
 

 

    
Abstract-- Computer-based systems (CBS) development 
integrates various disciplines, such as hardware design, 
software engineering, and performance modeling, as well as 
the “base” engineering discipline in which the CBS will 
operate. As such, use of a “non-native” modeling language is 
not acceptable when performing CBS design, and rapid 
specification and development of domain-specific modeling 
languages (DSMLs) is necessary. We advocate a UML -based 
metamodeling technique to DSML specification and 
generation. A key feature of our approach is the composition of 
new metamodels from existing metamodels through the use of 
three newly defined UML operators—equivalence, 
implementation inheritance, and interface inheritance. This 
paper describes the development of these new operators, 
details how they are used in metamodel composition, and 
presents examples of metamodel composition. 
 
Index terms--metamodeling, model composition, model-based 
computing, UML 
 

I. INTRODUCTION 
 
Computer-based systems (CBSs), where functional, 
performance, and reliability requirements demand the tight 
integration of physical processes and information 
processing, are among the most significant technological 
developments of the past 20 years [1]. Their development 
integrates various disciplines, such as hardware design, 
software engineering, and performance modeling, as well as 
the “base” engineering discipline in which the CBS will 
operate. In designing CBS hardware and software, one must 
use domain-specific terminology, concepts and techniques, 
and modeling such CBS systems requires a domain-specific 
modeling language. Modeling languages designed to 
capture interesting properties of software systems (e.g. 
UML [5]) are rarely suitable for modeling an entire CBS, 
because  the “entire system” includes not only the software, 
but the hardware and the CBS operating environment as 
well. Also, while there are some aspects of UML that make 
it suitable for modeling dynamic, reactive systems (e.g. state 
charts), it is inadequate for capturing models in the form of, 
for instance, Laplace transforms or differential equations. 
 

Because mature engineering disciplines (e.g. control theory 
or chemical engineering) have their own languages, 
requiring designers to use a “non-native” modeling 
language is not acceptable. Additionally, in CBS design 
projects we often need to integrate models across 
engineering disciplines. Both of these goals can be achieved 
by using appropriate tools, but at a very high cost—the 
development of customized modeling and integration 
solutions is very expensive. Our approach is to use a higher-
level, meta-level modeling language [2][3][4]. The meta-
language is not used for defining domain models, but rather 
for defining domain-modeling languages. The various 
components of such a language—its ontology, syntax, and 
interpretation (i.e. semantics)—are specified formally in a 
metamodel, and the actual domain-specific modeling 
language (DSML) is synthesized automatically from the 
metamodel. 
 
While UML and OCL [6] may not be suitable for modeling 
within most engineering domains, they represent a good 
choice for constructing metamodels. UML class diagrams 
are used to specify modeling entities and relationships, and 
OCL is used to specify the static semantics of the DSML. 
(Strictly speaking, some of the static semantics are specified 
using the associations among the class objects, but in 
general, class diagrams alone are not sufficiently expressive 
to fully define the static semantics of a DSML). The UML 
diagrams play a similar role to that of BNF (Backus-Naur 
Form): they specify the grammar of a language, that can 
generate all legal “sentences” (i.e. models). Using UML and 
OCL to construct metamodels has been discussed at length 
elsewhere [2][3]. What has not been addressed until now is 
the composition of metamodels from existing metamodels. 
This paper describes our initial investigations into such 
compositions. 
 

II. COMPOSITION OF METAMODELS 
 
Metamodel composition is necessary for several reasons. A 
metamodel is the embodiment of a modeling paradigm—the 
set of axioms, notions, idioms, abstractions, and techniques 
that govern how systems within the domain are to be 
modeled. As such, metamodels represent a large investment 
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in the understanding of a particular engineering domain. 
When defining a new modeling language, often some of the 
concepts that appear in an existing language will also 
appear in the new language. When defining the new 
language, we would like to call upon this previously 
documented domain knowledge when constructing the new 
metamodel—i.e. we want to be able to reuse all or part of 
existing metamodels when building new metamodels. In a 
similar manner, we can compose specific metamodels from 
abstract metamodels (i.e. metamodels that do not represent 
a DSML per se, but capture some general modeling 
behavior such as hierarchy or inheritance). Such an 
approach is only possible if, as part of the composition 
process, domain-specific concepts and constraints can be 
added to the resultant metamodel. An example might be the 
composition of a signal flow metamodel with a generalized 
metamodel of inheritance, resulting in a hierarchical signal 
flow modeling language. Such a modular, compositional 
approach to metamodel specification and construction 
promises to reduce development costs and risk, while 
simultaneously increasing the quality and functionality of 
the metamodel. 
 
