
In the Proceedings of the IEEE Aerospace 2000 Conference, Big Sky, MT, March 2000

Synthesis of Self-Adaptive Software1

Akos Ledeczi, Gabor Karsai, Ted Bapty
Institute for Software Integrated Systems

Vanderbilt University, Nashville, TN 37235
615-343-8307

{akos,gabor,bapty}@isis.vanderbilt.edu

1 0-7803-5846-5/00/$10.00 © 2000 IEEE

Abstract—Embedded applications are constantly being
pushed toward achieving autonomy, allowing them to
function reliably in all circumstances and under extreme
design constraints. Our approach to embedded systems
introduces a feedback loop characterizing adaptive systems:
the adaptation mechanism monitors system performance and
changes the structure accordingly to optimize performance.
These self-adaptive systems can be designed and
implemented using Model-Integrated Computing. To
represent dynamic software architectures, the system is
modeled in a generative manner. Here, the components of
the architecture are prepared, but their number and
connectivity patterns are not fully defined at design time.
Instead, an algorithmic description and architectural
parameters are provided that specify how the architecture
could be generated "on-the-fly". These design-time models
are then embedded in the run-time system along with
generators that configure/reconfigure the system by
changing certain architectural parameters.

 TABLE OF CONTENTS

 1. INTRODUCTION
 2. MODEL-INTEGRATED COMPUTING
 3. GENERATIVE MODELING
 4. SYSTEM ARCHITECTURE
 5. EXAMPLE SYSTEM
 6. CONCLUSION

1. INTRODUCTION

Embedded applications are constantly being pushed toward
achieving autonomy, allowing them to function in all
circumstances and under extreme design constraints.
Designing systems to meet these changing requirements is
an increasingly difficult problem. A common thread in many
of these systems is the unpredictable number and kind of
events emerging from the changing operating environment
and equipment problems that impact the required software
architecture fundamentally. Current software technology is
not suitable to meet these challenges. The state of the art is
to prepare the system for all foreseeable changes in
operation modes and to verify the software exhaustively.
The simplest method to implement this limited adaptability
in software is to use alternative control paths and runtime
decisions. However, this solution quickly leads to an
unmanageable software structure that is impossible to design
and debug. An additional, but equally serious problem is

that preparing the software for all possible circumstances
necessarily leads to over-design, performance compromises
and design errors. The missing component is the presence of
a feedback loop characterizing adaptive systems: the
adaptation mechanism monitors system performance and
changes the structure accordingly to optimize performance.

To address these issues we have applied Model-Integrated
Computing (MIC) to create self-adaptive software systems.
In MIC, domain specific, multiple-view models represent
the computer application, its environment and their
relationships. Model interpreters translate the models into
the input languages of static and dynamic analysis tools, and
application-specific model interpreters synthesize and re-
synthesize software applications running in a real-time,
dynamic, macro-dataflow execution environment.

2. MODEL-INTEGRATED COMPUTING

Model-Integrated Computing (MIC) employs domain-
specific models to represent the software, its environment,
and their relationship. With Model-Integrated Program
Synthesis (MIPS), these models are then used to
automatically synthesize the embedded applications and
generate inputs to COTS analysis tools. This approach
speeds up the design cycle, facilitates the evolution of the
application and helps system maintenance, dramatically
reducing costs during the entire lifecycle of the system.

Creating domain-specific visual model building, constraint
management, and automatic program synthesis components
for a MIPS environment for each new domain would be
cost-prohibitive for most domains. Applying a generic
environment with generic modeling concepts and
components would eliminate one of the biggest advantages
of MIC — the dedicated support for widely different
application domains. An alternative solution is to use a
configurable environment that makes it possible to
customize the MIPS components for a given domain.

