
UDM: An Infrastructure for Implementing Domain-Specific
Modeling Languages

Endre Magyari, Arpad Bakay, Andras Lang, Tamas Paka, Attila Vizhanyo,

Aditya Agarwal, and Gabor Karsai
Institute for Software-Integrated Systems

Vanderbilt University
Nashville, TN 37235, USA

Abstract
Domain-specific modeling languages amortize the cost of the development of a language over all the
software products they can be used for. This paper describes an infrastructure for developing DSMLs
and using them in a systematic manner. The infrastructure consists of a modeling language (UML
class diagrams), a modeling tool, a code generator, and a number of generic libraries that provide
support for object performance in several forms.

Introduction
Domain-specific modeling languages (DSML) allow domain-oriented software development, where
models (expressed using the DSML) capture the variabilities present in the various applications of a
product line and generators are used to produce the code that implements those variabilities. The cost
of the development in this case includes the cost of developing a DSML, and then using it for building
all the elements of a product-line, hence any improvements in the DSML development can greatly re-
duce the overall cost.

Rapid definition and implementation of DSML-s necessitates the construction of a data ac-
cess and manipulation layer that forms the “backbone” that model editing, database, and the genera-
tor tools will use. This data layer should be designed in accordance with the abstract syntax of the
DSML, and should provide an interface to some underlying, possibly persistent data storage mecha-
nism. The data layer should also follow some well-formedness rules for the data, such that data struc-
tures instantiated satisfy integrity constraints specified in the abstract syntax of the DSML. Further-
more, the data layer should provide services for parsing and unparsing the (textual or visual) DSML,
as well as support for converting the data structures of the abstract syntax into problem-specific tex-
tual form (e.g. instantiated C code templates). Additionally, to support generic (non-language-specific)
tools, the data layer must be reflective; i.e. it should allow access to the meta-data of the DSML. The
data layer also must satisfy efficiency requirements; although it is understood that one trades off gen-
erality for performance, but the penalty paid should be acceptable.

We have designed and developed an infrastructure: Unified Data Model (UDM) framework
that facilitates the construction of DSML-s and provides services as described above. In this paper we
describe the design considerations used in implementing UDM, explain how its layers were con-
structed, introduce the supporting tools, and discusses applications where it was used.

Design considerations for UDM
The design of the UDM framework was heavily influenced by the following objectives.
1. Use a UML-based tool for specifying the data model. The first step in using the UDM framework is

to describe the data model in a concise, preferably visual way. UDM relies on GME: a generic
modeling tool [2], and GME’s support for the UML class diagrams, called the GME/UML para-
digm.
The GME/UML paradigm implements a subset of the OMG UML notation guide[5]. The supported
features include packages, class-diagrams, inheritance, composition, simple- and association-
class based association, scalar, array, volatile (non-persistent), and ordered attributes, and four
basic types for scalar values. Cardinality information can be specified for the compositions and
association relationships, as well as for attributes. The syntax for the cardinality and attribute
specifiers complies with the OMG UML notation guide.

2. Provide support for UML metadata interchange (XMI). The UDM framework defines its own format
to represent UML metadata, which is the intermediate file between the GME UML modeling envi-
ronment and the code-generator that produces code for the interfaces. In essence, this is a con-
cise, XML representation of the UML class diagram.

OMG has also defined the XML Metadata Interchange (XMI) specification [6] to facilitate the ex-
change of UML metainformation between UML modeling tools and UML metadata consumers
(like code generators).
It is important to understand that the UDM metadata is also a UDM model, when the metamodel
is the UML meta-meta model.
As the UDM-based metadata representation format serves the same purpose as the XMI specifi-
cation, and whereas both are serialized using an XML syntax, the UDM framework provides a
conversion tool to facilitate interoperability. This allows
1) UDM metadata be exported in XMI format, for use as input to XMI-based tools, such as code

generators, and
2) XMI metadata exported by other UML modeling tools to serve as input for the UDM frame-

work. Moreover, UDM API can be generated directly from XMI metadata.
3. Provide object-oriented C++ interfaces that support convenient, programmatic access. The ob-

ject-oriented approach is followed to describe the data structures in the form of UML class dia-
grams. Note that in UDM we are focusing on pure data, thus all methods of class objects are re-
lated to data access and manipulation.
Convenient access methods are generated for object creation/removal, link creation/removal, and
attribute setters/getters. The arguments as well as the return types of the access methods are
strictly typed, as implied by the class-diagram. Internally, run-time type checking is strictly en-
forced in the UDM framework.

