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Abstract—Embedded applications are constantly being 
pushed toward achieving autonomy, allowing them to 
function reliably in all circumstances and under extreme 
design constraints. Our approach to embedded systems 
introduces a feedback loop characterizing adaptive systems: 
the adaptation mechanism monitors system performance and 
changes the structure accordingly to optimize performance. 
These self-adaptive systems can be designed and 
implemented using Model-Integrated Computing. To 
represent dynamic software architectures, the system is 
modeled in a generative manner. Here, the components of 
the architecture are prepared, but their number and 
connectivity patterns are not fully defined at design time. 
Instead, an algorithmic description and architectural 
parameters are provided that specify how the architecture 
could be generated "on-the-fly". These design-time models 
are then embedded in the run-time system along with 
generators that configure/reconfigure the system by 
changing certain architectural parameters. 
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1. INTRODUCTION 

Embedded applications are constantly being pushed toward 
achieving autonomy, allowing them to function in all 
circumstances and under extreme design constraints. 
Designing systems to meet these changing requirements is 
an increasingly difficult problem. A common thread in many 
of these systems is the unpredictable number and kind of 
events emerging from the changing operating environment 
and equipment problems that impact the required software 
architecture fundamentally. Current software technology is 
not suitable to meet these challenges. The state of the art is 
to prepare the system for all foreseeable changes in 
operation modes and to verify the software exhaustively. 
The simplest method to implement this limited adaptability 
in software is to use alternative control paths and runtime 
decisions. However, this solution quickly leads to an 
unmanageable software structure that is impossible to design 
and debug. An additional, but equally serious problem is 

that preparing the software for all possible circumstances 
necessarily leads to over-design, performance compromises 
and design errors. The missing component is the presence of 
a feedback loop characterizing adaptive systems: the 
adaptation mechanism monitors system performance and 
changes the structure accordingly to optimize performance. 
 
To address these issues we have applied Model-Integrated 
Computing (MIC) to create self-adaptive software systems.  
In MIC, domain specific, multiple-view models represent 
the computer application, its environment and their 
relationships. Model interpreters translate the models into 
the input languages of static and dynamic analysis tools, and 
application-specific model interpreters synthesize and re-
synthesize software applications running in a real-time, 
dynamic, macro-dataflow execution environment. 
 

2. MODEL-INTEGRATED COMPUTING 

Model-Integrated Computing (MIC) employs domain-
specific models to represent the software, its environment, 
and their relationship. With Model-Integrated Program 
Synthesis (MIPS), these models are then used to 
automatically synthesize the embedded applications and 
generate inputs to COTS analysis tools. This approach 
speeds up the design cycle, facilitates the evolution of the 
application and helps system maintenance, dramatically 
reducing costs during the entire lifecycle of the system. 
 
Creating domain-specific visual model building, constraint 
management, and automatic program synthesis components 
for a MIPS environment for each new domain would be 
cost-prohibitive for most domains. Applying a generic 
environment with generic modeling concepts and 
components would eliminate one of the biggest advantages 
of MIC — the dedicated support for widely different 
application domains. An alternative solution is to use a 
configurable environment that makes it possible to 
customize the MIPS components for a given domain.  
 
The Multigraph Architecture (MGA) is a toolkit for creating 
domain-specific MIPS environments. The MGA is 
illustrated in Figure 1. The metaprogramming interface is 
used to specify the modeling paradigm of the application 
domain. The modeling paradigm is the modeling language 
of the domain specifying the objects and their relationships. 
In addition to syntactic rules, semantic information can also 



In the Proceedings of the IEEE Aerospace 2000 Conference, Big Sky, MT, March 2000 

be described as a set of constraints. The Unified Modeling 
Language (UML) and the Object Constraint Language 
(OCL), respectively, are used for these purposes in the 
MGA. These specifications, called metamodels, are used to 
automatically generate the MIPS environment for the 
domain. An interesting aspect of this approach is that a 
MIPS environment itself is used to build the metamodels 
[1]. 
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Figure 1: The Multigraph Architecture 

 
The generated domain-specific MIPS environment is used to 
build domain models that are stored in a model database. 
These models are used to automatically generate the 
applications or to synthesize input to different COTS 
analysis tools. This translation process is called model 
interpretation. 
 
