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Abstract—Supporting the varied software feature requirements
of multiple variants of a software product-line while promoting
reuse forces product line engineers to use general-purpose,
feature-rich middleware platforms. However, each product vari-
ant now incurs memory footprint and performance overhead due
to the feature-richness of the middleware along with the increased
cost of its testing and maintenance. To address this tension, this
paper presents FORMS (Feature-Oriented Reverse Engineering
for Mmiddleware Specialization), which is a framework to auto-
matically specialize general-purpose middleware for product-line
variants. FORMS provides a novel model-based approach to map
product-line variant-specific feature requirements to middleware-
specific features, which in turn are used to reverse engineer
middleware source code and transform it to specialized forms
resulting in vertical decompositions. Empirical results evaluating
memory footprint reductions (40%) are presented along with
qualitative evaluations of reduced maintenance efforts and an
assessment of discrepancies in modularization of contemporary
middleware.

Index Terms—Middleware; Specialization; Reverse Engi-
neering; Closure; Footprint; Feature Oriented Programming;
Product-line

I. INTRODUCTION

Product-line engineering (PLE) [1] has emerged to become
one of the most widely used paradigms for software devel-
opment in varied domains where commonality and variability
plays a crucial role in determining the reusability, flexibility,
adaptability, evolvability, maintainability and quality of service
(QoS) provided by the product variants to the end users. The
commonality is shared by different products of the product line
whereas variability distinguishes individual product variants.
The variability may manifest itself in terms of functionality or
configurability or both.

To support these commonalities and variabilities, and to
maximize reuse, middleware, such as CORBA, J2EE, and
.NET, provides abstraction of complexity and heterogeneity.
These middleware are designed to be general-purpose, highly
flexible and very feature-rich i.e., they provide rich set of
capabilities along with their configurability to support a wide
range of application classes in many domains.

Despite the benefits of general-purpose middleware for
a PLE application as a whole, individual product variants,
however, incur the penalty of excessive memory footprint and
potentially performance overhead due to the excessive set of

middleware features – many of which may not be required by
the product variant. Additionally, excess set of features results
in unwanted testing and maintenance costs per variant, which
is detrimental to a cost-effective PLE management.

A promising solution to address the above-mentioned chal-
lenge is to specialize general-purpose middleware for product
variants of the PLE application. Prior research on middleware
specialization has focused on forward engineering techniques,
such as Feature Oriented Programming (FOP) [2] and Aspect
Oriented Programming (AOP) [3], which are based on compo-
sition and stepwise refinement. Examples of these approaches
include e.g., FACET [4], Modelware [5], LOpenOrb [6], and
FOMDD [7].

Since middleware needs to cater to multiple domains (i.e.,
be general-purpose and flexible), they are designed and mod-
ularized with a focus on extensible class hierarchies alone.
Hence the middleware developer focuses more on horizon-
tal decomposition of middleware into layers. In contrast, to
support product variants, PLE requires the middleware code
to be modularized along domain concerns. We call such
a modularization as vertical middleware decomposition or
feature module specialization.

We observe that much of the contemporary middleware
available is still not developed using the top-down PLE
techniques of domain engineering and application engineering
but in fact built bottom-up based on a modularized design
template. However, the PLE domain concerns (which we call
features) are often tangled with each other, and are spread
beyond the module (i.e., class and package) boundaries across
multiple modules within the middleware source. Hence, even
if a middleware packager decides to compose a specialized
middleware version based on the intended design modularity,
the specialized version of the middleware results in many
excessive features that are not necessary for the particular
domain concern being tackled by the target application. As
a consequence, prior research on middleware specialization
does not directly apply to address PLE issues.

A promising approach relies on reverse engineering tech-
niques such as source code analysis since they are not re-
stricted by module or layer boundaries imposed by traditional
bottom-up composition techniques. Since reverse-engineering
techniques rely more on top-down approaches using intro-



spection and reflection, they address the PLE application
engineering phase. Therefore, in this paper we primarily focus
on PLE application engineering whereas we employ FOP
based reasoning that deduce domain engineering concerns to
drive the overall process. Thus, reverse engineering driven by
domain concerns enables the implicit analysis and decompo-
sition along domain concerns.

To realize these goals, we present the Feature-Oriented
Reverse Engineering for Middleware Specialization (FORMS)
approach and the resulting framework for refactoring general-
purpose middleware along individual domain concerns that can
be combined with application-level product line engineering.
FORMS reverse-engineers existing middleware source code
and synthesizes custom versions of middleware that are com-
posed of only the features required by the individual product
variants.

