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Abstract. Developing a single embedded application involves a multitude of different development tools including 

several different simulators. Most tools use different abstractions, have their own formalisms to represent the 

system under development, utilize different input and output data formats and have their own semantics. A unified 

environment that allows capturing the system in one place and one that drives all necessary simulators and 

analysis tools from this shared representation needs a common representation technology that must support several 

different abstractions and formalisms seamlessly. Describing the individual formalisms by metamodels and 

carefully composing them is the underlying technology behind MILAN, a Model-based Integrated Simulation 

Framework. MILAN is an extensible framework that supports multi-granular simulation of embedded systems by 

seamlessly integrating existing simulators into a unified environment. Formal metamodels and explicit constraints 

define the domain-specific modeling language developed for MILAN that combines hierarchical, heterogeneous, 

parametric dataflow representation with strong data typing. Multiple modeling aspects separate orthogonal 

concepts. The language also allows the representation of the design space of the application, not just a point 

solution. Non-functional requirements are captured as formal, application-specific constraints. MILAN has 

integrated tool support for design-space exploration and pruning. The models are used to automatically configure 

the integrated functional simulators, high level performance and power estimators, cycle accurate performance 

simulators and power-aware simulators. Simulation results are used to automatically update the system models. 

The paper focuses on the modeling methodology and briefly describes how the integrated models are utilized in the 

framework. 



1 Introduction 

As embedded systems get increasingly complex their development is becoming more and more difficult. 

Developing a single embedded application involves a multitude of different development tools including several 

different simulators. Functional simulators are used to verify that the selected algorithms do indeed results in the 

desired system behavior. High-level performance estimators can be used to obtain early system-wide performance 

numbers. Cycle-accurate simulators are used to get accurate performance estimates for individual system 

components. They can also be used to simulate the overall system, but this can be very time consuming. Other tools 

employed during the development of an embedded system may include different verification, validation and 

analysis tools. 

Unfortunately, most tools use different abstractions, have their own formalisms to represent the system under 

development, utilize different input and output data formats and have their own semantics. Most tools were simply 

not designed to work together. Using them in isolation results in replicated effort and the potential for inconsistent 

results. A unified environment that allows capturing the system in one place and one that drives all necessary 

simulators and analysis tools from this shared representation can alleviate these problems. Because of the 

complexity of embedded systems and the wide range of different tools that need to be supported, the common 

representation technology at the heart of the environment must support several different abstractions and 

formalisms seamlessly. 

Each of these individual formalisms is a modeling language and, as such, can be formally described by a 

metamodel. The common representation methodology consisting of all the formalisms can be captured by a 

composition of these metamodels. The way the composition is done determines how the individual formalisms are 

integrated together to form the common modeling language. This kind of metamodel composition is the underlying 

technology behind MILAN, a Model-based Integrated Simulation Framework. 

MILAN is a model-based, extensible simulation integration framework that facilitates rapid evaluation of 

different performance metrics, such as power, latency, and throughput, at multiple levels of granularity of a large 

class of embedded systems by seamlessly integrating different widely-used simulators into a unified environment 

[Agrawal et al. 2001]. MILAN is based on Model Integrated Computing (MIC) technology [Sztipanovits and 

Karsai 1997].  



MIC employs domain-specific models to represent the system being designed. These models are then used to 

automatically synthesize the applications and/or to generate inputs to analysis and/or simulation tools. MIC is 

implemented by the Generic Modeling Environment (GME), a metaprogrammable toolkit for creating domain-

specific modeling environments [Ledeczi et al. 2001]. GME employs metamodels that specify the modeling 

language of the application domain. The modeling language contains all the syntactic, semantic, and presentation 

information regarding the domain – which concepts will be used to construct models, what relationships may exist 

among those concepts, how the concepts may be organized and viewed by the modeler, and rules governing the 

construction of models. The modeling language defines the family of models that can be created using the resultant 

modeling environment. The metamodels specifying the modeling language are used to automatically configure 

GME for the target domain.  

GME is used primarily for model-building. The models take the form of graphical, multi-aspect, attributed 

entity-relationship diagrams. The static semantics of a model are specified by OCL constraints [Warmer and 

Kleppe 1999] that are part of the metamodels. They are enforced by a built-in constraint manager during model 

building time. The dynamic semantics are applied by the model interpreters, i.e. by the process of translating the 

models to source code, configuration files, database schema or any other artifact the given application domain calls 

for. 

The metamodeling language is based on the UML class diagram notation [Rumbaugh et al. 1998] extended 

to support metamodel composition seamlessly. Composition rules can be expressed by specifying relationships 

between the original metamodels, such as equivalence or inheritance. One of the most important aspects of the 

composable metamodeling environment is that original metamodels remain intact, they can be used independently 

from any composition they may be part of. This ensures that models created using a formalism derived from the 

original metamodels are still valid—the fact that their metamodel also participates in a composition does not affect 

a model’s ability to function exactly as it did before the composition. Second, the newly composed metamodel 

defines a modeling language that is capable of editing models created using the original language [Ledeczi, 

Nordstrom et al. 2001].  

