

Abstract-- Computer-based systems (CBS) development
integrates various disciplines, such as hardware design,
software engineering, and performance modeling, as well as
the “base” engineering discipline in which the CBS will
operate. As such, use of a “non-native” modeling language is
not acceptable when performing CBS design, and rapid
specification and development of domain-specific modeling
languages (DSMLs) is necessary. We advocate a UML -based
metamodeling technique to DSML specification and
generation. A key feature of our approach is the composition of
new metamodels from existing metamodels through the use of
three newly defined UML operators—equivalence,
implementation inheritance, and interface inheritance. This
paper describes the development of these new operators,
details how they are used in metamodel composition, and
presents examples of metamodel composition.

Index terms--metamodeling, model composition, model-based
computing, UML

I. INTRODUCTION

Computer-based systems (CBSs), where functional,
performance, and reliability requirements demand the tight
integration of physical processes and information
processing, are among the most significant technological
developments of the past 20 years [1]. Their development
integrates various disciplines, such as hardware design,
software engineering, and performance modeling, as well as
the “base” engineering discipline in which the CBS will
operate. In designing CBS hardware and software, one must
use domain-specific terminology, concepts and techniques,
and modeling such CBS systems requires a domain-specific
modeling language. Modeling languages designed to
capture interesting properties of software systems (e.g.
UML [5]) are rarely suitable for modeling an entire CBS,
because the “entire system” includes not only the software,
but the hardware and the CBS operating environment as
well. Also, while there are some aspects of UML that make
it suitable for modeling dynamic, reactive systems (e.g. state
charts), it is inadequate for capturing models in the form of,
for instance, Laplace transforms or differential equations.

Because mature engineering disciplines (e.g. control theory
or chemical engineering) have their own languages,
requiring designers to use a “non-native” modeling
language is not acceptable. Additionally, in CBS design
projects we often need to integrate models across
engineering disciplines. Both of these goals can be achieved
by using appropriate tools, but at a very high cost—the
development of customized modeling and integration
solutions is very expensive. Our approach is to use a higher-
level, meta-level modeling language [2][3][4]. The meta-
language is not used for defining domain models, but rather
for defining domain-modeling languages. The various
components of such a language—its ontology, syntax, and
interpretation (i.e. semantics)—are specified formally in a
metamodel, and the actual domain-specific modeling
language (DSML) is synthesized automatically from the
metamodel.

While UML and OCL [6] may not be suitable for modeling
within most engineering domains, they represent a good
choice for constructing metamodels. UML class diagrams
are used to specify modeling entities and relationships, and
OCL is used to specify the static semantics of the DSML.
(Strictly speaking, some of the static semantics are specified
using the associations among the class objects, but in
general, class diagrams alone are not sufficiently expressive
to fully define the static semantics of a DSML). The UML
diagrams play a similar role to that of BNF (Backus-Naur
Form): they specify the grammar of a language, that can
generate all legal “sentences” (i.e. models). Using UML and
OCL to construct metamodels has been discussed at length
elsewhere [2][3]. What has not been addressed until now is
the composition of metamodels from existing metamodels.
This paper describes our initial investigations into such
compositions.

II. COMPOSITION OF METAMODELS

Metamodel composition is necessary for several reasons. A
metamodel is the embodiment of a modeling paradigm—the
set of axioms, notions, idioms, abstractions, and techniques
that govern how systems within the domain are to be
modeled. As such, metamodels represent a large investment

On Metamodel Composition
Akos Ledeczi, Greg Nordstrom, Gabor Karsai, Peter Volgyesi and Miklos Maroti

 Institute for Software Integrated Systems
Vanderbilt University, Nashville TN 37212

http://www.isis.vanderbilt.edu

in the understanding of a particular engineering domain.
When defining a new modeling language, often some of the
concepts that appear in an existing language will also
appear in the new language. When defining the new
language, we would like to call upon this previously
documented domain knowledge when constructing the new
metamodel—i.e. we want to be able to reuse all or part of
existing metamodels when building new metamodels. In a
similar manner, we can compose specific metamodels from
abstract metamodels (i.e. metamodels that do not represent
a DSML per se, but capture some general modeling
behavior such as hierarchy or inheritance). Such an
approach is only possible if, as part of the composition
process, domain-specific concepts and constraints can be
added to the resultant metamodel. An example might be the
composition of a signal flow metamodel with a generalized
metamodel of inheritance, resulting in a hierarchical signal
flow modeling language. Such a modular, compositional
approach to metamodel specification and construction
promises to reduce development costs and risk, while
simultaneously increasing the quality and functionality of
the metamodel.