The Multigraph Architecture (MGA) is a toolkit for creating
domain-specific MIPS environments. The MGA is
illustrated in Figure 1. The metaprogramming interface is
used to specify the modeling paradigm of the application
domain. The modeling paradigm is the modeling language
of the domain specifying the objects and their relationships.
In addition to syntactic rules, semantic information can also

In the Proceedings of the IEEE Aerospace 2000 Conference, Big Sky, MT, March 2000

be described as a set of constraints. The Unified Modeling
Language (UML) and the Object Constraint Language
(OCL), respectively, are used for these purposes in the
MGA. These specifications, called metamodels, are used to
automatically generate the MIPS environment for the
domain. An interesting aspect of this approach is that a
MIPS environment itself is used to build the metamodels
[1].

Model
Interpretation

MIPS Environment

Application
DomainApplication

Evolution
Environment

Evolution

Meta-Level
Translation

Metaprogramming
Interface

App.
1

App.
3

App.
2

Model Builder

Model Interpreters

Models

Formal Specifications

Figure 1: The Multigraph Architecture

The generated domain-specific MIPS environment is used to
build domain models that are stored in a model database.
These models are used to automatically generate the
applications or to synthesize input to different COTS
analysis tools. This translation process is called model
interpretation.

This approach and the same software toolset have been used
to create and deploy large-scale systems that are in every-
day use in widely different engineering domains. The Saturn
Site Production System (SSPF) is a large distributed
production monitoring system used by the Saturn
Corporation in car manufacturing [6]. Other systems include
a fault detection isolation and recovery system used by
Boeing and NASA on the International Space Station [2], a
process monitoring toolset used by DuPont [4], and a safety
and reliability analysis tool used by Sandia National Labs
[3].

3. GENERATIVE MODELING

In "traditional" Model-Integrated Computing the models are
created at design time. They describe a particular solution to
a particular problem in the given engineering domain. Once
ready, the models are translated into an application. If the
application needs to change, the models are changed and the
application is regenerated. For self-adaptive systems,
however, a different approach needs to be taken, because the
structure is inherently dynamic — adaptation occurs at the
architectural level at run-time.

The need for modeling dynamic architectures is related to

the complexity of the system being modeled. In a simplistic
approach, one can pre-design all the possible architectures
of a system, model all the architectures discovered, assign
them to predefined situations, and switch between these
architectures as the system evolves. A more sophisticated
approach is to structure the architecture representation into a
hierarchy with alternatives on each level. In a hierarchically
organized architecture description, components contain
other components that specify the internal architecture of the
parent component in terms of the lower level components
and their connectivity. This representation technique scales
much better, but still requires that the configuration
alternatives be explicitly defined at design time.

A different approach is to represent dynamic architectures in
a generative manner. Here, the components of the
architecture are prepared, but their number and connectivity
patterns are not fully defined at design time. Instead, a
generative description is provided which specifies how the
architecture could be generated "on-the-fly". A generative
architecture specification is similar to the generate statement
used in VHDL: it is essentially a program that, when
executed, generates an architecture by instantiating
components and connecting them together.

The generative description is especially powerful when it is
combined with architectural parameters and hierarchical
decomposition. In a component one can generatively
represent an architecture, and the generation "algorithm" can
receive architectural parameters from the current or higher
levels of the hierarchy. These parameters influence the
architectural choices made (e.g. how many components to
use, how they are connected, etc.), but might also be
propagated downward in the hierarchy to components at
lower levels. There the process is repeated: architectural
choices are made, components are instantiated and
connected, and possibly newly calculated parameters are
passed down further. Thus, with very few generative
constructs one can represent a wide variety of architectures
that would be very hard, if not impossible, to pre-enumerate.

Naturally, not every architectural alternative is viable in all
circumstances. The generative description allows for
representing architectural constraints that constrain the
selection process, thus limiting the search needed while
forcing the process to obey other requirements.

As a simple example for generative modeling, consider a
data parallel algorithm, where the data set needs to be split n
ways and the results need to be merged. If n can change
during runtime, instead of modeling the structure for every
possible instance of n, we can explicitly model the
parameter n and create a generator that does the split and
merge operation (Figure 2). (Even if the models do not
change at runtime, but they do change frequently at design
time, this generative technique provides a convenient
approach to modeling.)