When considering metamodel construction via composition, 
several issues and questions arise. First and foremost is the 
overall applicability of combining two existing modeling 
languages into a new DSML. Just because two languages 
can be combined, does it make sense to actually combine 
them? Also, how do the individual concepts contained in 
each language compliment each other? Which language 
elements of the source metamodels survive the composition 
and which do not? How are the individual constraints 
embedded in each metamodel combined? Finally, what 
becomes of the models that were created using the original 
languages? Can they be understood (i.e. edited) by the 
newly formed DSML? We attempt to answer these and 
other questions in this paper. 
 

A. Extending UML for metamodel composition 
 
As discussed in [3], metamodels themselves are created 
using a modeling language specifically designed for 
specifying modeling languages, properly referred to as a 
metamodeling language. This metamodeling language is 
also specified using a metamodel, known as a meta-
metamodel. As mentioned earlier, this metamodeling 
language is currently based on UML and OCL.  
 
The primary design goal of the composable metamodeling 
environment is to leave the original metamodels intact, still 
able to be used independently from any composition they 
may be a part of. This ensures that models created using 
DSMLs derived from the original metamodels are still 
valid—the fact that their metamodel also participates in a 
composition does not affect a model’s ability to function 
exactly as it did before the composition. Second, the newly 
composed metamodel defines a DSML that is capable of 

editing models created using the original DSML. Finally, 
such an approach to composition makes the creation of 
libraries of metamodels possible. 
 
Limitations of UML made it necessary to develop three new 
UML operators for use in combining metamodels together: 
an equivalence operator, an implementation inheritance 
operator, and an interface inheritance operator. The 
semantics and use of each of these constructs are discussed 
below. 
 

1) Equivalence operator 
 
The equivalence operator is used to show a full union 
between two UML class objects. The two classes cease to 
be two separate classes, but instead form a single class. 
Thus, the union includes all attributes and associations, 
including generalization, specialization, and containment, of 
each individual class. Equivalence can be thought of a 
defining the “join points” or “composition points” of two or 
more source metamodels, and has the effect of adding the 
attributes and associations of one class to those of another 
class (possibly in a different class diagram). Before such 
equivalence operations can be interpreted or used as the 
basis for model translation, they must be reduced to a more 
basic set of UML associations and constraints. This 
reduction represents a “flattening” of more complex UML 
diagrams into “pure” UML representations. Gogolla and 
Richters have investigated UML diagram equivalence and 
developed methods for performing such reductions [7]. We 
are currently investigating their techniques for possible 
inclusion in the metamodel interpretation phase of our 
research. 
 

2) Implementation inheritance operator 
 
The semantics of UML specialization (i.e. inheritance) is 
straightforward: specialized (i.e. child) classes contain all 
the attributes of the general (parent) class, and can 
participate in any association the parent can participate in. 
However, during metamodel composition, there are cases 
where finer-grained control over the inheritance operation is 
necessary. Therefore, we have introduced two new types of 
inheritance operations between class objects—
implementation inheritance and interface inheritance. 
 
In implementation inheritance, the child inherits all of the 
parent’s attributes, but only the containment associations 
where the parent functions as the container. No other 
associations are inherited. Implementation inheritance is 
represented graphically by a UML generalization icon 
containing a solid black dot. This can be seen in the left 
hand diagram of Figure 1 below, where implementation 
inheritance is used to derive class X1 from class B1. In this 
case, X1 inherits the age attribute from B1, as well as the 
association allowing objects of type C1 to be contained in 
objects of type B1. In other words, X1-type objects can 
contain C1-type objects. Because B1-type objects can 
contain other B1-type objects, X1-type objects can contain 



 

 

objects of type B1 but not X1. Note that D1-type objects 
can contain objects of type B1 but not objects of type X1. 
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Figure 1. Implementation- (left) and Interface (right) 
inheritance 

 
3) Interface inheritance operator 

 
The right side of Figure 1 shows interface inheritance 
between B2 and X2 (the unfilled circle inside the inheritance 
icon denotes interface inheritance). Interface inheritance 
allows no attribute inheritance but does allow full 
association inheritance, with one exception: containment 
associations where the parent functions as the container are 
not inherited. Therefore, in this example, X2-type objects 
can be contained in objects of type D2 and B2, but no 
objects can be contained in X2-type objects, not even other 
X2-type objects. Note that the age attribute is not inherited 
by X2. 
 