When considering metamodel construction via composition,
several issues and questions arise. First and foremost is the
overall applicability of combining two existing modeling
languages into a new DSML. Just because two languages
can be combined, does it make sense to actually combine
them? Also, how do the individual concepts contained in
each language compliment each other? Which language
elements of the source metamodels survive the composition
and which do not? How are the individual constraints
embedded in each metamodel combined? Finally, what
becomes of the models that were created using the original
languages? Can they be understood (i.e. edited) by the
newly formed DSML? We attempt to answer these and
other questions in this paper.

A. Extending UML for metamodel composition

As discussed in [3], metamodels themselves are created
using a modeling language specifically designed for
specifying modeling languages, properly referred to as a
metamodeling language. This metamodeling language is
also specified using a metamodel, known as a meta-
metamodel. As mentioned earlier, this metamodeling
language is currently based on UML and OCL.

The primary design goal of the composable metamodeling
environment is to leave the original metamodels intact, still
able to be used independently from any composition they
may be a part of. This ensures that models created using
DSMLs derived from the original metamodels are still
valid—the fact that their metamodel also participates in a
composition does not affect a model’s ability to function
exactly as it did before the composition. Second, the newly
composed metamodel defines a DSML that is capable of

editing models created using the original DSML. Finally,
such an approach to composition makes the creation of
libraries of metamodels possible.

Limitations of UML made it necessary to develop three new
UML operators for use in combining metamodels together:
an equivalence operator, an implementation inheritance
operator, and an interface inheritance operator. The
semantics and use of each of these constructs are discussed
below.

1) Equivalence operator

The equivalence operator is used to show a full union
between two UML class objects. The two classes cease to
be two separate classes, but instead form a single class.
Thus, the union includes all attributes and associations,
including generalization, specialization, and containment, of
each individual class. Equivalence can be thought of a
defining the “join points” or “composition points” of two or
more source metamodels, and has the effect of adding the
attributes and associations of one class to those of another
class (possibly in a different class diagram). Before such
equivalence operations can be interpreted or used as the
basis for model translation, they must be reduced to a more
basic set of UML associations and constraints. This
reduction represents a “flattening” of more complex UML
diagrams into “pure” UML representations. Gogolla and
Richters have investigated UML diagram equivalence and
developed methods for performing such reductions [7]. We
are currently investigating their techniques for possible
inclusion in the metamodel interpretation phase of our
research.

2) Implementation inheritance operator

The semantics of UML specialization (i.e. inheritance) is
straightforward: specialized (i.e. child) classes contain all
the attributes of the general (parent) class, and can
participate in any association the parent can participate in.
However, during metamodel composition, there are cases
where finer-grained control over the inheritance operation is
necessary. Therefore, we have introduced two new types of
inheritance operations between class objects—
implementation inheritance and interface inheritance.

In implementation inheritance, the child inherits all of the
parent’s attributes, but only the containment associations
where the parent functions as the container. No other
associations are inherited. Implementation inheritance is
represented graphically by a UML generalization icon
containing a solid black dot. This can be seen in the left
hand diagram of Figure 1 below, where implementation
inheritance is used to derive class X1 from class B1. In this
case, X1 inherits the age attribute from B1, as well as the
association allowing objects of type C1 to be contained in
objects of type B1. In other words, X1-type objects can
contain C1-type objects. Because B1-type objects can
contain other B1-type objects, X1-type objects can contain

objects of type B1 but not X1. Note that D1-type objects
can contain objects of type B1 but not objects of type X1.

B1

X1

age
C1

D1

B2

X2

age
C2

D2

B1

X1

age
C1

D1

B1

X1X1

age
C1C1

D1D1

B2

X2

age
C2

D2

B2

X2X2

age
C2C2

D2D2

Figure 1. Implementation- (left) and Interface (right)
inheritance

3) Interface inheritance operator

The right side of Figure 1 shows interface inheritance
between B2 and X2 (the unfilled circle inside the inheritance
icon denotes interface inheritance). Interface inheritance
allows no attribute inheritance but does allow full
association inheritance, with one exception: containment
associations where the parent functions as the container are
not inherited. Therefore, in this example, X2-type objects
can be contained in objects of type D2 and B2, but no
objects can be contained in X2-type objects, not even other
X2-type objects. Note that the age attribute is not inherited
by X2.