FORMS provides a multi-step process as follows: (1) it
evaluates domain requirements using a wizard-driven rea-
soning that maps the platform-independent (PIM) domain
requirements to a PIM middleware feature model, (2) it sub-
sequently prunes the PIM middleware feature model into the
PLE or product variant-specific feature model using the wizard
interpreter tools, (3) it determines which platform-specific
(PSM) middleware features are to be directly and indirectly
included in the construction of the specialized middleware,
(4) it uses a sophisticated algorithm to synthesize independent
feature modules corresponding to the pruned middleware
feature model, and (5) it customizes the build system and
synthesizes libraries for the individual specialized middleware
variants corresponding to the individual product variants.

The rest of the paper is organized as follows: Section II
describes the FORMS approach to middleware specializa-
tion; Section III evaluates the FORMS approach by checking
correctness and calculating footprint reduction; Section IV
discusses the related research efforts and classifies middleware
specialization techniques; and finally Section V provides ‘con-
cluding remarks alluding to future research issues and lessons
learned.

II. THE FORMS MIDDLEWARE (DE)COMPOSITION
PROCESS

This section presents the FORMS approach and the resulting
framework for middleware specialization. We assume that
middleware developers develop module code bottom-up based
on a design template and subsequently create the correspond-
ing build configurations for their modules through mechanisms
such as Makefiles or Visual Studio Project files.

FORMS is based on reverse engineering and takes a top-
down approach where it identifies the feature modules within
the middleware code base, and their dependencies based on
the domain concerns that were identified in the PLE domain
engineering phase. Subsequently, based on the selected domain
concerns, it composes the corresponding implementation fea-
ture modules to synthesize the specialized middleware variant.

In FORMS, we view domain concerns to represent plat-
form independent feature models (PIM) whereas middleware

platform features represent platform-specific feature models
(PIM). FORMS provides a process to transform the PIM do-
main concerns to PIM middleware concerns and subsequently
to PSM middleware implementation concerns, which finally
drive the generation of specialized middleware for a given
set of domain concerns. FORMS is built within a feature-
oriented software development (FOSD) environment and has
a host of associated tools that help the interpretation of these
PIM feature models, their transformations from PIM to PSM,
and profiling the specialized middleware configurations for
performance and footprint metrics.

A. Overview of the FORM Process

Figure 1 shows an overview of the FORMS middleware spe-
cialization process that PLE developers use for their product
variants. We briefly describe the steps in the FORMS process
below:

1. Feature Specification: The PLE application developer
starts the middleware specialization wizard and begins
describing the characteristics of the product to be devel-
oped specifying the domain-level features needed for the
variant.

2. Feature Mapping Wizard: The Feature Mapping wizard
maps the PIM product-line domain concerns to PIM
middleware features. The wizard asks questions about
the configuration requirements and options of the product
for which middleware is to be developed. These require-
ments include distribution features, such as client/server;
concurrency features, such as single/multi-threaded, in
that order. The selected features are also configured
along the way as they are selected for composition. The
wizard can ask further fine-grained questions within each
individual coarse-grained feature that is being selected
to exactly configure that feature. The PLE developer
response determines the next question that will be asked.

3. Build Configuration: The wizard then creates build
configuration files that contain hints as to what source
files to include in the middleware build. These files
basically identify the starting points for creating the
closure sets of source file dependencies where no file
within a closure has dependencies on files outside the
closure set. Note that the FORMS tool understands the
middleware code organization including the organization
of the source files.

4. Closure Computation (Feature Module Composition):
Once the hints are obtained, they are used to create clo-
sure sets using an algorithm that systematically composes
the source code and files that are associated with each
feature into a feature module (FM). The closure sets are
essentially all the dependencies that are gathered by the
tool.

5. Product Variant Composition: The feature modules
are then composed into product variants which map to
domain concerns directly.

6. Build Configuration Specialization: The build configu-



Fig. 1. FORMS Middleware Specialization Process

ration is specialized by adding source files from individ-
ual closure sets of feature modules to the build descriptor
thereby generating the build configuration file, such as
a Makefile. For our evaluations, FORMS generates the
Make Project Creator (MPC) [8] build configuration file.
This MPC file represents the part of the specialized
middleware that is to be built for the product variant.