This approach and the same software toolset have been used 
to create and deploy large-scale systems that are in every-
day use in widely different engineering domains. The Saturn 
Site Production System (SSPF) is a large distributed 
production monitoring system used by the Saturn 
Corporation in car manufacturing [6]. Other systems include 
a fault detection isolation and recovery system used by 
Boeing and NASA on the International Space Station [2], a 
process monitoring toolset used by DuPont [4], and a safety 
and reliability analysis tool used by Sandia National Labs 
[3]. 
 

3. GENERATIVE MODELING 

In "traditional" Model-Integrated Computing the models are 
created at design time. They describe a particular solution to 
a particular problem in the given engineering domain. Once 
ready, the models are translated into an application. If the 
application needs to change, the models are changed and the 
application is regenerated. For self-adaptive systems, 
however, a different approach needs to be taken, because the 
structure is inherently dynamic — adaptation occurs at the 
architectural level at run-time. 
 
The need for modeling dynamic architectures is related to 

the complexity of the system being modeled. In a simplistic 
approach, one can pre-design all the possible architectures 
of a system, model all the architectures discovered, assign 
them to predefined situations, and switch between these 
architectures as the system evolves. A more sophisticated 
approach is to structure the architecture representation into a 
hierarchy with alternatives on each level. In a hierarchically 
organized architecture description, components contain 
other components that specify the internal architecture of the 
parent component in terms of the lower level components 
and their connectivity. This representation technique scales 
much better, but still requires that the configuration 
alternatives be explicitly defined at design time. 
 
A different approach is to represent dynamic architectures in 
a generative manner. Here, the components of the 
architecture are prepared, but their number and connectivity 
patterns are not fully defined at design time. Instead, a 
generative description is provided which specifies how the 
architecture could be generated "on-the-fly".  A generative 
architecture specification is similar to the generate statement 
used in VHDL: it is essentially a program that, when 
executed, generates an architecture by instantiating 
components and connecting them together. 
 
The generative description is especially powerful when it is 
combined with architectural parameters and hierarchical 
decomposition. In a component one can generatively 
represent an architecture, and the generation "algorithm" can 
receive architectural parameters from the current or higher 
levels of the hierarchy. These parameters influence the 
architectural choices made (e.g. how many components to 
use, how they are connected, etc.), but might also be 
propagated downward in the hierarchy to components at 
lower levels. There the process is repeated: architectural 
choices are made, components are instantiated and 
connected, and possibly newly calculated parameters are 
passed down further. Thus, with very few generative 
constructs one can represent a wide variety of architectures 
that would be very hard, if not impossible, to pre-enumerate. 
 
Naturally, not every architectural alternative is viable in all 
circumstances. The generative description allows for 
representing architectural constraints that constrain the 
selection process, thus limiting the search needed while 
forcing the process to obey other requirements. 
 
As a simple example for generative modeling, consider a 
data parallel algorithm, where the data set needs to be split n 
ways and the results need to be merged. If n can change 
during runtime, instead of modeling the structure for every 
possible instance of n, we can explicitly model the 
parameter n and create a generator that does the split and 
merge operation (Figure 2). (Even if the models do not 
change at runtime, but they do change frequently at design 
time, this generative technique provides a convenient 
approach to modeling.) 
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4. SYSTEM ARCHITECTURE 

Most adaptive systems consist of two parts:  the main 
component that performs what the system is designed to do 
and that can be adapted by the second component, the 
adaptor. This adaptor receives a subset of the inputs and 
outputs of the system and evaluates the performance of the 
system, then adapts it if necessary. This architecture is 
shown in Figure 3 with dashed lines. The detailed diagram 
inside the adaptor component depicts the runtime 
architecture of model-integrated self-adaptive systems. 
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Figure 3: System Architecture 
 

At design time, a set of generative models is created 
corresponding to a problem in the domain of distributed 
signal processing/instrumentation. From these models, a 
model interpreter generates (1) a set of architecture 
parameters, (2) a hierarchy of active models, and (3) a set of 
architecture constraints (the generated components are 
marked with asterisks in Figure 3). What are these active 
models? 
 