4. Provide generic C++ UDM libraries for implementing the data storage. The UDM framework pro-
vides a set of static libraries, which are generic and can be used with any metadata, and are in-
dependent of specific class diagrams, even though the access methods of classes have strictly
typed prototypes. This is achieved through generic, inlined template classes that are instantiated
in the generated API. The biggest benefit of this generative approach is that the UDM libraries are
generic and suitable for any UML metamodel; they don’t have to be recompiled for a specific UML
metamodel. Also a great benefit is that a UDM application linked with the UDM libraries is able to
access models without having to contain any generated (domain-specific) code. However, in such
cases the API is not available and access to the model is through a generic, non-domain-specific
API. The metamodel of UML (as a DSML) must also be available for loading it runtime, as an in-
stance of the UML meta-meta model. This is used in what we call dynamic metamodel loading.

5. Offer a rich feature-set including support for creating subtypes and instances from instances. Be-
yond the normal UML notions like inheritance, composition, association, attributes etc., the UDM
framework also supports an inheritance mechanism at the level of instances. This means that an
object can be subtyped or instantiated. The subtyped or instantiated object “inherits” all the prop-
erties from its archetype: the children, attribute values, and associations. It also remains synchro-
nized to its archetype: whenever the archetype is changed, the subtyped/instantiated objects are
also changed. The subtyped objects could be modified independently, while the instantiated ob-
jects cannot be modified independently, only through their archetype.

6. Multiple storage technologies. The UDM libraries called “backends” provide persistence services
for the data structures described in the UML class diagram. Multiple storage technologies are
available: the XML/DOM backend facilitates the data exchange with other tools via XML files, the
MGA backend uses the native API of GME to access data within GME model databases, and fi-
nally the MEM/Static backend uses memory data structures and compact binary files for persis-
tence.

7. Platform-independence. The UDM libraries, headers and tools are platform-independent, and cur-
rently there are releases for Win32 and Linux platforms.

The UDM Tools and Architecture
The UDM (Universal Data Model) framework defines a development process and a set of supporting
tools that are used to generate C++ programmatic interfaces from UML class diagrams of data struc-
tures. These interfaces and the underlying libraries provide convenient programmatic access and
automatically configured persistence services for data structures as described in the input UML dia-
gram.

GME UML

GME/UML
Interpreter

UDM.exe
XML
(Meta)

<Uml.dtd>

.cpp .h .dtd

User Program

UDM Generated code

API Meta-
objects

XML data file

Validates

UdmCopy

XML MEM MGA

GME

Backends

Binary
file

CORBA

Network

Generic API
OCL
Eval

Figure 1 – UDM tools and architecture
The first step in using the UDM framework is to create a UML class diagram in the GME/UML

modeling environment. The second step is to interpret the class diagram by using a GME model inter-
preter. This interpreter module walks the class-diagram, and generates a corresponding XML descrip-
tion of the UML class-diagram – also referred to as ‘metainformation’ or ‘metamodel’. The third step is
to generate the API for the class-diagram; this is done by the Udm.exe tool: essentially a code gen-
erator. This tool reads the input XML and generates corresponding .h, .cpp, and .dtd files. The .h file
will contain the generated API (class definitions), while the .cpp file contains a function, which initial-
izes (at the first time when it is needed) the meta-objects – the static members of the classes in the
generated API.