7. Specialized Middleware Synthesis: This MPC file is
then used to create platform-specific make files by run-
ning the MPC perl-based scripts. The platform-specific
Makefiles are then used to synthesize the specialized
middleware for the product line or product variant.

Notice that this process is entirely repeatable and reusable.
A repository of requirements for product variants can be
maintained. There is no need to maintain the customized
version of the middleware since it can be synthesized. In the
rest of the section we focus on some of the important building
blocks of FORMS.

B. The FORMS Stages

1) Feature Mapping Wizard: In the PLE development pro-
cess, FORMS is applicable in the packaging and assembly
phases where the PLE application and variant along with its
middleware is configured and packaged. The requirements rea-
soning wizard performs the difficult job of mapping the PIM
product-line domain concerns to PIM middleware features.

Domain concerns describe the characteristics of the product
being developed. These characteristics may include functional
concerns as well as non-functional (QoS) concerns. Functional
concerns describe the way a particular application/product
behaves and its configuration. Non-functional concerns usually
describe the way a product is supposed to perform which in-
clude dimensions of concurrency, event processing, protocols,
etc.

Normally, domain concerns and middleware features man-
ifest themselves into separate hierarchial representations.
Therefore, a mapping is required to transform domain concern
hierarchies to middleware feature hierarchial models. In order

to create a systematic mapping, this wizard makes use of
model transformations to navigate through the concern and
feature hierarchies. Interestingly, both the functional and non-
functional concerns can map within the same middleware
feature model.

Feature models of general-purpose middleware tend to be
very complex and huge making it very cumbersome to ana-
lyze for modularity. Fortunately, the feature sets for product
variants are limited, which makes the mapping of concerns
tangible within the middleware feature set. This helps us map
known domain concerns to the middleware features in advance
resulting in a m : n correspondence between the concern
model and middleware feature model. So based on the concern
model the middleware feature models needs to be pruned to
remove the unwanted features that don’t map to the domain
concerns. This is done through the feature model interpreters
provided by FORMS.

After performing this mapping, a pruned PIM-level mid-
dleware feature set is generated that is used to synthesize
the specialized middleware for the particular product variant.
We assume that the mapping of platform-specific middleware
features to source code is already performed beforehand by the
middleware developer at design time enabling us to directly
determine the source code that implements the middleware
feature set and hence the domain concerns. The wizard outputs
the source code hints that act as the starting point of the closure
computation algorithm.

2) Discovering Closure Sets: Once the source code hints
that directly implement the domain concerns are determined,
their dependencies on other code within the middleware needs
to be determined. All such code that is interdependent on each
other is what implements the domain concern. We call such a
set of source files as a closure set in which there are no source
file dependencies going out of the closure set. We differentiate
between feature definition and feature implementation files.
Feature definition makes it easier to identify and annotate fea-
tures whereas feature implementations which capture the fea-
ture behavior may differ from one middleware implementation



to another depending upon the language of implementation.
Thus the closure computation identifies the set of dependent
features definitions and their definitions and composes them
into a coherent and independent feature module. We have
designed a recursive closure computation algorithm that walks
through the source code dependency tree and identifies the
source that is dependent on the feature. However opening each
file on-the-fly and checking the dependencies is inefficient
since it requires a lot of I/O operations. Instead we run an
external dependency walker tool like Doxygen [9] or Redhat
Source Navigator [10] to extract out the dependency tree.

3) Middleware Composition Synthesis through Build Spe-
cialization: Different middleware use sophisticated techniques
to compile its source code into shared libraries. Some of these
techniques rely on straightforward scripting e.g., shell script,
batch files, perl scripts, or ANT scripts while some of them
rely on descriptor files such as make file system or advanced
cross-compiler build facilities like MPC (Make Project Cre-
ator). We leverage the MPC cross-compiler facility since it
supports multiple compilers and IDEs and is therefore more
generic and widely applicable for synthesizing middleware
shared libraries written in different programming languages.

The MPC projects of the general-purpose middleware do not
necessarily represent the feature modularization per se. The
closure sets are converted into MPC files for synthesis of the
specialized middleware represented by the closure sets through
the respective language tools. These MPC files are specialized
versions of the combination of the original MPC files of the
general-purpose middleware and are the real representation
of feature modularization in terms of product-line variant
requirements.