The union of implementation- and interface inheritance is 
the normal UML inheritance, and their intersection is null. 
It should also be noted that these operators could have been 
implemented using UML associations with stereotypes, but 
we selected a graphical representation, for two reasons. 
First, our application area (GME2000, discussed briefly 
below) is graphical in nature, and we believe graphical 
operators are more readily interpreted by humans and are 
intrinsically more readable, especially when the semantics 
are fixed and well known a priori, as these are. Second, 
interface- and implementation inheritance are semantically 
much closer to regular inheritance than to associations. 
Therefore, the use of association with stereotypes would be 
somewhat misleading. 
 

B. Composing metamodels via implementation- and 
interface inheritance 

 
Figure 2 shows the composition of two metamodels to form 
a third, new metamodel. The goal in this example is to 
combine a signal flow modeling paradigm (Signal Flow) 
with a finite state machine (FSM) modeling paradigm to 
form a new modeling paradigm. 
 

 
 

Figure 2. Metamodel composition 
 
In the new metamodel we want to allow leaf nodes of the 
signal flow graph (Primitives) to have hierarchical state 
machine implementation. In other words, we want a 
specialized Primitive that also inherits the implementation 
of the State class object. However, we must not allow 
Primitives to “act” as States, i.e. we must not permit States 
to contain Primitives (hence the use of implementation 
inheritance between the State and FSM Node classes). 
 
Note the Primitive and State objects that appear in the 
Composition metamodel. These are not UML class objects, 
but are proxy objects (proxy objects are denoted here as 
class objects with a “folded” upper right corner). Proxy 
objects refer to existing UML class objects. The use of 
proxy objects decouples the original metamodels from the 
composed metamodel. In this way, proxies can be included 
in new metamodels as necessary, while the source 
metamodels remain unchanged.  
 
It is important to observe that the use the equivalence, 
implementation- and interface inheritance operators just 
discussed are a notational convenience, and in no way 
change the underlying semantics of UML. In fact, each 
operator has an equivalent “pure” UML representation, and 
as such, each composed metamodel could be represented 
without the new operators. However, such metamodels are 
generally significantly more “cluttered,” making the 
diagrams more difficult to read and understand. 
 

III. METAMODELING ENVIRONMENT 
 
An interesting aspect of the GME 2000 tool suite is that the 
same set of tools is used for metamodeling as for domain 
modeling. The metamodeling problem can be thought of as 
just another domain, the field of domain-specific design 
environments. Hence, the metamodeling language is just 
another domain language. The meta-specifications that 
configure GME 2000 are generated by the metamodeling 
translator from the metamodels. The metamodeling 
environment itself is generated by the same translator when 
translating the meta-metamodels.  



 

 

 
The metamodeling language in GME 2000 is the UML class 
diagram notation [3]. The metamodels fully specify the 
domain modeling language, or more precisely, its concrete 
syntax. They do not, at least not entirely, specify the static 
semantics of the language. By static semantics we mean the 
set of rules that specify the well-formedness of domain 
models. UML class diagrams do allow the specification of 
some basic rules, for example, the multiplicity of 
associations. For more complex semantic specifications, 
however, UML includes the Object Constraint Language 
(OCL) [4], a textual predicate logic language. GME 2000 
adopts OCL as well; metamodels consist of UML class 
diagrams and OCL constraints. 

