Multigraph Architecture supports declarative modeling of

complex systems. While it is a powerful technique, declarative modeling alone cannot

manage the growing complexity of today's large-scale applications. Generative modeling

152

can augment the capabilities of declarative model building. With generative modeling,

model components and structure can be specified using a programming language. It is

most useful for the specification of repetitive and conditional model components. This

dissertation introduced a novel technique to interface generative modeling to the

declarative paradigm of the MGA. The mixed declarative (graphical) and generative

(textual) models can be transformed to purely graphical representation for verification and

debugging. Generative modeling in the Multigraph Architecture is still at a conceptual

level and has not been implemented yet.

Assignment constraints. Explicit modeling of the assignment constraints, i.e. specific

hardware requirements of software modules, provides a general approach toward the

synthesis of real systems. Previous efforts hardcoded such constraints into the model

interpreter mandating code change every time a new requirement arose. Providing an

additional modeling aspect for this purpose greatly improves flexibility. Furthermore, this

approach helps in automatic process assignment. The user can force the assignment of

certain modules to hardware nodes that can execute them efficiently and avoid nodes

where performance would suffer. Moreover, the user can guide the search through

strategically placed assignment constraints. This can effectively cut the search space,

speed up the procedure, and provide a better solution.

Model Interpretation and Analysis

Message routing. Previously, two approaches have been used for deadlock avoidance

with deterministic wormhole routing. Virtual channels require hardware support not

available on the target platforms of this work. Topology-based deadlock avoidance applies

153

tree-, mesh-, or hypercube-based architectures. This dissertation has identified a new class

of graphs with deadlock-free minimal routing. In fact, it has been shown that the only

inherently deadlock-free class of topologies are chordal graphs. Chordal graphs are the

only class of graphs where any minimal routing is deadlock-free. However, they still do

not provide enough flexibility for the domain. Partially connected routing suits the domain

well because the system models contain the specific communication requirements of the

application. However, this dissertation has shown that the minimal, partially connected,

deadlock-free routing problem is NP-complete. Therefore, a non-minimal routing strategy

has been introduced that guarantees deadlock-freedom and optimizes the message routes

by minimizing message contention. The algorithm generates a deadlock-free routing in

a chordal subgraph of the network. A message path from this routing is used only if there

is no path with less cost in the whole network that do not result in a deadlocked

configuration. The cost function is a combination of the average load on all

communication channels and the load on the channel with the highest load representing

a bottleneck in the system. The algorithm has polynomial time complexity. In most cases,

the quality of the results are better than that of the optimal minimal algorithm, which does

not guarantee deadlock-freedom and has exponential time complexity. This is possible

because the new algorithm is not forced to use shortest paths and, therefore, it is able to

avoid hot spots in the system.

Assignment. A heuristic search strategy has been proposed to assign signal flow

primitives to hardware nodes. The algorithm follows the hierarchy of the signal flow

models. It assigns models one level at a time, greatly reducing the search space. At any

one level, the optimal solution is found by exhaustive search, if feasible. The algorithm

154

finds the global minimum at a low resolution, then increases the resolution and optimizes

parts of the problem locally. Before starting a new level, the algorithm improves the

solution globally by transformations at the new resolution. The algorithm and the applied

cost function utilize all the available information in the models: the estimated load of

signal flow components, the required bandwidth for communication between them, the

performance of the hardware nodes and channels, the assignment constraints, and the

hierarchy of the signal flow models. The latter makes the heuristic of the strategy tunable.

The user can build knowledge of how the structure of the models will affect the

assignment into the signal flow models.

Hardware topology synthesis. A heuristic processor interconnection network topology

synthesis algorithm has been proposed as an alternative to the more traditional assignment

strategy. The concept is to automatically synthesize a network topology matching that of

the signal flow graph of the application. This approach is only feasible if the hardware

topology is not preconfigured. The synthesis strategy is based on the signal flow model

hierarchy. This cuts the search space and utilizes the structural information built into the

models. Balancing the computational load and generating the topology to minimize

interprocessor communication overhead are carried out in distinct phases of the algorithm.

