
A Modeling Framework to Integrate Exogenous Tools for Identifying Critical Components in Power Systems

<u>Saqib Hasan</u>, Abhishek Dubey, Ajay Chhokra, Nagabhushan Mahadevan, Gabor Karsai, Xenofon Koutsoukos Vanderbilt University

Cascading Failures: Power Transmission Systems

- Power systems are vulnerable to both physical-attacks and cyberattacks.
- ✤Dec 2015 Ukraine and July 2012 India are recent blackout cases.
- Need for detailed understanding of cascading failures to identify critical components for improving system reliability and resiliency.
- Simulation platforms including various aspects of the system either do not exist or are typically very expensive.

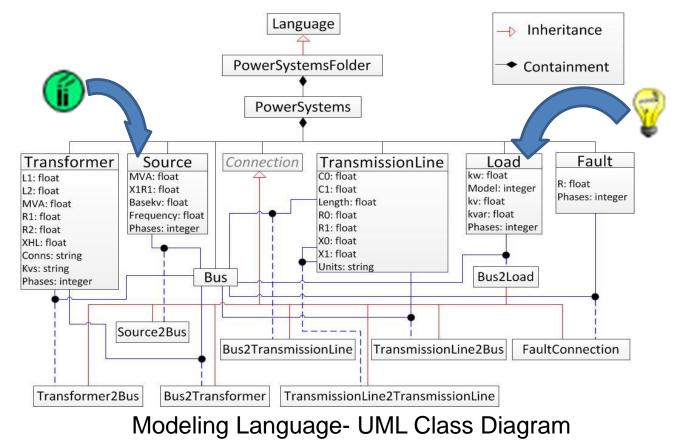
Cyber-Attack Example

2

Power System

Cascading Failures: Power Transmission and Distribution Systems

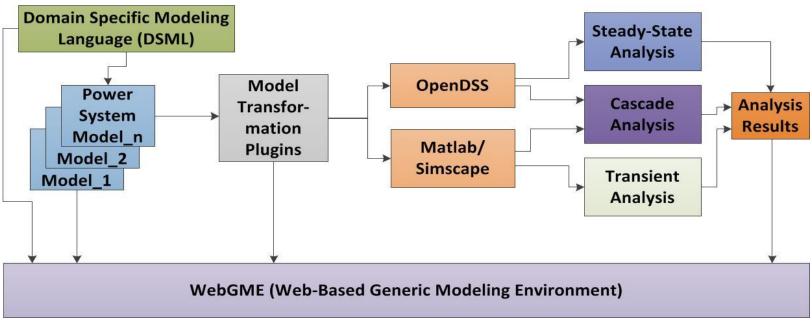
- Use of multiple simulation platforms (open source etc.)
- Tools have their own modeling semantics and specifications and are limited in their capabilities (GridLab-D, Modelica, PSCAD etc.).
- System modeling in multiple simulation platforms is error prone and time consuming.
- Need for a common Domain-Specific Modeling Language (DSML).
- Need for a System framework to integrate exogenous tools together.

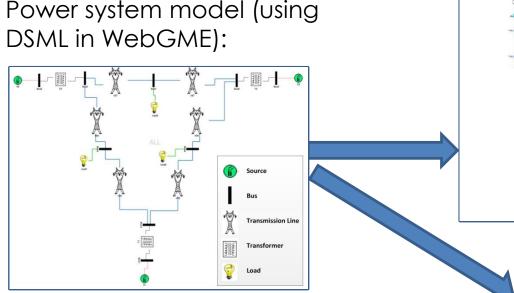

Contributions

- Describes a Domain-Specific Modeling Language (DSML) for power systems.
- A System framework is proposed that integrate exogenous tools together.
 - System modeling using the developed DSML.
 - ✓ Identifying the type of analysis to be performed.
 - Model transformation based on the specifications of a particular tool.
 - Choosing the appropriate tool(s) and performing the analysis to identify critical components.

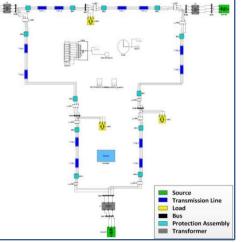
Modeling Language

Each object has a name and a set of attributes that define their individual properties.