Metamodel composition has been used extensively in the design of the modeling language of MILAN. The 

four main categories of models specify the desired application functionality, available hardware resources, the 



mapping between the two and non-functional requirements in the form of explicit constraints. The modeling 

language capturing the application functionality is based on dataflow representation. However, it has been extended 

to support hierarchy, design alternatives, multiple aspects, parameters, datatypes and both synchronous and 

asynchronous dataflow semantics. 

The goal of the paper is to describe how a careful composition of a variety of modeling formalisms can result 

in a highly domain-specific modeling methodology that supports the unique needs of the complex application 

domain of integrated simulation of embedded systems. We shall focus on the application modeling language and 

how the models are used in the overall design process supported by MILAN. 

2 MILAN Overview 

The architecture of MILAN is depicted in Figure 1. GME is configured to support the complex modeling 

language of MILAN. It is utilized to build and store the system models. Different model translators use the models 

to drive the different tools, mainly simulators. There are several levels of tools. The ones exploring the design space 

of the application are located at the top of the architecture. The models typically specify an exponentially large 

design-space. However, only a subset of this space satisfies all the constraints specifying requirements. One of the 

tools applies a symbolic constraint satisfaction methodology to explore and prune the design-space [Neema 2001 

(technical report)].  

Once a single design has been selected, different functional simulators can be used to verify the desired 

functionality. Currently, Matlab (http://www.mathworks.com), SystemC (http://www.systemc.com) and 

ActiveHDL (http://www.aldec.com), a VHDL simulator, are supported.  The latter two are used for functional 

simulation of components that are implemented in configurable hardware, i.e. FPGAs or ASICs. (Note that the 

VHDL code synthesized by MILAN is used only for functional simulation at this time.) 

The High-Level Performance Estimator (HiPerE), developed at USC, is able to provide an estimate of overall 

performance metrics very rapidly. It implements a course trace-level simulation of the system under development 

[Mohanty, Prasanna et al. 2002]. HiPerE depends on accurate component level performance metrics. If these are 

not readily available, then cycle-accurate simulators can be applied. Single components at any level of the 

hierarchy, an adjacent group of components or even the whole system can be automatically configured for 



simulation by any of the supported simulators. Currently, these are SimpleScalar (http://www.simplescalar.org), 

CodeComposer Studio (http://www.ti.com), PowerAnalyzer [Shiasi and Grunwald 2000], Armulator, and 

SimplePower (http://www.cse.psu.edu/~mdl/software.htm). Simulation results need to be incorporated back in the 

models. For some simulators this will necessarily be a human-in-the-loop process, while for most the procedure is 

automated in MILAN.  

When the simulation results show the desired results, the system synthesis component is used to generate the 

final system. Note, however, that currently MILAN only supports software synthesis. 
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Figure 1 MILAN Architecture 

3 Modeling Methodology 

The primary application area of a significant portion of embedded systems is signal processing. The most 

natural, and, hence, widely used formalism for signal processing systems is arguably dataflow. Consequently, the 

MILAN application modeling language is based on a dataflow representation. The unique requirements of the 

domain, namely the need to support a wide variety of applications, many existing simulators and multi-granular 

simulation, lead to several extension to the basic dataflow representation. The MILAN application modeling 



language supports hierarchy to help handle system complexity, and explicit design- and implementation alternatives 

to capture the design space of the application as opposed to a point solution. 

 Furthermore, different additional formalisms were incorporated to extend the baseline modeling language 

using metamodel composition. These are: 

• data type modeling to support strongly typed dataflow, 

• a formalism related to dataflow, but specifically tailored to modeling application functionality that is to be 

implemented in configurable hardware, i.e. FPGAs or ASICs, 

• parameter modeling to enable parametric dataflow, 

• constraint representation to guide the design space exploration process that identifies the candidate solutions.  

Finally, both asynchronous and synchronous dataflow, as well as their composition are supported. In the 

following section we show how the formalism for data type modeling and the composition of asynchronous and 

synchronous dataflow are done in MILAN. Parametric dataflow, constraint representation and the other related 

formalism are integrated into the baseline dataflow language utilizing metamodel composition in a similar manner. 

3.1 Dataflow 

A dataflow graph consists of a set of compute nodes and directed links connecting them representing the 

flow of data. A flat graph representation does not scale well for complex systems, so we extended the basic 

methodology with hierarchy. We also added the capability to capture explicit design or implementation alternatives. 

Figure 2 shows the metamodel of the basic MILAN dataflow modeling language using UML class diagram 

notation. 

Component and CompoundBase are abstract base classes that help capture common characteristics of the 

three main concrete dataflow classes: Primitive, Compound and Alternative. Compounds are the composite 

dataflow nodes; they contain dataflow graphs themselves. Alternatives contain other dataflow components, but they 

represent alternative designs or implementations for the given functionality. Only one of them will be chosen for 

system instantiation. 

Primitives are the leaf nodes in the hierarchy. They have scripts associated with them representing their 

implementation. A script is a function written in a traditional programming language such as C, Java or Matlab. 