In the Proceedings of the IEEE Aerospace 2000 Conference, Big Sky, MT, March 2000

Convolution
Gamma

Correction Thresholding

ConvolutionSplit Merge

Convolution

Convolution

Split
And

Merge n = 3

Thresholding
Gamma

Correction

Figure 2: Generative Modeling

4. SYSTEM ARCHITECTURE

Most adaptive systems consist of two parts: the main
component that performs what the system is designed to do
and that can be adapted by the second component, the
adaptor. This adaptor receives a subset of the inputs and
outputs of the system and evaluates the performance of the
system, then adapts it if necessary. This architecture is
shown in Figure 3 with dashed lines. The detailed diagram
inside the adaptor component depicts the runtime
architecture of model-integrated self-adaptive systems.

Active Models

Evaluator

Runtime
System

Embedded
Interpreter

Embedded
Models

Parameters

Input Output

Constraint
CheckerConstraints

*

*

*

�ਸ਼

�'&��;56'/

Figure 3: System Architecture

At design time, a set of generative models is created
corresponding to a problem in the domain of distributed
signal processing/instrumentation. From these models, a
model interpreter generates (1) a set of architecture
parameters, (2) a hierarchy of active models, and (3) a set of
architecture constraints (the generated components are
marked with asterisks in Figure 3). What are these active
models?

Active models are the runtime equivalent of generative
models. They form a hierarchical set of components and
generators. Generators can create or delete components and

connections between components. Generator algorithms use
the architectural parameters that are defined at design time
but can be modified at runtime by the evaluator. Embedded
models are generated from and by the active models when a
new instantiation of the architectural parameters is available.
Embedded models represent a fully defined system that can
be interpreted by the embedded interpreter. The embedded
interpreter generates and/or reconfigures the runtime
objects.

Constraints are defined at design time in OCL. Since they
need to constrain the system architecture, they are expressed
in terms of the embedded models, i.e. the models generated
from the active (i.e. generative) models using a particular
instantiation of the architecture parameters. While the set of
active models together with the instantiation of the
architectural parameters is an equivalent specification of the
system, it would be difficult, if not theoretically impossible,
to evaluate constraints specified in terms of generator
algorithms. Therefore, the constraint evaluator works with
the embedded models that were produced by the generators.

Runtime Support

Runtime support is provided by the Multigraph Kernel
(MGK) [8]. The computational model supported by the
MGK is a dynamic macro-dataflow model. It is macro-
dataflow because the activities performed at the nodes of the
dataflow control graph are at the function (procedure,
subroutine) complexity level. It is dynamic because dataflow
control graphs can be built and modified at run time and
propagated data can be inserted, extracted or inspected
concurrently with dataflow execution.

Dataflow graphs have two main components: nodes and
connections. Dataflow nodes are defined by the function,
called script, that is executed whenever the node is
activated, and by their input-output ports. The node I/O
ports are linked together with dataflow connections. Every
input (output) port can have several connections going to
(starting from) it. The dataflow nodes’ execution is
controlled by their scheduling attributes, i.e. their triggering
mode and priority. The triggering mode determines when a
node is considered to be ready for execution. It can be either
"ifany" (only a single input is necessary on any of the input
ports), "ifall" (all inputs are necessary) or custom (user
defined combinations of available input data subsets). The
status of the output ports does not affect a node’s
schedulability. The execution order of ready nodes is
determined by their priority.
The Multigraph Kernel transparently supports building
dataflow control graphs on distributed parallel architectures.
It accomplishes this using a host mechanism which allows
nodes to be created in remote dataflow processes. Nodes
created in different processes can be connected just as local
nodes, the MGK takes care of all necessary data propagation
whenever necessary.