Objects are connected together using the rules defined by connection object.


System Framework

Model development based on the semantics and rules defined in DSML.


- Model transformation considering object properties of individual simulation platforms.
- Reduces system modeling time and error.
- Modeler can select the appropriate simulation tool to perform the required analysis.

Modeling and Model Transformation

Power system model (in SimScape):

clear

New object=circuit.9bus //Define Sources

//Define the loads

calcv

set freq=60 set mode=snapshot solve

//Define the voltagebases set voltagebases=[16.5, 18, 13.8, 230]

//Define the transmission lines and transformers

Includes: Behavioral model of protection elements under cyber attack

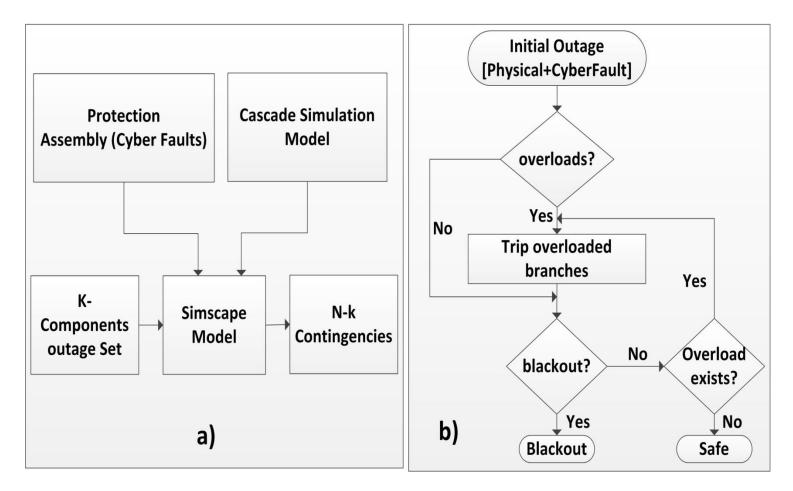
Power system model (in OpenDSS):

New Line. TL48 bus1=Bus4 bus2=Bus8 Bl= 0.0529 R1=0.13225 X1=.4494 X0=.8972 C1=8.82 C0=5.188 length=67.1371 units=mi New Line. TL49 bus1=Bus4 bus2=Bus9 R1=0.08993 R0=0.224825 X1=.4863 X0=1.2139 C1=7.922 C0=4.74 length=67.1371 units=mi New Line. TL85 bus1=Bus4 Bus2=Bus58 R1=0.16928 R0=0.4232 X1=.8516 X0=2.126 C1=5.53 & C0=9.025 length=31.0686 units=mi

New Line.TL96 bus1=Bus9 bus2=Bus6 Al=0.20631 R0=0.5157 X1=.8972 X0=2.2959 C1=17.95 C0= 10.553 length=62.1371 units=mi New Line.TL57 bus1=Bus5 bus2=Bus7 Al=0.04965 R0= 0.11241 X1=.3808 X0=.7615 C1=7.471 C0= 4.394 length=62.1371 units=m New Line.TL67 bus1=Bus5 bus2=Bus7 R1=0.062951 R0= 0.1573 Y1=.5331 X0= 1.3380 C1=0.474 C0= 6.15 length=62.1371 units=m

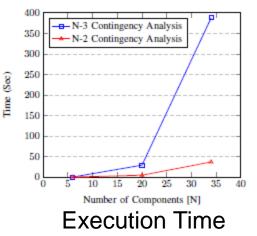
New transformer.T1 phases= 3 buses= (Bus1 Bus4) Kvas=(100000 100000) conns ' wye wye' kvs= ''16.5 230'' XHL=5.7147 New transformer.T2 phases= 3 buses= (Bus2 Bus5) Kvas=(10000 100000) conns ' wye wye' kvs= ''18.230'' XHL=5.6917 New transformer.T3 phases= 3 buses= (Bus3 Bus6) Kvas=(10000 100000) conns ' wye wye' kvs= ''13.8 230'' XHL=5.0917