Notice that Compounds and Alternatives can also have scripts since it is the Component class that contains the 



ScriptBase abstract base class. (The little curved arrow in the lower left corner of ScriptBase indicates that it is a 

class proxy, i.e. a class that is defined elsewhere in the metamodels. In this case, ScriptBase has several concrete 

subclasses, one for each programming language supported. They are specified in a different metamodel sheet.) 

Compounds and Alternatives having scripts support one form of multi-granular simulation. When a certain 

subsystem does not need to be simulated in its entirety, a simple script can substitute a whole subtree of the system.  

 

 

Figure 2 Hierarchical dataflow language with alternatives 

Ports capture the input and output interfaces of components. Compounds contain DFConn connections that 

are associations between ports representing the flow of data. Notice that connecting an output port of a Primitive to 

an output port of another Primitive does not make sense, yet the metamodel allows it. On the other hand, notice that 

because of the hierarchy it is not true that the only kind of dataflow connection needed is one connecting output 

ports to input ports. For instance, each input port of Compounds must be connected to at least one input port of a 

contained component. The modeling approach we selected allows the generic Port to Port dataflow connection in 

UML and uses a set of OCL constraints to specify the precise static semantics of it, i.e. the well-formedness rules of 

models containing dataflow connections. For example, the constraint 

connections("DFConn")->forAll(c | 

      c.source.kind = c.destination.kind implies 

         c.src.parent <> c.dst.parent) 



is attached to Compounds. It specifies that no dataflow connection may connect two ports of the same kind (output 

or input) of the same component.  

Finally, Alternatives contain AltConn connections that describe how the Ports of the given Alternative need 

to be mapped to the Ports of each of its contained components. 

3.2 Synchronous and Asynchronous Dataflow 

There is extensive literature on various dataflow representations. At the two ends of the spectrum are 

synchronous and asynchronous dataflow. With synchronous dataflow, the exact number of data tokens produced 

and consumed at all input and output ports of every node is fixed and known. Consequently, all valid synchronous 

dataflow graphs have static schedules [Lee and Messerschmidt 1987]. However, the expressive power of the 

synchronous dataflow graph model is limited; not all systems can be described with it. The asynchronous dataflow 

model has no such limitation. The number of tokens produced and consumed is not known until runtime and can 

vary over time. Hence, asynchronous dataflow graphs can only be scheduled dynamically at runtime causing some 

overhead. 

There have been many extended dataflow models proposed [Bhattacharya et al. 2000]. Most of them are 

more general than the basic synchronous dataflow, but are still statically schedulable. However, none of these 

solutions has been widely adopted. Instead of choosing one of them, we decided to support the two basic solutions 

both with precisely defined interaction semantics (described later). 

MILAN has separate metamodels for the synchronous and the asynchronous dataflow languages. They both 

look almost identical to the one shown in Figure 2. The only difference between the two from a syntactical 

perspective is that synchronous input and output ports have token attributes specifying the number of data tokens 

consumed and produced respectively, while asynchronous ones do not. Since there is only a small difference 

between the two metamodels, we use inheritance; the synchronous dataflow metamodel as a whole is inherited from 

the asynchronous dataflow metamodel. A single new attribute, the token, is added to the synchronous port 

metamodel. Not only do we reuse the whole asynchronous dataflow metamodel avoiding duplication of effort, but 

we also ensure consistency. Any subsequent changes to it automatically propagate to the synchronous dataflow 

metamodel.  This is a good example for metamodel composition at the macro level.  



MILAN also allows composing asynchronous and synchronous dataflow graphs together according to the 

rules captured in the metamodel shown in Figure 3. Note the use of class proxies that refer to existing classes 

defined in different metamodel sheets. This is the preferred way of doing metamodel composition in GME. The 

original metamodels are unchanged and a new metamodel sheet is introduced where the original concepts from 

multiple metamodels are referred to by class proxies. New concepts are introduced here, as well as new associations 

that compose the metamodels together. For the composition in Figure 3, it is done the following way. 

 

 

Figure 3 Asynchronous and synchronous dataflow composition 

It is allowed for an asynchronous dataflow graph (ACompoundBase, i.e. Compound or Alternative) to 

contain a synchronous Component (SyncComponent), i.e. a subgraph (refer to Figure 2). Similarly, a synchronous 

dataflow Alternative (SyncAlternative) can contain an asynchronous component (AsyncComponent). The ports of 

the synchronous alternative have the number of tokens specified. These ports are then mapped to the appropriate 

ports of the asynchronous component. Having the port mapping information is the reason that it is only 

synchronous Alternatives that can contain asynchronous components. Otherwise, no token information would be 

available. In order to be able to connect the synchronous and asynchronous components in a composed dataflow 

graph, two new kinds of connections are also introduced in Figure 3 (A_to_S_ALT and APort_to_SPort). 

In addition to the syntactical definitions, the composition of synchronous and asynchronous dataflow 

requires a careful definition of dynamic semantics. A synchronous component embedded in an asynchronous model 



has its own static schedule, so it behaves just as a single node would from the containing asynchronous graph’s 

scheduler’s point of view. However, it needs to be scheduled when all of its inputs have at least the number of 

token specified. (It can have more since it will just leave the surplus for the next scheduling round.) To ensure this, 

an asynchronous “wrapper” is generated around the synchronous component of the model.  This will obtain the 

necessary input data and call the synchronous script whenever enough data is available at the inputs. It is also the 

wrapper’s responsibility to pump the output data into the dataflow using the appropriate API calls of the 

asynchronous runtime system. 