A. Metamodel composition in GME 2000 
 
Just as the reusability of domain models from application to 
application is essential, the reusability of metamodels from 
domain to domain is also important. Ideally, a library of 
metamodels of important sub-domains should be made 
available to the metamodeler, who can extend and compose 
them together to specify domain languages. These sub-
domains might include different variations of signal-flow, 
finite state machines, data type specifications, fault 
propagation graphs, Petri-nets, etc. The extension and 
composition mechanisms must not modify the original 
metamodels, just as subclasses do not modify base classes 
in OO programming. This way, changes in the metamodel 
libraries, which reflect a better understanding of the given 
domain, can propagate automatically to the metamodels that 
utilize them. Furthermore, by precisely specifying the 
extension and composition rules, models specified in the 
original domain language can be automatically translated to 
comply with the new extended and composed modeling 
language. 
 
Consider the left hand side of Figure 3 with the two UML 
classes Base and Sub. Sub is derived from Base through 
both implementation inheritance (denoted by a filled circle 
inside a triangle) and interface inheritance (denoted by an 
empty circle inside a triangle). By applying the interface 
inheritance operator, we get the equivalent class diagram 
consisting of Base2a and Sub2a. Similarly, applying 
implementation inheritance first, we get Base2b and Sub2b. 
Finally, continuing from either one and applying the 
remaining inheritance operator, we end up with the class 
diagram of Base3 and Sub3. Notice that this matches 
exactly the diagram we would get by applying regular UML 
inheritance to Base and Sub instead of the two new 
operators. 
 

 
 

Figure 3 Interface and implementation inheritance 
 
 

IV. ILLUSTRATIVE EXAMPLE 
 
It is probably best to illustrate these ideas through an 
example. Figure 4 shows three metamodels. The first 
(SignalFlow) specifies a hierarchical signal flow modeling 
language. Processing is an abstract base class. Compound is 
a composite model that can contain other Compounds and 
Primitives. Primitives are the leaf nodes that implement the 
elementary computation in the graph (they may have an 
implementation associated with them in a traditional 
programming language, for example.) The signal flow 
connections are implemented by connecting InputSignals 
and OutputSignals together with Dataflow connections. The 
second metamodel (FSM) describes a simple hierarchical 
finite state machine paradigm. States can contain other 
States that can be connected together by Transition 
connections. 
 
We assume that these metamodels were already in 
existence, and were imported from a metamodel library. We 
seek to combine them together according to the following 
rules. We would like to have a new kind of Primitive 
(FSMNode) that can contain a finite state machine 
specifying its implementation. However, we do not want a 
State to be able to contain this new kind of model. 
Furthermore, we want to make selected InputSignals and 
OutputSignals of any FSMNode to be mapped to certain 
States it contains using connections. (This could mean, for 
example, that the data values associated with those signals 
are accessible from the implementation associated with the 
given State.) 
 



 

 

 
 

Figure 4 Composed Signal Flow and FSM Metamodels 
 
These rules are accomplished by the third metamodel 
(Composition). The new FSMNode class inherits from both 
Primitive and State. Notice that the curved arrow inside 
these classes indicate that they are proxies to existing UML 
classes defined elsewhere. Inheriting from State through the 
standard UML inheritance would mean that a State could 
contain an FSMNode violating one of our rules. Instead, we 
use implementation inheritance to accomplish exactly what 
we want: an FSMNode that can contain whatever a State 
can, but that cannot act as a State; i.e. it cannot be inserted 
into a State. (Neither can FSMNodes connected together by 
Transitions.) Notice how the new SignalMap connection 
connecting States and Signals is also introduced in the 
Composition metamodel. 
 

 
 

Figure 5 Combined Signal Flow and FSM Models 
 

Figure 5 shows a simple model in the target environment. 
The System model contains a Compound, a Primitive and 
an FSMNode. The bottom window shows the contents of 
the latter: a simple state machine with Signals mapped to 
certain States. 
 

V. CONCLUSIONS 
 
We introduced the Generic Modeling Environment (GME 
2000), a configurable domain-specific design environment. 
Other similar environments include Dome by Honeywell 
Research [8] and MetaEdit+ by MetaCASE Consulting. [9] 
presents a brief comparison of these three environments.  
One of the unique features of GME 2000 is its UML class 
diagram-based metamodeling environment. Our experience 
showed that some extensions to this standard notation were 
necessary, primarily to support metamodel composition. 
The composable metamodeling environment is a brand new 
addition to GME 2000. We are in the process of applying it 
to several real world application domains. An early 
indication of its usability is the significantly increased 
readability of its own meta-metamodels. 
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