III. EVALUATION

We evaluate FORMS by modeling a product-line of net-
worked logging applications based on contemporary, widely
used communication middleware such as ACE [11]. ACE is a
free, open-source, platform-independent, highly configurable,
object-oriented (OO) framework that implements many core
patterns for concurrent communication software. It enables
developing product variants using various types of commu-
nication paradigms such as client-server, peer-to-peer, event-
based, and publish-subscribe. Within each paradigm it sup-
ports various models of computation (MoC) which are highly
configurable for different QoS requirements.

The candidate product-line we have chosen is based on the
client-server paradigm with individual models conforming to
various MoCs including simple, iterative, reactive, Thread-per-
connection (TPC), real-time thread-per-connection (RT-TPC)
and process-per-connection (PPC).

By creating specialized variants of ACE middleware for
different types of logging servers, FORMS profiling tools
estimate the memory footprint savings, dependent features,
source files that implement the features, and exercise unit tests
to determine whether the expected performance is met. We
showcase the compile-time metrics that result from middle-
ware specialization.

Our experiments provide interesting insights about the re-
lationship between the number of middleware features being
used and the footprint of the synthesized middleware. The
ACE middleware is implemented in 1,388 source files and
436 features with a resulting footprint of 2,456 KB. Table I
shows that FORMS has achieved significant optimizations - a
64% reduction in the number of source files used, a 60-76%
reduction in the number of features used, and a 41% reduction
in the footprint.

Table I also shows that the PLE variants share many
middleware PIM features as verified by the almost similar
footprint measurements (1,456 KB - 1,500 KB). This means
that the middleware forms a homogenous core that supports
the entire product line. In this case, a single version of
the ACE middleware could be synthesized for the entire
product-line instead of synthesizing individual variants for
each product. Thus, FORMS also provides guidelines as to
whether to synthesize individual variants or a single variant
for the product-line thereby eliminating the need to provide
and maintain multiple specialized middleware variants.

On the other hand, there is a wide disparity between the
number of PSM middleware features used by Simple (107),
Reactive (109), PPC (120) variants and the TPC (176), RT-
TPC (178) variants. This means that there are several unused
middleware features that find their way in the specialized
middleware for the product variants with fewer features. The
reason for such disparity is due to the implementation depen-
dencies designed by the developer intentionally/unintention-
ally. Thus, FORMS can provide a guideline to the middleware
developers to detect and break unnecessary dependencies
within their source code.

IV. RELATED WORK

We survey and organize related work along two different
dimensions: forward engineering and reverse engineering, and
the techniques they use to realize these processes.

A. Forward Engineering Approaches

1) Feature-oriented programming (FOP) for feature module
construction: Current PLE research is supported primarily
through feature-oriented programming (FOP) techniques as
advocated by AHEAD [12], CIDE [13], and FOMDD [7].
These are based on processes that annotate features in source
code and compose feature modules that are essentially frag-
ments of classes and their collaborations that belong to a
feature. These are forward engineering techniques that reply
on clear identification of features, their dependencies and their
interactions right from the requirements gathering stage of the
PLE software lifecycle.

FORMS encompasses the AHEAD and CIDE FOP method-
ologies by leveraging reverse engineering to enable automatic
identification of features and their dependencies and compos-
ing only the features that directly serve the domain concerns
of the product line application. However both approaches rely
on manual identification of features in legacy source code
and manual definition of composition rules. FORMS can be



Networked Logging Applications Product Line Outcome of Closure Computations Synthesized Middleware
Product Variant # of Middleware # of Middleware Size of Closure Static Footprint

(described in Domain Concerns) PIM Features PSM Features Set (PSM files) (KB)
Simple (Iterative) Logging 9 107 502 1,456

Reactive Logging 12 109 502 1,456
Thread Per Connection Logging 11 176 502 1,456

Real-Time Thread Per 12 178 502 1,456
Connection Logging

Process Per Connection Logging 12 120 508 1,500

TABLE I
Outcome of applying FORMS to a Product-line of Networked Logging Applications

potentially extended by integrating both AHEAD and CIDE
based FOP approaches to support fine-grained composition of
feature modules.

2) Aspect-oriented programming (AOP) for modularizing
crosscutting concerns: AOP provides a novel mechanism to
reduce footprint by enabling crosscutting concerns between
software modules to be encapsulated into user selectable
aspects. FACET [4] identifies the core functionality of a
middleware framework and then codifies all additional func-
tionality into separate aspects. To support functionality not
found in the base code, FACET provides a set of features that
can be enabled and combined subject to some dependency
constraints. By using AOP techniques, the code for each of
these features can be weaved at the appropriate place in the
base code. However FACET requires manual refactoring of
the middleware code into fine grained aspects for compo-
sition. FORMS does not require manual refactoring of the
middleware code necessitated by the AOP techniques through
its automated detection of features and feature dependencies
within middleware source code.