Graphical Configuration Manager. The hardware model analysis tool of the

Multigraph Architecture is the Graphical Configuration Manager (GCM). Interestingly,

this was the first tool of the environment implemented. It has a built-in graphical editor

enabling the use the GCM without the graphical model builder. Recently, the program

was interfaced to the rest of the environment. The model interpreter transforms the

hardware models into the input format of the GCM. The functions of the program are

155

essential in building parallel instrumentation systems on architectures with flexible

topology. The GCM compares the models to the actual hardware diagnosing the network

and validating the models. It generates network information files for different loaders. It

also generates message routing maps for store-and-forward message routing. The new,

non-minimal, partially connected, deadlock-free routing algorithm has also been

implemented and integrated into the Graphical Configuration Manager.

Future Work

There are some aspects of the model-based parallel instrumentation application

synthesis for distributed memory multiprocessors with flexible interconnection topology

that warrant further investigation. Some of them go beyond the scope of this dissertation.

The most important topics for future research are:

Implementation of generative modeling. The Multigraph Architecture with generative

modeling capabilities supports a powerful paradigm by combining declarative (graphical)

and generative (textual) modeling. The implementation does not pose any significant

theoretical difficulties, but it involves extensive programming, including automatic model

component and connection layout generation for the model builder user interface.

Topology classification for deadlock-free routing. Chordal graphs, as this dissertation

has shown, are the only inherently deadlock-free class of topologies, i.e. any minimal

routing is deadlock-free in these graphs only. What are the topologies with at least one

minimal deadlock-free routing strategy? Two examples are meshes and hypercubes. Is

there a general characterization of graphs with this property? Topology classification for

deadlock-free routing is an open problem.

156

Faster routing and assignment. The message routing, assignment, and topology

synthesis algorithms introduced in this dissertation produce high quality results. While

their time complexity is polynomial, their speed needs improvement. The hardware

topology synthesis algorithm needs to be generalized for heterogeneous processor sets. It

must be modified to satisfy the assignment constraints as well.

Debugging support. Unified debugging support is still missing from the MGA. A

process involving the system models in the debugging is desirable, especially for parallel

processing.

157

REFERENCES

1. "A Routing Scheme for TMS320C40-Based Systems," Application Note, Texas
Instruments, available on the TI Bulletin Board

2. CRAY T3D System Architecture Overview Manual, Cray Research Inc., available
on the WWW, 1994

3. Express 3.0 User's Guide, Parasoft Corporation, 1990

4. The Starburst Programming Environment, Loral Rolm Computer Systems,
Demonstration at the DSP World Expo, Dallas, TX, Oct. 1994

5. Abbott, B. : "Model-Based Automatic Software Synthesis,"Ph. D. Dissertation,
Dept. of Electrical Engineering, Vanderbilt University, Nashville, TN, 1994

6. Abbott, B. et al.: "Model-Based Software Synthesis,"IEEE Software, Vol. 10, No.
3, pp. 42-52, May 1993

7. Abbott, B., Ledeczi, A.: "TICK: a TMS320C40 Utility Program,"Proc. of the
International Conference on Signal Processing Applications and Technology,
Dallas, Texas, 1994

8. Ahmed, S., Carriero, N., Gelernter, D.: "A Program Building Tool for Parallel
Applications," available on the WWW, Yale University, 1993

9. Babaoglu, O. et al.: "Mapping Parallel Computations on to Distributed Systems
in Paralex,"Tech. Report UBLCS-92-1, University of Bologna, Jan. 1992

10. Bapty, T. et al.: "Parallel Turbine Engine Instrumentation System,"Proc. of
Computing in Aerospace 9, pp. 423-433, San Diego, CA, 1993

11. Bapty, T.: "Model-Based Synthesis of Parallel Real-Time Systems" Ph. D.
Dissertation, Vanderbilt University, 1995

12. Beguelin, A. et al.: "Visualization and Debugging in a Heterogeneous
Environment,"IEEE Computer, Vol. 26, No. 6, pp. 88-95, June 1993