The next step is to create an application, which includes the generated API and compiles in
the application the generated .cpp file. The application is typically linked with a generic library
(“MEM”) that contains the implementation of user–defined objects as simple memory blocks. Such an
application is be able to open a data network (containing the objects), create/access objects using the
generated API in memory, and also serialize the container and its content to/from a compact, binary
file. In order to use the other backends (XML, MGA) additional macro definitions need to be added to
the source after including the generated .h file and the applications needs to be linked against addi-
tional libraries. When using the MGA backend, MGA files are created which can be opened directly in
GME [2] and the objects can be viewed visually – objects with hierarchy can be opened as diagrams,
links between objects can be seen, etc. When using the XML backend, XML files are created which
can be exchanged with other XML-based applications. The DTD file generated by Udm.exe is needed
to create new or parse existing XML files. This ensures that the data in the XML file conforms to the
metamodel (i.e. the UML class-diagram).

Another binary utility, UdmCopy.exe can be used to copy a data network to another data net-
work. The source and the destination data networks can reside on different backends (MEM to GME,
XML to MEM, etc.). This utility also requires the XML file holding the metainformation for the source
data network.

At the heart of the UDM libraries there are two pure virtual classes: ObjectImpl and DataNet-
work, which define the abstract interface to access and manipulate objects in a generic way in the
backends. The backend libraries then implement the generic interface and thus provide persistency
services.

Figure 2 - Core classes
All interactions between the generated API-s and the different backends can only occur

through the methods of these two abstract classes. The Object class acts like a smart-pointer on Ob-
jectImpl – it holds a reference to a real object and implements the proxy pattern and a reference
counting mechanism. Objects are contained in data network containers. The Object class is the base
class for all the classes in the generated APIs. The main idea, which keeps the whole framework rela-
tively simple, is that all the objects - regardless of where they are in the conceptual hierarchy – should
be accessed in the same manner. All the objects – the meta-meta model objects (Uml::Class,
Uml::Diagram, etc.), the UML diagram(meta model – models of DSMLs from which generation occurs)
objects and the data objects(objects created in DSMLs) - are all instances of a class which imple-
ments the ObjectImpl pure virtual class. The meta-meta model is created via a UDM-generated API
(Uml.h, Uml.cpp), from a small class-diagram which recursively defines the basic UML notions
(Uml::Diagram, Uml::Class, Uml::Attribute , etc.), i.e. the metamodel of UML itself, as shown on Figure
3. Since the above metamodel of UML is capable of describing itself, it is possible to use this meta-
meta model as a metamodel.

On the other hand, the ObjectImpl pure virtual class requires that all implementations of this
class should hold a type information – which is an instance of the Uml::Class class. This leads to an
interesting recursion: an instance of ObjectImpl contains an instance Uml::Class class – which is de-
rived from Udm::Object which contains an instance of Udm::ObjectImpl. The tail of this recursion is at
the Uml::Class meta-object, which has itself as type information.

API generator
The UML description of the data structure is translated into C++ class definitions that define an API
that is convenient for the programmer, and gives access to all components of the data structure. For
each (abstract or concrete) UML class in the source diagram, a C++ class is defined with the corre-
sponding name. All the classes belong to a namespace, which is (by default) named after the pack-
age that the class diagram belongs to.

Figure 3 - The UML meta-meta model
The class definitions allow the creation of object instances. Such instances are not true ob-

jects, just handles (references) to objects that reside in the backend (similarly to the handle-body id-
iom defined by Coplien [7].). This has the following consequences:
1. An un-initialized instance variable is an empty reference (reference to Udm::Null).
2. Several variables may refer to the same instance, and simple assignment of variables does not

imply the creation of a new instance.
3. New objects are always created by the ClassName::Create() static member function, which is

automatically defined for all classes. This function expects the specification of a parent object (ex-
cept for a single root object, every object must have a parent), and an optional child role.

Inheritance in the UML diagram is implemented as C++ public inheritance. Consequently, all attribute,
composition, and association access methods of the base class are available in the derived classes.
Multiple inheritance is also supported, with C++ inheritance relations converted to virtual as neces-
sary.