3) Combining modeling and aspects for refinement: The
Modelware [5] methodology adopts both the model-driven
architecture (MDA) [14] and AOP. The authors use the term
intrinsic to characterize middleware architectural elements
that are essential, invariant, and repeatedly used despite the
variations in the application domains. They use the term
extrinsic to denote elements that are vulnerable to refinements
or can become optional when the application domains change.

Modelware advocates the use of models and views to
separate intrinsic functionalities of middleware from extrinsic
ones. Modelware considerably reduces coding efforts in sup-
porting the functional evolution of middleware along different
application domains. These are mainly forward engineering
approaches that are dependent upon a efficient design process.
However most of the existing general purpose middleware
has already been developed and there is a need to facilitate
its specialization for domain-specific use through top-down
reverse engineering approaches like FORMS.

Moreover, both FACET and Modelware being forward engi-
neering approaches there is no automatic solution to manually
annotating features and identification of cross-cutting concerns
and modularizing them.

B. Reverse Engineering Approaches

1) Design Pattern Mining from source: Substantial research
has been performed on discovering design and architectural
patterns from source code [15]. However, most such tech-
niques are informal and therefore lead to ambiguity, impreci-
sion and misunderstanding, and can yield substandard results
due to the variations in pattern implementations. In order to
specialize middleware such design pattern mining techniques
need to be well supported by round-tripping techniques pro-
vided by FORMS that will enable any specializations at design
level to reflect back into the source code.

Since forward engineering techniques focus on feature iden-
tification, static, and dynamic composition, they rely on strong
modular boundaries. However, reverse engineering approaches
like source code analysis which is the base of FORMS
can prove to be beneficial to identification of features that
span module boundaries and identify discrepancies in the
intended logical design of the middleware and their physical
implementations.

V. CONCLUDING REMARKS

Although forward engineering provides systematic and el-
egant techniques for synthesizing specialized middleware, it
does not modularize middleware implementations along do-
main concerns that are often entangled and crosscut conven-
tional horizontal modularization boundaries in middleware.
FORMS has shown that reverse engineering techniques based
on source code analysis offer a promising and viable al-
ternative to modularize domain concerns within middleware
code. Source code analysis techniques tend to be coarse
grained at best but can provide crucial pointers to the lack of
proper implementation methods by showcasing the difference
between the intended PIM module designs and their PSM code
implementations.

Lessons Learned and Open Issues: The following lessons
were learned using FORMS including potential enhancements
and its limitations.

• FORMS can advise middleware developers to correct
their implementation mistakes by breaking unwanted
dependencies with the middleware modules. This will
help reduce the coupling between the modules within
the middleware layers and minimize the presence of
unused features in feature modules. However it will not
automatically decompose the middleware along domain



concerns. FORMS will be required to perform vertical
decomposition of the middleware.

• Furthermore, lack of fine granularity of modularization
in their design make general-purpose middleware heavy-
weight solutions and a performance overhead. FORMS
needs to tackle the fine-grained modularity by automati-
cally annotating code and generating the middleware spe-
cialization directives. We intend to investigate such issues
in our future work by further improving the FORMS
tools based on the anomalies and discrepancies that
FORMS can discover and by integrating contemporary
tools like CIDE, AHEAD and FOCUS to support fine-
grained feature composition.

• FORMS helps in identifying the core middleware fea-
tures needed by the product-line. FORMS can take a
multiset intersection of all the closure sets that are
generated for the different product-line variants. This
intersection represents the commonality whereas the rest
of the features represent the variability.

• FORMS can potentially figure out the differences be-
tween the logical middleware core as designed and envi-
sioned by the middleware architect and physical middle-
ware core estimated by the closure computation.

However following are the open issues that are still unre-
solved:

• How do we handle feature interactions? Features are
often known to interact [16] with each other. Naturally,
any ad hoc process will not produce the correct results
nor will it work across different domains.

• How to efficiently annotate middleware source code
for feature identification and management? There is
not only a need to systematically design middleware
ground-up but also a need to refactor contemporary mid-
dleware for feature pruning/augmentation. This can only
be achieved by devising efficient advanced annotations
that identify middleware features, their dependencies and
interactions, which can then be leveraged by tools like
FORM.
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