New vsource.Source1 bus1=8us1 phases=3 basekv=16.5 Mvasc3=247.5 r1=.0000001 x1=0.0000001 New vsource.Source2 bus1=8us2 phases=3 basekv=18 Mvasc3=127 r1=.0000001 x1=.0000001 New vsource.Source3 bus1=8us3 phases=3 basekv=13.8 Mvasc3=128 r1=.0000001 x1=0000001

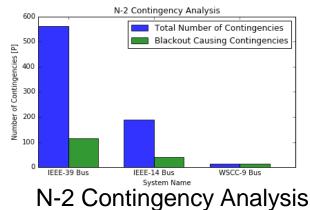

New Load.Load1 bus1=Bus8 phases=3 kVA=125000, 50000 Kv=230 conn= delta model=1 New Load.Load2 bus1=Bus9 phases=3 kVA=90000, 30000 Kv=230 conn= delta model=1 New Load.Load3 bus1=Bus5 phases=3 kVA=100000. 35000 Kv=230 conn= delta model=1

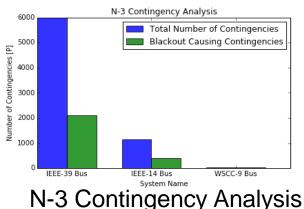
Why two models?

- Simscape: fine grain time-domain analysis including discrete components (slow)
- OpenDSS: steady-state analysis (fast)


Cascade Algorithm Flowchart

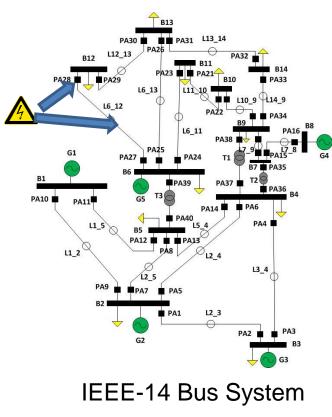
Based on initial outages (physical faults, cyber-faults or both) causing component(s) overloading.




Case Study: Identification of Critical Components in Power Systems

- Case study performed on:
 - WSCC-9 Bus System.
 - IEEE-14 Bus System.
 - IEEE-39 Bus System.
- OpenDSS Time-Independent Analysis.
 - Time Independent fast cascade analysis is performed using cascade framework.

- Ideal for quickly identifying critical transmission lines based on initial outages.
- Power Systems are usually N-1 tolerant (based on NERC).
- N-2, N-3 contingency analysis is performed (168/901, 2515/7144).


Case Study: Identification of Critical Components in Power Systems

Matlab/Simscape Time-Based Analysis.

- Fine grain analysis (Time domain analysis and cyber-faults injection in protection assemblies).
- A Physical fault and a cyber-fault (Stuck close breaker fault).
- Identification of critical protection assemblies causing blackouts.

Critical Protection Assemblies Categorization

Category Name	Component Name	Load Loss
Category I	PA_BR4, PA_BR13, PA_BR14	Above 40%
Category II	PA_BR6, PA_BR7	Very close to 40% (39.22%)
Category III	PA_BR18, PA_BR22, PA_BR34	> 25% and < 35%

Conclusions

A Domain-Specific Modeling Language is developed for power systems.

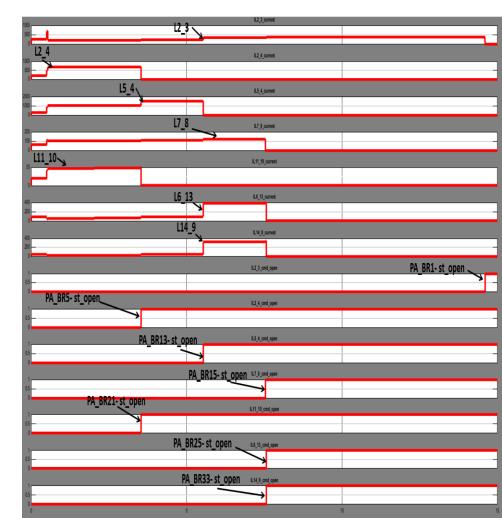
A System framework is proposed that integrate exogenous tools and identify critical components in power systems.

Identified critical components need to protected more for improving system resiliency.