The other case, a synchronous dataflow model containing an asynchronous component, is more involved.  

The boundary conditions of the contained asynchronous component are specified by the synchronous Alternative 

container and its port mappings. The contained asynchronous component needs to have its own scheduler.  It is its 

responsibility to satisfy the boundary conditions, i.e. that it consumes and produces exactly the number of tokens. 

The static schedule of the synchronous dataflow graph contains the appropriate calls the asynchronous component’s 

scheduler that, in turn, runs the graph until it produces the appropriate number of output tokens. The strict 

requirements of the boundary conditions can be relaxed somewhat. It is enough to consume no more tokens than 

what is specified on the input and on the output side, at least the specified number of tokens needs to be produced. 

However, the asynchronous scheduler itself needs to implement the buffering. Furthermore, the average number of 

tokens consumed and produced over a longer period needs to equal to the boundary conditions, to ensure that no 

buffer overruns or underruns occur. It is the user’s responsibility to satisfy these requirements when designing the 

asynchronous subsystem. 

Hierarchical composition of different models of computation (MOC) has been extensively studied in the 

Ptolemy project [Davis et al. 2001]. Ptolemy allows mixing MOC-s freely, even though some such heterogeneous 

models may be semantically incorrect. MIC, as illustrated by MILAN, takes a more conservative approach. 

Composition is controlled by precise rules captured in the metamodels. These define the syntax and static semantics 

of the composite modeling language. Dynamic semantics are implemented similarly in both systems. Ptolemy uses 

directors, while MIC employs model interpreters; both are software components written in a traditional 

programming language. 



3.3 Data types 

Data type models in MILAN are used for several purposes. First of all, to accurately simulate communication 

performance, the amount of data exchanged needs to be captured. Furthermore, as data type models are attached to 

dataflow components, or more precisely to their input and output ports, they define the interface of those 

components. When the components are attached using dataflow connections, their interfaces are checked to ensure 

that only compatible components are connected. Finally, the data type models are also used to generate the 

corresponding definitions in the target programming language ensuring consistency. 

The MILAN data type modeling language allows the specification of both simple and composite types. 

Simple types, such as floats and integers, specify their representation size, i.e. the number of bits used. Composite 

types can contain simple types and other composite types. Attributes of the fields specify extra information such as 

array size or signed/unsigned type. All data types supported by the C programming language can be modeled in 

MILAN. Preexisting data types, specified in a DSP library for example, can also be modeled. Their name and size 

in bytes are the only information MILAN requires. 

To describe the entire type system of a given application, all the necessary data types and their relations need 

to be modeled. If a given simple type can be converted to another without loss of precision (or with a loss of 

precision that is acceptable for the given application), they need to be connected with a directed connection. If a 

given simple or composite type can be converted to another with a conversion function, then they need to be 

connected together through a converter model that specifies the conversion function in the target programming 

languages. This way, the data type models form a directed, possibly disconnected, graph. A directed path from a 

node to another one means that there is a valid conversion from the source data type to the destination one. The 

model interpreters when parsing the dataflow graph of the application insert the necessary conversion functions 

automatically. Furthermore, correct typing is enforced during model building time. This is accomplished by a set of 

constraints that only allow connecting ports whose types are compatible. 

The Ptolemy system employs a similar technique [Lee and Xiong 2000]. They define a type lattice to capture 

what simple types can be losslessly converted to another. Our approach allows composite types as well. 

Furthermore, we allow the insertion of explicit converters to provide user-defined, application-specific type 

conversions. 



The synchronous and asynchronous dataflow and the data type modeling languages are composed together 

according to the metamodel in Figure 4. The only new concept is the TypeConnection connection between dataflow 

Ports and the TypeRefBase abstract base class. Both this connection and the TypeRefBase itself can be inserted into 

both synchronous and asynchronous components. TypeRefBase represents a reference to data type models defined 

elsewhere in the MILAN application models. TypeConnection assigns the referred type to the given port. OCL 

constraints ensure that every port has exactly one type specification and that dataflow connections are only allowed 

between ports having compatible data types. 

 

 

Figure 4 Composing data typing with the dataflow languages 

3.4 Multiple-aspect modeling 

Notice that the MILAN application modeling language is quite complex. However, the dataflow, data type 

specification and parameter modeling are largely orthogonal concepts. Therefore, they can be separated into three 

different aspects. In the Dataflow aspect, only Components, Ports, dataflow- and alternative connections are shown. 

In the Type aspect, Ports, Parameters, ParameterPorts and data type references are displayed. Finally, Components, 

Parameters, ParameterPorts and their corresponding connections are visible in the Parameter aspect. Multiple-

aspect modeling is a natural way to implement separation of concerns. 