All classes in the hierarchy are descendants of Udm::Object, which defines the generic func-
tionality of objects in UDM. An object can decide its real type through the static variable meta. Each
class has a static and constant type description object accessible via classname::meta. These allow
the determination of compatibility between classes, objects and variables. The type information ob-
jects also provide reflection information (associations, attributes).
UML composition (containment) relationships are translated into access methods at both the 'child'
and 'parent' side. These access methods return instances of wrapper classes that can be used to
read and assign new values to the relationships. Objects can access their parent and children in two
ways:
1. Access via composition relationship: returns objects only if they are linked together with the com-

position specified.
2. Access via parent/child type: returns all parent/child objects that match the specified data type (ei-

ther directly or through inheritance), regardless of the composition relationship used.
A basic concept of UDM data networks is that objects are organized in a tree with a single root object,
and thus all objects have a containing parent. In general, the lifetime of UDM objects is bound to their
containment in the object tree. New objects are always created with their parent explicitly specified,
and likewise, an object is deleted when no other object contains it any longer.

For each UML attribute an access method is defined in the corresponding C++ class. These ac-
cess methods are named after the attribute name, and return an object. These objects can be con-
verted into or assigned new values of a suitable data type. Supported UML data types are String, In-
teger, Boolean, and Real, which are mapped to the C++ data types string (as defined in C++ STL), in-
teger, bool, and double respectively. In case of array attributes the object returned by the access
method also supports the [] operator to return an object for a specific item in the array. This object can
also be converted, modified or assigned new values of a suitable data type.

Associations are accessed in a way very similar to compositions, with the only difference that as-
sociations are symmetric. The access methods for both ends of the association are named after the
corresponding association role names. Associations without names at either end are considered non-
navigable in that direction, thus no corresponding access method is generated. The type of the wrap-
per object returned by an access method again depends on the cardinality of the corresponding end
of the association: it can be read or written as a single variable (if the maximum cardinality is 1) or
through an STL set<T> of compatible objects.

Subtypes, Instances and Archetypes are accessed through the Derived(), Instances() and Arche-
type() non-static methods, which are generated for each class. Derived and instantiated objects can
be created with the CreateDerived(), CreateInstance() – also non-static, generated methods for each
class.

As mentioned above, the UDM API only exposes smart pointers to the user. Thus traditional ex-
tension of the API via inheritance is not a suitable option. New attributes added to the inherited class
will reside only in the pointer and not in the object. To overcome this problem, UDM allows the users
to specify volatile attributes in the class diagram. These attributes reside only in memory and not in
any of the persistent storage formats. Functionality however cannot be added in a similar fashion. For
this reason the UDM implements the visitor pattern [11]. The code generator can generate (based on
a command line switch) a base visitor class and the accept method for each generated class. Users
interested in adding extra functionality can inherit from the base visitor and add new functionality
and/or create their own traversal mechanisms.

UDM also provides (limited) support for metamodel evolution: the regenerated API can cope with
existing models if either of the following conditions is met:
1.

2.

the new metamodel does not change or remove existing definitions(classes, contain-
ment/association relationships, attributes)
existing models which are to be accessed with the regenerated API do not contain instances of
existing definitions which were removed or changed in the new metamodel.

Meta access and dynamic metamodel loading
 During normal UDM operations, the objects of the metamodel (that represent the abstract
syntax of the DSML) are instantiated in the generated .cpp file. The generated .h file provides a con-
venient API to access the objects representing the “terminal symbols” of the DSML.
 As mentioned earlier, the UDM framework is capable of operating in a generic way, which en-
ables access to objects made according to a specific DSML without having to compile in any gener-
ated code (that is specific code generated from the metamodels of the DSML, in our case UML class
diagrams) in the application. This is achieved by loading the metamodel at run-time and then creating
and accessing the DSML objects through a generic API. The domain-specific objects will have type
pointers pointing to the (dynamically loaded) meta objects. The metamodel is dynamically loaded from
the intermediate XML product between the interpreter and the code generator. Since that XML file
also acts as the persistent form of a data network of objects of the “UML” DSML, it is loaded exactly
the same way as any other model. This makes possible to develop highly generic applications, which
can operate on objects created in various DSMLs relying completely on reflection through the meta-
model loaded run-time. A good example for such an application is the UdmCopy tool, which is a bi-
nary executable that can create a copy (possibly in a different physical representation) of a data net-
work created in any DSML. Even if the domains-specific API is missing, during generic access to the
objects, and the C++ template classes are not instantiated, the generic API remains strictly typed and
types are checked through reflection. Generic methods like GetChildren(kind, role) require meta-
objects (Uml::Class, Uml::AssociationRole) as parameters instead of names.