In the Proceedings of the IEEE Aerospace 2000 Conference, Big Sky, MT, March 2000

Operation

At runtime the system operates as follows. The evaluator
monitors the system. When it decides that adaptation is
needed, the evaluator generates a request for reconfiguration
and calculates a set of relevant architectural parameters.
This information is passed to the active models that perform
the generation of a new, fully-instantiated architecture
model. The architecture model does not have any "free"
parameters, and it satisfies the constraints as specified in the
design-time models. If constraints are not satisfied, a
specified "closest" or "good enough" alternative might be
chosen. If multiple choices are possible, the best (or first
acceptable) choice is selected according to some criteria
(again, as specified in the models).

Next, generators of executable models transform the
architecture models into run-time objects. This
transformation requires careful coordination and
synchronization with the running system and is
accomplished via the supporting run-time system. This two-
stage generation strategy clearly separates architecture
generation (for selecting/generating the "best" architecture
for a situation), and the executable model generation that
performs the changes in the active, running application. The
embeddable active models and generators are built from the
design-time models, without carrying the overhead involved
with the storage of those.

Note that this approach is in sharp contrast with the "pre-
enumerated" approach, where the architectural alternatives
are pre-selected and reconfigured by simply switching from
one to another. In our approach, we capture a
reconfiguration algorithm in the active models that describes
a potentially very large set of configurations.

5. EXAMPLE SYSTEM

These concepts can be readily demonstrated by a simple
adaptive signal analyzer application depicted in Figure 4. In
this application, the adaptable system is a bank of filter
pairs: a simple band filter followed by an adaptive notch
filter. The idea is to have one such pair for each spectral
peak in the input signal. The wider band filter filters out the
other frequencies and the adaptive notch filter zooms in on
the exact spectral peak and effectively measures the
frequency with high accuracy.

The evaluator contains an FFT and a peak detector. They
provide a rough estimation of the frequency spectrum of the
signal. The evaluator adapts the system, so that there is
exactly one filter pair configured for each spectral peak. If
the input signal changes, one of two things can happen. If
the change is just a small migration of peaks, then the notch
filters will adapt themselves accordingly. However, if a new
spectral component appears or an existing disappears, or the
frequency change of an existing peak is significant enough
to show up in the FFT, then the system reconfigures itself by

removing and/or adding filters.

FFT

Notch FilterBand Filter

Notch FilterBand Filter

...

Peak Detector Evaluator

Input

Reconfiguration

Filter Bank

Figure 4: Adaptive Signal Analyzer

This example application has been implemented using the
standard MGA toolset. A simple modeling paradigm has
been defined using the MGA metamodeling environment.
The modeling paradigm is a hierarchical signal flow
representation extended with generative modeling
capabilities. Figure 5 shows the top level metamodel in the
form of a UML class diagram. The diagram captures the
modeling objects and their relationships. The basic signal
flow models are the Processing, Primitive and Compound.
Processing is an abstract base class. Primitives are the basic
computational elements in this paradigm. Compounds can
contain other Processings (i.e. Primitives and Compounds)
creating the hierarchy. Signal objects (InputSignals and
OutputSignals) represent the interfaces of Primitives and
Compounds. Their association, DataflowConn, models the
actual signal flow among components. This is visualized
using connections in the target domain. Visualization
information are part of the metamodels, but are captured in
another aspect, not in the UML class diagram shown.

Additional semantic information is captured in the
metamodels by including explicit constraints (not shown).
Constraints are specified in OCL. In this particular
paradigm, for example, DataflowConn connections are
constrained to avoid connecting outputs to outputs (or inputs
to inputs). Unfortunately, a more detailed description of the
modeling paradigm is beyond the scope of this paper.