3.5 Resource and Mapping Models 

The resource modeling language allows the description of the target hardware architecture at a coarse 

granularity in order to allow the configuration of lower level simulators such as SimpleScalar [Burger and Austin 

1997]. The resource models are also utilized by the High-Level Performance Estimator [Mohanty et al. 2002]. The 



main concepts include compute nodes (processor cores, FPGAs, ASICs), memory (cache, main memory) and 

interconnects. Each of these has several attributes capturing performance characteristics. Resource modeling is 

beyond the scope of this paper. More details can be found in [Mohanty et al. 2002]. 

The dataflow needs to be mapped to the available hardware resources. In MILAN this is modeled using 

references; each dataflow component can contain one or more references to compute nodes. Multiple references 

imply a choice extending the design space of the application. The mapping model is important since this is where 

the performance attributes of individual dataflow nodes, such as worst case execution time, power consumption, 

throughput, etc., need to be captured. The justification for this is simple; a given algorithm will have significantly 

different performance running on a 100MHz DSP, a 1.5GHz RISC processor or an ASIC, for example. 

4 Simulation Integration 

MILAN simulations fall primarily into four categories: design space exploration tools, functional 

simulations, high-level performance and power estimations, cycle accurate performance and power simulations.  

Functional simulators are used to verify the correctness of the modeled system (typically without regard to the 

resources used) and its algorithms.  High-level estimators are used to quickly estimate performance, energy, and 

power characteristics of the modeled system. They use the results provided by cycle accurate and power aware 

simulations of subsystems in calculating the system level performance and power estimates.  

4.1 Design space exploration and pruning 

Given the flexibility in defining design alternatives and configuration parameters, the design spaces for the 

systems represented can be extremely large.  However, it is expected that only a subset of these designs will satisfy 

all the constraints and, hence, meet the design goals. Thus, a design space exploration method is desired to be able 

to rapidly navigate, and prune this large design space to select feasible design alternatives, and configuration 

parameters, that satisfy the user-defined constraints.  Given the size of the design space, and the complexity of the 

analysis, a powerful, scalable analytical method was developed previously [Bapty et al. 2000].  We are extending 

this basic approach to add support for parametric constraints, and exploration in the parameter space.  Next we give 

a brief overview of the Ordered Binary Decision Diagram-based (OBDD) [Bryant 1986, Bryant 1992] design space 

exploration. 



The design space exploration method relies on a symbolic Boolean representation of the space.  A binary 

encoding is defined over the member elements of this space. Given this binary encoding every element can be 

represented with a Boolean function. The entire space can be symbolically represented as a conjunction over the 

Boolean representations of individual elements. OBDD-s represent Boolean functions as directed acyclic graphs in 

a memory efficient format. The operations over these functions are implemented as graph algorithms, thus 

rendering “manipulation” of the space fast and efficient. Logical (compositional) constraints can be solved with 

ease with this symbolic Boolean representation.  The logical relation expressed in the constraint over the elements 

of the design space is simply transformed to a logical relation between the Boolean representations of these 

elements. The resultant expression represents symbolically the “constrained” design space.  Performance 

constraints can also be solved, however the mapping is non-trivial [Neema 2001]. 

The power of this approach is the fact that it obviates the need for exhaustive combinatorial enumeration of 

all design choices. The entire design space can be symbolically evaluated without enumerating individual design 

points, thus rendering the approach highly scalable and desirable for exploring large design spaces.  In general, the 

approach scales well, however, in large design spaces with many constraints simultaneously applied an exponential 

explosion of the OBDD can occur.  To address this problem, hierarchical constraint processing is supported.  The 

constraint processing is done hierarchically with constraints scoped to a particular level; i.e. constraints are applied 

to sub-spaces first, pruning them to the extent possible and then progressing upwards in the hierarchy.  This 

technique is very effective when there are a large number of constraints with a limited scope. 

The design space exploration step, progresses by iteratively applying the constraints.  Each constraint 

application results in a pruning of the space.  Moreover, the pruned design space contains only the designs that are 

“correct” with respect to the applied constraints.  When the initial design space is reduced to a manageable number 

of designs, the designer can progress to the next step of design simulation.  Notice that some conflicting constraints 

may result in the elimination of the design space altogether, i.e. no design satisfies all the constraints 

simultaneously.  In this case, some of the constraints must be relaxed. 

4.2 Simulators 

Functional simulators that are used with MILAN include using MATLAB as a simulation engine [Eames 

2001] and SystemC [Ruf et al. 2001].  MATLAB or SystemC code can be generated from a selected system 



configuration to allow verification of the implemented algorithms. Integration of multiple functional simulators 

allows the user to utilize her language of choice when verifying the algorithms. 

HiPerE [Mohanty et al. 2002] is a high level performance estimator developed along with and integrated into 

MILAN.  HiPerE is used to provide rapid estimation of performance, power, and energy for a given system 

configuration.  The primary purpose to HiPerE is to allow a user to rapidly estimate system performance, power, 

and energy without the computational time required by a cycle accurate simulation.  HiPerE can utilize results from 

more accurate simulators of subsystems through the feedback mechanism discussed in section 4.4.  As there is a 

tradeoff between accuracy of the simulation and the time required to perform the simulation, HiPerE is not intended 

as a substitute for cycle accurate simulations.   