The union of implementation- and interface inheritance is
the normal UML inheritance, and their intersection is null.
It should also be noted that these operators could have been
implemented using UML associations with stereotypes, but
we selected a graphical representation, for two reasons.
First, our application area (GME2000, discussed briefly
below) is graphical in nature, and we believe graphical
operators are more readily interpreted by humans and are
intrinsically more readable, especially when the semantics
are fixed and well known a priori, as these are. Second,
interface- and implementation inheritance are semantically
much closer to regular inheritance than to associations.
Therefore, the use of association with stereotypes would be
somewhat misleading.

B. Composing metamodels via implementation- and
interface inheritance

Figure 2 shows the composition of two metamodels to form
a third, new metamodel. The goal in this example is to
combine a signal flow modeling paradigm (Signal Flow)
with a finite state machine (FSM) modeling paradigm to
form a new modeling paradigm.

Figure 2. Metamodel composition

In the new metamodel we want to allow leaf nodes of the
signal flow graph (Primitives) to have hierarchical state
machine implementation. In other words, we want a
specialized Primitive that also inherits the implementation
of the State class object. However, we must not allow
Primitives to “act” as States, i.e. we must not permit States
to contain Primitives (hence the use of implementation
inheritance between the State and FSM Node classes).

Note the Primitive and State objects that appear in the
Composition metamodel. These are not UML class objects,
but are proxy objects (proxy objects are denoted here as
class objects with a “folded” upper right corner). Proxy
objects refer to existing UML class objects. The use of
proxy objects decouples the original metamodels from the
composed metamodel. In this way, proxies can be included
in new metamodels as necessary, while the source
metamodels remain unchanged.

It is important to observe that the use the equivalence,
implementation- and interface inheritance operators just
discussed are a notational convenience, and in no way
change the underlying semantics of UML. In fact, each
operator has an equivalent “pure” UML representation, and
as such, each composed metamodel could be represented
without the new operators. However, such metamodels are
generally significantly more “cluttered,” making the
diagrams more difficult to read and understand.

III. METAMODELING ENVIRONMENT

An interesting aspect of the GME 2000 tool suite is that the
same set of tools is used for metamodeling as for domain
modeling. The metamodeling problem can be thought of as
just another domain, the field of domain-specific design
environments. Hence, the metamodeling language is just
another domain language. The meta-specifications that
configure GME 2000 are generated by the metamodeling
translator from the metamodels. The metamodeling
environment itself is generated by the same translator when
translating the meta-metamodels.

The metamodeling language in GME 2000 is the UML class
diagram notation [3]. The metamodels fully specify the
domain modeling language, or more precisely, its concrete
syntax. They do not, at least not entirely, specify the static
semantics of the language. By static semantics we mean the
set of rules that specify the well-formedness of domain
models. UML class diagrams do allow the specification of
some basic rules, for example, the multiplicity of
associations. For more complex semantic specifications,
however, UML includes the Object Constraint Language
(OCL) [4], a textual predicate logic language. GME 2000
adopts OCL as well; metamodels consist of UML class
diagrams and OCL constraints.

A. Metamodel composition in GME 2000

Just as the reusability of domain models from application to
application is essential, the reusability of metamodels from
domain to domain is also important. Ideally, a library of
metamodels of important sub-domains should be made
available to the metamodeler, who can extend and compose
them together to specify domain languages. These sub-
domains might include different variations of signal-flow,
finite state machines, data type specifications, fault
propagation graphs, Petri-nets, etc. The extension and
composition mechanisms must not modify the original
metamodels, just as subclasses do not modify base classes
in OO programming. This way, changes in the metamodel
libraries, which reflect a better understanding of the given
domain, can propagate automatically to the metamodels that
utilize them. Furthermore, by precisely specifying the
extension and composition rules, models specified in the
original domain language can be automatically translated to
comply with the new extended and composed modeling
language.

Consider the left hand side of Figure 3 with the two UML
classes Base and Sub. Sub is derived from Base through
both implementation inheritance (denoted by a filled circle
inside a triangle) and interface inheritance (denoted by an
empty circle inside a triangle). By applying the interface
inheritance operator, we get the equivalent class diagram
consisting of Base2a and Sub2a. Similarly, applying
implementation inheritance first, we get Base2b and Sub2b.
Finally, continuing from either one and applying the
remaining inheritance operator, we end up with the class
diagram of Base3 and Sub3. Notice that this matches
exactly the diagram we would get by applying regular UML
inheritance to Base and Sub instead of the two new
operators.