Active models are the runtime equivalent of generative 
models. They form a hierarchical set of components and 
generators. Generators can create or delete components and 

connections between components. Generator algorithms use 
the architectural parameters that are defined at design time 
but can be modified at runtime by the evaluator. Embedded 
models are generated from and by the active models when a 
new instantiation of the architectural parameters is available. 
Embedded models represent a fully defined system that can 
be interpreted by the embedded interpreter. The embedded 
interpreter generates and/or reconfigures the runtime 
objects. 
 
Constraints are defined at design time in OCL. Since they 
need to constrain the system architecture, they are expressed 
in terms of the embedded models, i.e. the models generated 
from the active (i.e. generative) models using a particular 
instantiation of the architecture parameters. While the set of 
active models together with the instantiation of the 
architectural parameters is an equivalent specification of the 
system, it would be difficult, if not theoretically impossible, 
to evaluate constraints specified in terms of generator 
algorithms. Therefore, the constraint evaluator works with 
the embedded models that were produced by the generators. 
 
Runtime Support 

Runtime support is provided by the Multigraph Kernel 
(MGK) [8]. The computational model supported by the 
MGK is a dynamic macro-dataflow model. It is macro-
dataflow because the activities performed at the nodes of the 
dataflow control graph are at the function (procedure, 
subroutine) complexity level. It is dynamic because dataflow 
control graphs can be built and modified at run time and 
propagated data can be inserted, extracted or inspected 
concurrently with dataflow execution. 
 
Dataflow graphs have two main components: nodes and 
connections. Dataflow nodes are defined by the function, 
called script, that is executed whenever the node is 
activated, and by their input-output ports. The node I/O 
ports are linked together with dataflow connections. Every 
input (output) port can have several connections going to 
(starting from) it. The dataflow nodes’ execution is 
controlled by their scheduling attributes, i.e. their triggering 
mode and priority. The triggering mode determines when a 
node is considered to be ready for execution. It can be either 
"ifany" (only a single input is necessary on any of the input 
ports), "ifall" (all inputs are necessary) or custom (user 
defined combinations of available input data subsets). The 
status of the output ports does not affect a node’s 
schedulability. The execution order of ready nodes is 
determined by their priority. 
The Multigraph Kernel transparently supports building 
dataflow control graphs on distributed parallel architectures. 
It accomplishes this using a host mechanism which allows 
nodes to be created in remote dataflow processes. Nodes 
created in different processes can be connected just as local 
nodes, the MGK takes care of all necessary data propagation 
whenever necessary. 
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Operation 

At runtime the system operates as follows. The evaluator 
monitors the system.  When it decides that adaptation is 
needed, the evaluator generates a request for reconfiguration 
and calculates a set of relevant architectural parameters. 
This information is passed to the active models that perform 
the generation of a new, fully-instantiated architecture 
model. The architecture model does not have any "free" 
parameters, and it satisfies the constraints as specified in the 
design-time models. If constraints are not satisfied, a 
specified "closest" or "good enough" alternative might be 
chosen. If multiple choices are possible, the best (or first 
acceptable) choice is selected according to some criteria 
(again, as specified in the models). 
 
Next, generators of executable models transform the 
architecture models into run-time objects. This 
transformation requires careful coordination and 
synchronization with the running system and is 
accomplished via the supporting run-time system. This two-
stage generation strategy clearly separates architecture 
generation (for selecting/generating the "best" architecture 
for a situation), and the executable model generation that 
performs the changes in the active, running application. The 
embeddable active models and generators are built from the 
design-time models, without carrying the overhead involved 
with the storage of those.  
 
Note that this approach is in sharp contrast with the "pre-
enumerated" approach, where the architectural alternatives 
are pre-selected and reconfigured by simply switching from 
one to another. In our approach, we capture a 
reconfiguration algorithm in the active models that describes 
a potentially very large set of configurations. 
 

5. EXAMPLE SYSTEM 

These concepts can be readily demonstrated by a simple 
adaptive signal analyzer application depicted in Figure 4. In 
this application, the adaptable system is a bank of filter 
pairs: a simple band filter followed by an adaptive notch 
filter. The idea is to have one such pair for each spectral 
peak in the input signal. The wider band filter filters out the 
other frequencies and the adaptive notch filter zooms in on 
the exact spectral peak and effectively measures the 
frequency with high accuracy. 
 