SimpleScalar [Burger and Austin 1997] is one of the cycle accurate simulators integrated into MILAN. 

SimpleScalar supports superscalar architectures and produces detailed performance data. Since SimpleScalar takes 

straight C code as its input, the generated code can also be compiled and natively executed. In that sense, driving 

SimpleScalar is very similar to system synthesis (refer to Figure 1). Due to the time complexity of running a 

simulation, SimpleScalar is primarily used to accurately simulate a subsystem and feed these results back into the 

models for use by high-level simulations. 

One of the power and energy simulators integrated into MILAN is PowerAnalyzer [Shiasi and Grunwald 

2000].  It is an extension of SimpleScalar targeted at power and energy usage estimation.  

4.3 Model translation 

Dynamic model semantics are assigned to the models by model interpreters. They are effectively translators 

that map the design models to executable models that are, in turn, executed by the different simulation engines or 

runtime systems. Model interpreters traverse the application and resource models and generate the information 

necessary to drive the individual simulators or runtime kernels. The information takes many forms: source code, 

configuration files, static schedules, etc.  

Several different types of interpretation can be performed on each set of models.  A full simulation takes a 

full system specification and produces a simulation. A multi-granular simulation allows the user to specify high-

level functions for selected Compound or Alternative models.  These high-level functions are then deployed in the 

generated simulation instead of executing the details of the subsystem models. This scenario is useful when a full 



system simulation is desired, but there are some selected subsystems that are of particular interest. The rest of the 

components can be substituted so that they fulfill their responsibility in consuming and producing realistic data, but 

do not waste valuable simulation resources. Isolated simulation is a similar concept. When the user wants to 

simulate only a single subsystem, the selected sub-graph is treated in a similar manner to a full simulation, but any 

nodes feeding data to or receiving data from the sub-graph are simulated using a simulation script.  This script acts 

as a data producer or consumer and should be lightweight in complexity with respect to the rest of the model since 

it will be part of the simulation. The simulation scripts are simulated along with the sub-graph of the model that is 

of interest.   

Interpreters typically produce native code for both asynchronous and synchronous dataflow models as well 

as hardware models.  This generated glue code ensures that the components, whose implementation is provided by 

the user in the form of the scripts, are correctly used. For example, the data type models are used not only to insure 

that dataflow connections are type consistent but also to generate data type definitions in the target language 

ensuring consistency. For synchronous dataflow models, a static schedule is also generated along with the source 

code. 

The hardware application interpreter interprets the hardware application models to generate hardware 

description code. Currently, SystemC and VHDL is supported. Since both allow hierarchy, the hardware interpreter 

doesn’t flatten the models. Unlike the dataflow interpreters, it maintains the hierarchy in the generated code. 

Heterogeneous simulation is another form of multi-granular simulation. It allows the concurrent simulation 

of hardware and software, i.e. dataflow. In this case, a dataflow node is generated for each hardware-dataflow 

connection to facilitate communication between the heterogeneous components. Since these nodes use TCP/IP for 

communication, distributed simulation is transparently supported. 

4.4 Feedback of simulation results 

Another type of interpreter MILAN requires is the feedback interpreter.  These interpreters are always 

simulator-specific as they must deal with the simulator output.  They are used to interpret simulation results, 

manipulate the produced data, and insert the required performance, power, and energy estimates back into the 

models in the form of performance attributes of the mapping models (refer to section 3.5).  See Figure 1 to see how 

these interpreters fit into the MILAN architecture.   



Feedback is required to ensure that results from low-level, accurate simulators can be used by the high-level 

performance and power estimators, such as the HiPerE, to perform system level performance, power, and energy 

estimates. By increasing the accuracy of its inputs, HiPerE can provide a more accurate system level estimate.  

Integrating these results into the models and then utilizing them at higher levels of the architecture is referred to as 

Vertical Simulation, another form of multi-granular simulation.  It provides accurate system level performance 

estimates without requiring detailed and time consuming low-level simulation of the entire system. 

 

5 Example Application 

Embedded image processing systems and specifically, embedded missile Automatic Target Recognition 

(ATR) systems face many challenges due to extremely large computational requirements and physical, power, and 

environmental constraints [Nichols and Neema 1999]. Thus, ATR is a good example to demonstrate some of the 

capabilities of MILAN.  The ATR algorithm is based on correlation filtering [Mahalanobis et al. 1996]. Figure 5 

shows the signal flow of the ATR algorithm. Each image of the input image stream is sequentially preprocessed 

then transformed into the frequency domain. The copies of this spectral image are then multiplied by the filter 

correlation matrices for multiple classes of targets of interest in parallel. The results for each of the classes are then 

inverse frequency domain transformed to give the correlation surface maps associated with each of the classes. The 

strongest correlation peaks for each image class are compared with the reference classes to yield the closeness 

measures. These measures are used to determine the class for the object in the image associated with the correlation 

peaks. 