13. Biegl, C.: "Design and Implementation of an Execution Environment for
Knowledge-Based Systems,"Ph. D. Dissertation, Dept. of Electrical Engineering,
Vanderbilt University, Nashville, TN, 1988

14. Bokhari, S. H.: "On the Mapping Problem,"IEEE Trans. on Computers, Vol.
C-30, No. 3, pp. 207-214, March 1981

158

15. Bokhari, S. H.:Assignment Problems in Parallel and Distributed Computing,
Kluwer Academic Publishers, 1987

16. Bollinger, S. W., Midkiff, S. F.: "Heuristic Technique for Processor and Link
Assignment in Multicomputers,"IEEE Trans. on Computers, pp. 325-333, March
1991

17. Childers, C. A. et al.: "The Multigraph Modeling Tool,"Proc. of the 7th
International Conference on Parallel and Distributed Systems, Las Vegas, Nevada,
1994

18. Dally, W. J., Seitz, C. L.: "Deadlock-Free Message Routing in Multiprocessor
Interconnection Networks,"IEEE Trans. on Computers, Vol. C-36, No. 5, pp.
547-553, May 1987

19. Dally, W. J., Seitz, C. L.: "The Torus Routing Chip,"Journal of Distributed
Computing, Vol. 1, No. 3, pp. 187-196, 1986

20. Dally, W. J.: "Network and Processor Architecture for Message-Driven
Computers," in Suaya, r., Birtwistle, G. (eds.)VLSI and Parallel Computation,
Morgan Kaufmann Publishers, San Mateo, CA, 1990

21. Dally, W. J.: "Virtual-Channel Flow Control,"IEEE Trans. on Parallel and
Distributed Systems, Vol. 3, No. 2, pp. 194-205, March 1992

22. Dixit-Radiya, V. A., Panda, D. K.: "Task Assignment on Distributed-Memory
Systems with Adaptive Wormhole Routing,"Tech. Report OSU-CISRC-4/93-TR18,
The Ohio State University, Feb. 1994

23. Duato, J.: "A Necessary and Sufficient Condition for Deadlock-Free Wormhole
Routing,"Tech. Report, Universidad Politecnica de Valencia, October 1993

24. Duato, J.: "A New Theory of Deadlock-Free Adaptive Routing in Wormhole
Networks,"IEEE Trans. on Parallel and Distributed Systems, Vol. 4, No. 12, pp.
1320-1331, December 1993

25. Fernandez-Baca, D.: "Allocating Modules to Processors in a Distributed System,"
IEEE Trans. on Software Engineering, Vol. 15, No. 11, pp. 1427-1435, Nov. 1989

26. Franke, H.: "Programming Environment for Model-Based Systems" Ph. D.
Dissertation, Vanderbilt University, 1992

27. Garey, M., Johnson, D.:Computers and Intractability: a Guide to the Theory of
NP-Completeness, Freeman, 1979

159

28. Goldberg, D. E.:Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley, Reading, MA., 1989

29. Harel, D.: "Biting the Silver Bullet,"Computer, pp. 8-20, Jan. 1992

30. Hillis, W. D.: The Connection Machine, The MIT Press, Cambridge, MA, 1985

31. Hillson, R.: "Support Tools for the Processing Graph Method,"Proc. of the
International Conference on Signal Processing Applications and Technology, pp.
756-761, Dallas, TX, Oct. 1994

32. Holland, J. H.:Adaptation in Natural and Artificial Systems, The University of
Michigan Press, Ann Arbor, MI, 1975

33. Karsai, G.: "A Visual Programming Environment for Domain Specific
Model-Based Programming,"Computer, March 1995

34. Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P.: "Optimization by Simulated
Annealing,"Science, Vol. 220, pp. 671-680, May 1983