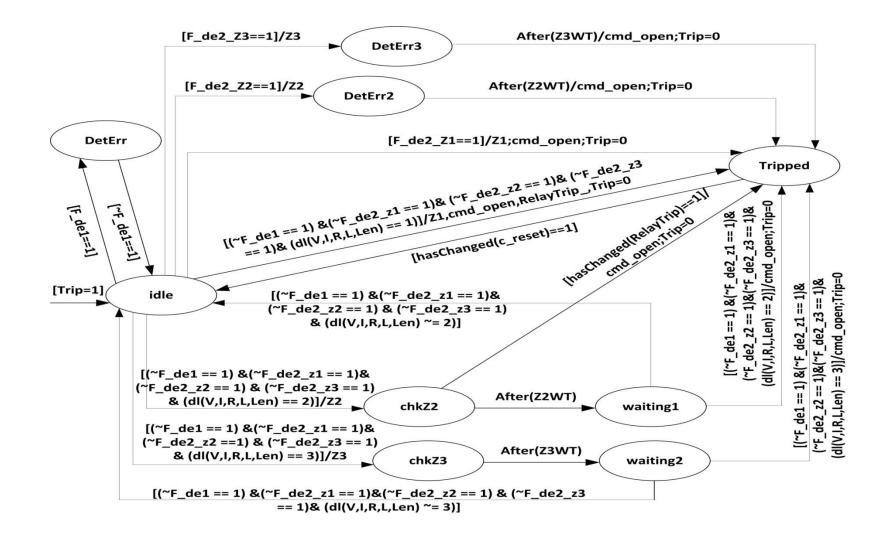
Acknowledgements

Foundations of Resilient Cyber-Physical Systems(FORCES).

Thank You!



Cascade Scenario with Timing Details and Cyber-Faults in Protection Assemblies


TABLE II: Sequence of cascading events

Time(sec)	Event Description	
0.500	F: 3 ϕ -G fault- Line L3_4, Stuck close fault- PA_BR4.	
0.501	D: Z1, Z3 in PA_DR{3,4}, PA_DR1, 'P1_OL'	
	in PA_OR3, 'P2_OL' in PA_OR{5,1,13}, 'P3_OL'	
	in PA_OR{9,15,21}.	
	CR: 'cmd_open' in PA_BR3.	
0.532	S: st_open-PA_BR3 is opened.	
	L: Line L3_4 tripped partially.	
2.000	F: Spurious detection fault in PA_DR27.	
	CS/CR: 'cmd_open' in PA_DR27/PA_BR27.	
2.031	S: 'st_open'-PA_BR27 is opened.	
	L: Line L6_12 is removed.	
3.503	D: 'P2_OL' in PA_OR13.	
	CS/CR: 'cmd_open' in PA_OR{5,21}/PA_BR{5,21}.	
3.534	D: 'P2_OL' in PA_OR31.	
	S: 'st_open'- PA_BR{5,21} are opened.	
	L: Lines L2_4, L11_10 removed.	
5.505	CS/CR: 'cmd_open' in PA_OR13/PA_BR13.	
5.536	D: 'P1_OL' in PA_OR{25,33}, 'P2_OL' in PA_OR	
	{35,40}, 'P3_OL' in PA_OR{29,37}.	
	S: 'st_open'-PA_BR13 is opened.	
	L: Line L5_4 is disconnected.	
6.536	D: 'P1_OL' in PA_OR31.	
7.503	CS/CR: 'cmd_open' in PA_OR15/PA_BR15.	
7.534	S: 'st_open'-PA_BR15 is opened.	
	L: Line L7_8 is removed.	
7.538	CS/CR: 'cmd_open' in PA_OR{25,33}/PA_BR{25,33}.	
7.569	D: 'P3_OL' in PA_OR1.	
	S: 'st_open'- PA_BR{25,33} are opened.	
	L: Lines L6_13, L14_9 are removed.	
14.571	CS/CR: 'cmd_open' in PA_OR1/PA_BR1.	
14.602	S: 'st_open'- PA_BR1 is opened.	
	L: Line L2_3 is tripped.	

F: Occurrence of fault events, **D:** Detection of zone faults and overloads, **CS/CR:** Send/Receive commands from relays to circuit breakers, **S:** Status of the circuit breakers, **L:** Outage of lines.

Distance Relay Behavioral Model