The backends
XML Backend
The XML backend is based on an extended version of the standard XML/DOM interface, implemented
by the Xerces-C++ parser [9]. The UDM generator tool - along with the API files- also generates the
DTD for the XML files compatible with the interface definition. The basic XML-processing facilities
provided are loading (parsing) an XML file into the backend, and saving the backend data structure
into an XML file.
The XML backend imposes the following restrictions:
• XML does not have a good technique for representing associations and especially lacks support

for association classes. These UDM features are thus implemented through specially named XML
ID/IDREF attributes.

• The current version neither validates the data tree when it is modified, nor validates the tree when
it is saved, so the validity of the generated XML document is not guaranteed. The recommended
way to validate XML output is to reload it again as the last step of generation.

• There is a single root object, which is created as the first object when a data tree is opened (or
loaded). The root object cannot be changed.

• The XML backend permits objects to exist without parents temporarily. If such an object is later
attached to any parent, it will become a normal object and recorded in the persistent data.

GME Backend

The GME backend connects the interface to the MGA library[2], which is a component of the
GME tool. The operation of the MGA library is also based on meta-information stored in its internal
meta-database.

The GME backend provides functions for creating, opening, and closing GME databases, as
well as an API for simple transaction control. It is also possible to create GME interpreters and other
components based on UDM.

Since GME’s metamodeling environment supports metamodeling constructs which are not
supported in UML (atoms, models, FCOs, sets, members, references, aspects, connections, etc.[2]) a
number of conventions have been defined on how to map these notions to UML notions:
- GME atoms, models are represented as UML classes
- GME set-member, referenced-referee relationships are represented as associations without an

association class, with a special role names at their end points.
- GME connections can be represented as associations with or without association class, depend-

ing on whether the GME connection has attributes that need to be accessible from the UDM API.
The GME backend also provides transaction support on UDM data networks.

MEMory Backend
In the case of the MEM backend all the objects are stored in memory, in heavily hashed structures,
which allow fast access to all associated objects (children and links). The hash keys are based on
unique identifiers of the objects formed from their address in the memory – making “find-object” op-
erations extremely fast.

The MEM backend also has a compact binary file-format, which can be used to save and re-
store static data networks. The MEM backend also can be used as a non-persistent backend, with the
data network and all the objects created in runtime. As expected, in such cases there are no file op-
erations at all. UDM uses a MEM data network (without persistence) for the meta-objects and meta-
meta objects, which are created at startup time.

CORBA Backend
The CORBA backend provides support for marshaling/unmarshaling UDM data networks into a “flat”,
“network” form. It works on the data networks in the same manner as other backends, but it is slightly
different from the other local backends: it uses remotely defined and stored metamodel information.

The key concept is (1) to have remotely defined metamodels maintained by a server applica-
tion, such that the metamodels describe the same information as the local metamodels in the other
cases, and (2) to have the client backend use these metamodels transparently, via a communication
protocol, as if they were local metamodels. Thus, the programmer is able to work the same way with
any UDM specific data using this remote metamodel, as if the data had a local metamodel.
The UDM API generator generates C++ class definitions giving access to all components of the re-
mote metamodels. The CORBA backend was created and is being maintained in the OTIF (Open
Tool Integration Framework) project [8].

The communication between the server and the clients using the CORBA backend relies on
the CORBA mechanisms. A CORBA IDL file defines interfaces to access the (server-hosted) meta-
models, as well the data structures used to transfer data objects between clients and the server. The
CORBA backend requires one server application, which is responsible for maintaining and giving ac-
cess to all the metamodel information. OTIF contains such a server that provides these services, and
implements the interfaces specified in the same IDL.