Input Image
Stream

Preprocessing 2D FFT Multiply

Class
Filter
Banks

2D IFFT
Class

Distance
Calculation

Class
Determination

Display
Result

Peak
Detection

 

Figure 5: ATR application block diagram 



Typically, the design of a system using the MILAN framework begins with the definition of the application 

models.  In this phase, the user determines the algorithm to be implemented and how to represent the algorithm 

with MILAN.  Given the size of the ATR application and the large number of design choices, both hierarchy and 

alternatives are used extensively in modeling this algorithm.  Figure 6 shows a model of one section of the ATR 

algorithm.  Each of the individual components have implementations specified in Matlab code (for functional 

simulation), and eventually, in C code. 

 

 

Figure 6: Peak detection model of the ATR application 

After completing the application models, the user can employ a functional simulator to ensure the 

application is functionally correct.  Individual modules can be tested using the isolated simulation capabilities of 

MILAN.  In isolated simulation, the user supplies data source and sink scripts for a given model and then utilizes 

the model interpreters to create a functional simulation of only the component being investigated.  This allows the 

user to run a functional simulation on any component, or set of components, in the application models.  The user 

can use the model interpreters to generate a functional simulation of the entire system once the individual 

components are verified.  For the ATR example, MATLAB was used to functionally verify both the individual 

components and the entire application. Figure 7 shows a functional simulation of the ATR. 

After the algorithm has been verified through functional simulation, the next step in the ATR design is 

resource modeling.  In this step the target resources are modeled as per the resource-modeling language.  This 



modeling phase ends with capturing non-functional requirements as constraints both in the application- and the 

resource models.  Application models and resource models are mapped in a Configuration model that is used to 

capture which application sections will be executed on which resources.   

Once the application mapping has been examined, the user needs to implement the individual components 

in the required languages.  If a component can be realized on many different hardware platforms, several 

implementations may be required.  However, users can utilize the library features of GME to reuse existing 

application and resource models.  Once an application model has been functionally verified, it may be reused in 

other projects, eliminating the need for re-verification of that model.   

 

 

Figure 7: Simulation of ATR 

The design space exploration (DSE) tool can be used to evaluate the user-specified constraints and to prune 

the design space, resulting in a few design configurations.  The overall design space of the ATR application 

included 160 possible configurations.  After DSE was applied, the design space shrank to only 2 viable options (due 

to an iterative process of fine-tuning both models and constraints).  Note also, that DSE has been used on systems 

with large (10,000+) configuration spaces.  At this point in the design cycle, the user can employ HiPerE for 

performing system level estimation for the valid system configurations.  Both DSE and HiPerE make use of the low 

level performance and power parameters in calculating system level performance and power properties – their 

results are only as accurate as the individual performance and power parameters supplied. 

Once the configurations are selected, the user can progress to detailed simulation or to system synthesis.  

(note that for system synthesis, the application software, VHDL code, and target-runtime specific configuration 

scripts are generated). This requires the invocation of one of many simulation interpreters, based on the desired 



simulation target.  The output of the simulation interpreter is fed to the target simulator.  The ATR application was 

executed under SimpleScalar to discover more accurate performance characteristics.  Since the ATR was targeted 

for a MIPS architecture and no instrumented hardware was available, the SimpleScalar system simulation was used 

to verify HiPerE’s results.  Table 1 shows the results from the ATR system design.  Also included in this table are 

the individual latencies of several of the ATR components from cycle accurate simulation with SimpleScalar. 

 

 C67 hardware HiPerE SimpleScalar 
(MIPS @ 600MHz) 

% 
Error 

Image_cvt 7 ms  1142202 cycles  
2DFFT 20 ms  5034249 cycles  
2DIFFT 20 ms  5428790 cycles  
Calc_psr 17 ms  2794058 cycles  
Calc_dist 28 ms  1342254 cycles  
Mulitply 7 ms  3549552 cycles  

Calc_mean_std 2 ms  2150194 cycles  
     

ATR 
Application 

 6.8768 E7 cycles 7.2206 E7 cycles 5.0 

ATR 
Application 

133.9 ms 102.3 ms  30.9 

Table 1: MILAN ATR Simulation Results 

 

MILAN was also used for system analysis and synthesis of the ATR application on a multiprocessor TI 

C67 DSP system.  Table 1 also contains performance information about the ATR application and components 

targeted for the C67 platform.  Individual components and the full application were developed with MILAN and 

executed on the hardware.  HiPerE was used to estimate the overall system performance based upon the component 

latencies.   

These experiments were preformed to evaluate the MILAN approach and components for system design.  

The relatively large error between HiPerE and the hardware for the multiprocessor system can be attributed to the 

network latencies not being included in the component latency values.  Further work is planned so that HiPerE can 

include the message passing overhead in system level estimation.  This should eliminate much of the error present 

in the current experiment.   



6 Related Work 

Several different research topics deal with individual areas addressed by MILAN.  It is important to note 

that while others are performing research on synthesis of embedded systems, co-design environments and tools, 

design space exploration, and simulation tools, none of these efforts have the same goals as MILAN.  MILAN aims 

to develop an open, extensible, simulation integration environment.  By making the tools infrastucture user 

extensible, MILAN has the ability to integrate other researcher’s results into the environment, thereby extending its 

capability. 