In the Proceedings of the IEEE Aerospace 2000 Conference, Big Sky, MT, March 2000

Figure 5 Metamodel of the Modeling Paradigm

Figure 6 Signal Analyzer Models

In the Proceedings of the IEEE Aerospace 2000 Conference, Big Sky, MT, March 2000

Figure 7 Adaptive Signal Analyzer Application

Figure 6 shows the models of the example application in the
top right corner. The basic architecture discussed above has
been extended with some plotting capabilities to
demonstrate the application visually. The bottom window
shows the model of the adaptive filter bank. The
components are not hooked up together, instead they are
connected to the generator SplitAndMerge. Part of the
generator script is shown in the top left corner. Currently, a
C++ API has been defined to serve as the interface to the
models. It makes it possible to create and/or delete models
and connections and to access object attributes. Notice that
the generator is also hooked up to an architectural parameter
called "Order". This is the parameter the evaluator can
modify at runtime to change the structure of the filter bank.

Figure 7 shows the running application. The plots show the
source signal, its spectrum, the output signal of the filter
bank and its spectrum. In the bottom right hand corner, four
pairs of numbers are displayed. They indicate that currently
there are four band/notch filter branches in the filter bank.
The first number is the current frequency of a spectral peak,
while the number in parentheses is the original FFT
estimation of the same peak. The integer (28 in Figure 7) to
the right of these four fields indicates the number of
reconfigurations that have occurred since the application
was started.

6. CONCLUSION

The example application described in the previous section

illustrates the current status of the project. The infrastructure
for generative modeling, active models, embedded models
and interpreters are in place. However, the current runtime
reconfiguration method is simplistic and does not adequately
address transients. Currently, the evaluator component needs
to be hand-crafted for each different application.

On the application side, we are focusing on a more involved
demonstration building reliable distributed systems. The
idea is to model not only the signal flow of the application,
but also the hardware resources and their interconnection,
along with constraints of the assignment of the computation
elements to hardware nodes. A previous effort addressed
these issues without the runtime reconfiguration aspect [9].
Being self-adaptive, the system would detect hardware
failures and reassign the computational components to
functioning hardware nodes. System functions could be
prioritized, so the degradation of system functionality due to
lack of hardware resources could proceed in a pre-planned
order.

ACKNOWLEDGEMENTS

This work was supported by DARPA/ITO agreement No.
F30602-96-2-0227.

REFERENCES

[1] Nordstrom G., Sztipanovits J., Karsai G., Ledeczi, A.:
"Metamodeling - Rapid Design and Evolution of Domain-
Specific Modeling Environments", Proceedings of the IEEE

In the Proceedings of the IEEE Aerospace 2000 Conference, Big Sky, MT, March 2000

Conference and Workshop on Engineering of Computer
Based Systems, April, 1999.

[2] Carnes J. R., Misra A.: "Model-Integrated Toolset for
Fault Detection, Isolation and Recovery (FDIR)",
Proceedings of the International Conference and Workshop
on Engineering of Computer Based Systems, March 11-15,
1996

[3] Davis J. R., Scott J., Sztipanovits J., Martinez M.:
"Multi-Domain Surety Modeling and Analysis for High
Assurance Systems", Proceedings of the Engineering of
Computer Based Systems, March, 1999

[4] Karsai G., Sztipanovits J., Padalkar S., DeCaria F.:
"Model-embedded On-line Problem Solving Environment
for Chemical Engineering", Proceedings of the International
Conference on Engineering of Complex Computer Systems,
Nov. 6-10, 1995

[5] Sztipanovits J., Karsai G.: "Self-Adaptive Software for
Signal Processing", Communications of the ACM, Vol. 41

No 5, 1998.

[6] Long E., Misra A., Sztipanovits J.: "Increasing
Productivity at Saturn", IEEE Computer, August, 1998

[7] Sztipanovits J., Karsai G.: "Model-Integrated
Computing", IEEE Computer, April, 1997

[8] Sztipanovits J., Wilkes D., Karsai G., Biegl C., Lynd L.:
"The Multigraph and Structural Adaptivity", IEEE
Transactions on Signal Processing, Vol. 41, No. 8, 1993

[9] Ledeczi A.: "Parallel Systems with Flexible Topology",
Ph.D. Dissertation, Vanderbilt University, 1995