The evaluator contains an FFT and a peak detector. They 
provide a rough estimation of the frequency spectrum of the 
signal. The evaluator adapts the system, so that there is 
exactly one filter pair configured for each spectral peak. If 
the input signal changes, one of two things can happen. If 
the change is just a small migration of peaks, then the notch 
filters will adapt themselves accordingly. However, if a new 
spectral component appears or an existing disappears, or the 
frequency change of an existing peak is significant enough 
to show up in the FFT, then the system reconfigures itself by 

removing and/or adding filters. 
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Figure 4: Adaptive Signal Analyzer 

 
This example application has been implemented using the 
standard MGA toolset. A simple modeling paradigm has 
been defined using the MGA metamodeling environment. 
The modeling paradigm is a hierarchical signal flow 
representation extended with generative modeling 
capabilities. Figure 5 shows the top level metamodel in the 
form of a UML class diagram. The diagram captures the 
modeling objects and their relationships. The basic signal 
flow models are the Processing, Primitive and Compound. 
Processing is an abstract base class. Primitives are the basic 
computational elements in this paradigm. Compounds can 
contain other Processings (i.e. Primitives and Compounds) 
creating the hierarchy. Signal objects (InputSignals and 
OutputSignals) represent the interfaces of Primitives and 
Compounds. Their association, DataflowConn, models the 
actual signal flow among components. This is visualized 
using connections in the target domain. Visualization 
information are part of the metamodels, but are captured in 
another aspect, not in the UML class diagram shown. 
 
Additional semantic information is captured in the 
metamodels by including explicit constraints (not shown). 
Constraints are specified in OCL. In this particular 
paradigm, for example, DataflowConn connections are 
constrained to avoid connecting outputs to outputs (or inputs 
to inputs). Unfortunately, a more detailed description of the 
modeling paradigm is beyond the scope of this paper. 
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Figure 5 Metamodel of the Modeling Paradigm 

 
 

 
 

Figure 6 Signal Analyzer Models 



In the Proceedings of the IEEE Aerospace 2000 Conference, Big Sky, MT, March 2000 

 
 

Figure 7 Adaptive Signal Analyzer Application 
 

Figure 6 shows the models of the example application in the 
top right corner. The basic architecture discussed above has 
been extended with some plotting capabilities to 
demonstrate the application visually. The bottom window 
shows the model of the adaptive filter bank. The 
components are not hooked up together, instead they are 
connected to the generator SplitAndMerge. Part of the 
generator script is shown in the top left corner. Currently, a 
C++ API has been defined to serve as the interface to the 
models. It makes it possible to create and/or delete models 
and connections and to access object attributes.  Notice that 
the generator is also hooked up to an architectural parameter 
called "Order". This is the parameter the evaluator can 
modify at runtime to change the structure of the filter bank. 
 
Figure 7 shows the running application. The plots show the 
source signal, its spectrum, the output signal of the filter 
bank and its spectrum. In the bottom right hand corner, four 
pairs of numbers are displayed. They indicate that currently 
there are four band/notch filter branches in the filter bank. 
The first number is the current frequency of a spectral peak, 
while the number in parentheses is the original FFT 
estimation of the same peak. The integer (28 in Figure 7) to 
the right of these four fields indicates the number of 
reconfigurations that have occurred since the application 
was started. 
 

6. CONCLUSION 

The example application described in the previous section 

illustrates the current status of the project. The infrastructure 
for generative modeling, active models, embedded models 
and interpreters are in place. However, the current runtime 
reconfiguration method is simplistic and does not adequately 
address transients. Currently, the evaluator component needs 
to be hand-crafted for each different application. 
 
On the application side, we are focusing on a more involved 
demonstration building reliable distributed systems. The 
idea is to model not only the signal flow of the application, 
but also the hardware resources and their interconnection, 
along with constraints of the assignment of the computation 
elements to hardware nodes. A previous effort addressed 
these issues without the runtime reconfiguration aspect [9]. 
Being self-adaptive, the system would detect hardware 
failures and reassign the computational components to 
functioning hardware nodes. System functions could be 
prioritized, so the degradation of system functionality due to 
lack of hardware resources could proceed in a pre-planned 
order. 
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