35. Ledeczi, A., Abbott, B.: "Parallel Architectures with Flexible Topology,"Proc. of
the Scalable High Performance Computing Conference, pp. 271-276, May 1994

36. Lee, I., Smitley, D.: "A Synthesis Algorithm for Reconfigurable Interconnection
Networks,"IEEE Trans. on Computers, Vol. C-37, pp. 691-699, June 1988

37. Lee, S., Aggarwal, J. K.: "A Mapping Strategy for Parallel Processing,"IEEE
Trans. on Computers, pp. 433-442, Apr. 1987

38. Leiserson, C. E. et al.: "The Network Architecture of the Connection Machine
CM-5," available on the WWW, 1993

39. Lin, X., McKinley, P. K., Ni, L. M.: "The Message Flow Model for Routing in
Wormhole-Routed Networks,"Tech. Report MSU-CPS-ACS-78, Michigan State
University, January 1993

40. Ma, P. R., Lee, E. Y. S., Tsuchiya, M.: "A Task Allocation Model for Distributed
Computing Systems,"IEEE Trans. on Computers, Vol. C-31, No. 1, pp. 41-47,
Jan. 1982

41. May, M. D., Thompson, P. W., Welch, P. H. (eds.):Networks, Routers and
Transputers: Function, Performance, and Applications, Inmos Limited, 1993

42. Ni, L. M., McKinley, P. K.: "A Survey of Wormhole Routing Techniques in
Direct Networks,"Computer, Vol. 26, No. 2, pp. 62-76, Feb. 1993

160

43. Ni, L. M., Panda, D. K.: "Sea of Interconnection Networks: What's Your Choice,"
Report of the ICCP '94 Panel Discussion, available on the WWW, Aug. 1994

44. Noakes, M. D., Wallach, D. A., Dally, W. J.: "The J-Machine Multicomputer: An
Architectural Evaluation,"Proc. of the 20th International Symposium on Computer
Architecture,May 1993

45. Perry, D.:VHDL, McGraw-Hill, 1991

46. Reed, D. A., Fujimoto, R. M.:Multicomputer Networks: Message-Based Parallel
Processing, MIT Press, Cambridge, Mass., 1987

47. Schwiebert, L., Jayasimha, D. N., Tseng, Y.: "A Necessary and Sufficient
Condition for Deadlock-Free Wormhole Routing," available on the WWW

48. Schwiebert, L., Jayasimha, D. N.: "Optimal Fully Adaptive Wormhole Routing for
Meshes,"Proc. of Supercomputing '93, pp. 782-791, 1993

49. Shen, C., Tsai W.: "A Graph Matching Approach to Optimal Task Assignment in
Distributed Computing Systems Using a Minimax Criterion,"IEEE Trans. on
Computers, Vol. C-34, No. 3, pp. 197-203, March 1985

50. Shen, H.: "Self-adjusting Mapping: a Heuristic Mapping Algorithm for Mapping
Parallel Programs on to Transputer Networks, "The Computer Journal, pp. 71-80,
Feb. 1992

51. Siljak, D.:Decentralized Control of Complex Systems, Academic Press, 1991

52. Simar, R. et al.: "Floating-Point Processors Join Forces in Parallel Processing
Architectures,"IEEE Micro, pp. 60-69, August 1992

53. Stone, H. S.: "Multiprocessor Scheduling with the Aid of Network Flow
Algorithms," IEEE Trans. on Software Engineering, Vol. SE-3, No. 1, pp. 85-93,
Jan. 1977

54. Stunkel, C. B., et al.: "The SP2 High-Performance Switch,"IBM Systems Journal,
vol. 34, no. 2, 1995

55. Talbi, E., Muntean, T.: "General Heuristics for the Mapping Problem,"Proc. of
the World Transputer Congress, IOS Press, Aachen, Germany, Sep. 1993

56. Turcotte, L. H.: "A Survey of Software Environments for Exploiting Networked
Computing Resources,"Tech. Report, MSU-EIRS-ERC-93-2, Mississippi State
University, Feb. 1993