At first glance, MILAN application models look similar to Simulink models.  Simulink 

(http://www.mathworks.com) is a tool-suite included in MATLAB for graphical system modeling and functional 

simulation.  However, with MILAN the user can construct models using a richer set of modeling capabilities.  

Simulink models cannot be used to represent asynchronous system behavior or the hardware resources available for 

system implementation.  MILAN does make use of some of the same concepts as Simulink, as it is a well 

understood and widely used graphical modeling formalism. 

Ptolemy [Davis 2001] is a toolset to provide for the modeling and simulation of embedded systems.  It 

makes use of several “models of computation” and allows the user to compose systems from models constructed 

using the various supported modeling formalism.  Ptolemy does not focus on the performance or power 

characteristics of the modeled systems, which is a major focus of MILAN.  The use of “domain heterogeneous” 

models is a thrust in Ptolemy, where MILAN models are domain specific.  Ptolemy utilizes many different 

embedded system modeling technologies such as dataflow, discrete-event, process networks, synchronous/reactive, 

and finite-state machine to represent embedded systems.  The MILAN data flow modeling language is similar to 

Ptolemy’s with the exception that MILAN supports both asynchronous, synchronous, and mixed asynchronous and 

synchronous data flow models. 

Polis [Blarin 1997] provides a hardware software co-design environment for embedded micro-controllers.  

The design environment also supports the synthesis of the modeled systems.  A single modeling formalism, the co-

design finite state machine model [Chiodo 1993], is used for designing both the hardware, software, and 

partitioning of the resulting system in the toolset.  By supporting multiple modeling formalisms and multiple 

simulation engines, MILAN potentially appeals to a wider set of users.   



There are several different ongoing research projects focusing on design space exploration.  One of these 

efforts focuses on utilizing genetic algorithms [Givargis 2002] to determining the optimal parameter settings for the 

components of a SoC hardware.  In the future, MILAN may make use of similar techniques, but currently 

parameter optimization is not a goal of MILAN.  Other techniques focus on topics ranging from hardware and 

software partitioning in embedded systems [Azzedine 2002] to utilizing simulation environments for design space 

exploration [Middha 2002] of VLIW processors.  The MILAN design space exploration focus is on allowing the 

user to model a large set of possible design alternatives and to then apply user-supplied constraints to ensure these 

constraints are met.  In MILAN, design space exploration is the automatic elimination of system configurations that 

will not meet the power or performance constraints from consideration.      

Another area of research that MILAN is often compared to involves co-design environments and tools.  Co-

design environments are utilized to develop and synthesize hardware and software systems in synergy.  In MILAN 

simulation engines are utilized to evaluate design options for further study and implementation.  Hardware systems 

are not designed, but are rather only represented.  While system synthesis is a feature of MILAN, only the system 

software components and VHDL code segments (for functional simulation) are generated.  Once the capability is 

available with the SystemC tools, we will be able to synthesize VHDL for implementation using the SystemC 

models.  MILAN is primarily an extensible simulation integration platform and not a co-design environment. 

[Cortes 1999] provides an excellent survey of co-design modeling techniques and a comparison of their 

various features and advantages.  While many of the described modeling languages are not supported in MILAN, it 

is important to note the significance of dataflow graphs in their survey. Due to the extensibility of MILAN, other 

modeling languages could be integrated in the future. 

 

7 Conclusions 

The framework described in this paper attempts to fulfill an important void in the area of embedded 

systems design – that of simulation integration.  There is a large body of research in developing simulators for 

several properties of interest for embedded systems.  Most of these are architecture specific, domain-specific, have 

different levels of simulation granularity, have their own proprietary interfaces, and specific input/output formats.  



The challenge arises when there is a desire to simulate the same target system with different simulators.   The 

system designer is faced with issues of maintaining consistency, when presenting the same system design to 

different simulators in their specific formats, interpreting the results of the simulator and incorporating those back 

in the design. 

Our research demonstrates the potential of Model-Integrated Computing in providing a unified 

environment for multi-granular simulation of embedded systems.  Driving different simulators using automated 

model interpreters from the same set of models representing a system design, helps maintain consistency and 

improves design flexibility.  Deriving simulations at multiple-levels of granularity helps the system designer in 

performing rapid trade-off decisions and helps elevate time-to-market pressures.  Further, there is a potential of 

automatically synthesizing systems from the models. 

Specifically, in this paper we have attempted to illustrate many issues in computer automated multi-

language modeling, using the Model-based Integrated Simulation Framework (MILAN) project as a vehicle.  We 

illustrated the use of UML class diagram-based metamodels along with OCL constraints to define the syntax and 

static semantics of a highly domain-specific modeling language. Metamodel composition techniques were used to 

combine different modeling formalism, such as synchronous and asynchronous dataflow, data type systems, 

hardware architecture and behavior modeling. We also demonstrated separation of concerns with multiple aspects, 

and how it could be utilized effectively in managing design complexity.  

The framework presented here has been applied to several small-to-medium design projects with significant 

success.  While metrics have not yet been collected, experience indicates improved designer productivity, and 

higher design efficiency.  As a final concluding note, significant efforts are required to transition the framework 

from a research prototype to a commercial quality, widely accepted design and simulation framework. 
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