Figure 3 Interface and implementation inheritance

IV. ILLUSTRATIVE EXAMPLE

It is probably best to illustrate these ideas through an
example. Figure 4 shows three metamodels. The first
(SignalFlow) specifies a hierarchical signal flow modeling
language. Processing is an abstract base class. Compound is
a composite model that can contain other Compounds and
Primitives. Primitives are the leaf nodes that implement the
elementary computation in the graph (they may have an
implementation associated with them in a traditional
programming language, for example.) The signal flow
connections are implemented by connecting InputSignals
and OutputSignals together with Dataflow connections. The
second metamodel (FSM) describes a simple hierarchical
finite state machine paradigm. States can contain other
States that can be connected together by Transition
connections.

We assume that these metamodels were already in
existence, and were imported from a metamodel library. We
seek to combine them together according to the following
rules. We would like to have a new kind of Primitive
(FSMNode) that can contain a finite state machine
specifying its implementation. However, we do not want a
State to be able to contain this new kind of model.
Furthermore, we want to make selected InputSignals and
OutputSignals of any FSMNode to be mapped to certain
States it contains using connections. (This could mean, for
example, that the data values associated with those signals
are accessible from the implementation associated with the
given State.)

Figure 4 Composed Signal Flow and FSM Metamodels

These rules are accomplished by the third metamodel
(Composition). The new FSMNode class inherits from both
Primitive and State. Notice that the curved arrow inside
these classes indicate that they are proxies to existing UML
classes defined elsewhere. Inheriting from State through the
standard UML inheritance would mean that a State could
contain an FSMNode violating one of our rules. Instead, we
use implementation inheritance to accomplish exactly what
we want: an FSMNode that can contain whatever a State
can, but that cannot act as a State; i.e. it cannot be inserted
into a State. (Neither can FSMNodes connected together by
Transitions.) Notice how the new SignalMap connection
connecting States and Signals is also introduced in the
Composition metamodel.

Figure 5 Combined Signal Flow and FSM Models

Figure 5 shows a simple model in the target environment.
The System model contains a Compound, a Primitive and
an FSMNode. The bottom window shows the contents of
the latter: a simple state machine with Signals mapped to
certain States.

V. CONCLUSIONS

We introduced the Generic Modeling Environment (GME
2000), a configurable domain-specific design environment.
Other similar environments include Dome by Honeywell
Research [8] and MetaEdit+ by MetaCASE Consulting. [9]
presents a brief comparison of these three environments.
One of the unique features of GME 2000 is its UML class
diagram-based metamodeling environment. Our experience
showed that some extensions to this standard notation were
necessary, primarily to support metamodel composition.
The composable metamodeling environment is a brand new
addition to GME 2000. We are in the process of applying it
to several real world application domains. An early
indication of its usability is the significantly increased
readability of its own meta-metamodels.

VI. REFERENCES

[1] J. Sztipanovits, “Engineering of Computer-Based
Systems: An Emerging Discipline,” Proceedings of the
IEEE ECBS’98 Conference, 1998.

[2] A. Ledeczi, et al., “Metaprogrammable Toolkit for
Model-Integrated Computing," Proceedings of the IEEE
ECBS’99 Conference, 1999.

[3] Nordstrom G.: "Metamodeling - Rapid Design and
Evolution of Domain-Specific Modeling Environments",
Ph.D. Dissertation, Vanderbilt University, 1999.

[4] G. Karsai, et al., “Specifying Graphical Modeling
Systems Using Constraint-based Metamodels," IEEE Intl.
Symp. On CACSD, Anchorage, Alaska, Sep. 2000.

[5] UML Semantics, ver. 1.1, Rational Software
Corporation, et al., September 1997.

[6] Object Constraint Language Specification, ver. 1.1,
Rational Software Corporation, et al., Sept. 1997.

[7] Gogolla, M., and Richters, M. “Equivalence rules for
UML class diagrams,” Proceeding of the UML'98
Workshop, P.-A. Muller and J. Bezivin, Eds., Universite de
Haute-Alsace, Mulhouse, pp. 86-97, 1998.

[8] Dome Official Web Site, Honeywell, 2000,
http://www.src.honeywell.com/dome/

[9] MetaEdit+ Official Website, MetaCase Consulting,
http://www.metacase.com

http://www.metacase.com/

	INTRODUCTION
	Composition of Metamodels
	Extending UML for metamodel composition
	Equivalence operator
	Implementation inheritance operator
	Interface inheritance operator

	Composing metamodels via implementation- and interface inheritance

	Metamodeling Environment
	Metamodel composition in GME 2000

	Illustrative example
	Conclusions
	References