The CORBA backend extends the core of the UDM framework: the ObjectImpl and DataNet-
work pure virtual classes. The CORBAObject class extends the ObjectImpl class to support remote
metamodel accessibility; however it does not support create and setter methods: the (remote) meta-
model information is read-only. The CORBADataNetwork class extends the DataNetwork class with
the functionality to send and receive UDM data networks to and from a server. The data networks are

created in a client, sent to the server, and fetched by a/another client from the server, using the
CORBA backend. The send and receive operations transform (effectively: marshal and unmarshal)
the data structures into a “network” format, and this process is hidden from the programmer. The
CORBA backend was designed and implemented in that way that the programmer needs to do only
minimal changes to the source code of an application when switching from using local to remote
metamodels.

OCL Evaluator
Object Constraint Language (OCL) is a standard, predicate-logic oriented language that allows the
user to describe sophisticated well-formedness and integrity rules over objects, which are very hard or
impossible to express with only class diagrams.

The syntax and the semantics of OCL are close to other formal notations. A standard OCL
expression consists of the context (Class) on which the rule will be evaluated and the equation that
evaluates to a Boolean value regarding to whether the constraint is satisfied for a particular object or
not. The language has features for retrieving attribute values, and for accessing association-ends
specifying the role and/or the name of the class at the association-end. The user may traverse the en-
tire data network via containments collecting the objects. OCL introduces predefined container types
such as Sets, Bags and Sequences with which the user can iterate over the collections cumulating
data (i.e. the generic iterate iterator) or may create more complex operations. OCL allows to simplify
and to make a rule more readable using variable declarations or definitions (the latter are introduced
by OCL 2.0). With these features it becomes possible to take a complex expression apart and to
make the parts reusable in other constraints.

From the standard OCL rules (invariants, preconditions and postconditions) only invariants
are applicable in UDM because the other ones are associated with methods that UDM does not sup-
port. The constraints as well as definitions (mentioned above) can be specified in GME UML as part of
the class diagram.

In the application code, the user may access OCL related objects over the generated API (us-
ing constraints() and definitions() calls on Udm::Class). Since UDM allows alteration of the metamodel
at run-time, the expression of a rule can be modified, even new definitions may be introduced or con-
straints can be eliminated.

To evaluate the constraints the user has to call the OCL engine with the ocl::Initialize() com-
mand. Since constraints found in the metamodel are parsed and analyzed during the initialization, it
always has to be done at least once before evaluating and/or if the constraints were altered. The
ocl::Evaluator class plays the main role in the evaluation process, and its constructor requires the con-
text of the execution (i.e. a udm::Object) with an optional set of constraints obtained from classes. If
this set is empty, all applicable rules will be evaluated for the object or for a sub-tree defined by the
context. The constraint checking is performed by ocl::Evaluator::Check() method. The process is con-
trolled with the optionally supplied ocl::SEvaluationOptions structure. The options include the usage of
short-circuit operators and iterators, depth of the sub-tree to be traversed, or kind of the result (excep-
tion or false value in case of constraint violations). The user may specify when the evaluation must
terminate (after the first violation, after all constraints are checked).

OCL related meta-objects are always available in the metamodel but the user is not required
to evaluate or to parse them. The UdmOcl library can be optionally included and the core (parser and
evaluator) of the module is so generic that it may be extended for other tools or frameworks.

Comparison with other tools
UDM provides a metamodel-based tool for building implementations for DSMLs. Domain specific code
generators, data exporters, importers can then be written using the API that was generated from the
metamodels by the UDM tool(s).

GME provides a COM API to access model and metamodel information. The API is specific to
GME and not to the domain being developed. GME also has an export/import utility that exports to
and imports from XML. The XML format is a proprietary format suitable to store any GME model data-
base [2].

In MetaEDIT+ version 4.0 an API has been added to access the models. The API uses SOAP
and it is domain independent. MetaEDIT+ also has an export/import facility using XML. The XML for-
mat is again specific to MetaEDIT+ and not the domain [3].

Based on our experience, programmer productivity is much lower using a generic API, than a
domain-specific one. The reason being, many errors will be detected much later in the development.
For example to retrieve an object in GME the function is GetModels(“kindName”) and in MetaEDIT+ it
is findObject(“kindName”,”name”). If the kind name of the model is incorrect, it will be detected at run-

time and not at compile time. UDM, on the other hand, generates a specific API and a specific XML
format for each domain. This helps increase productivity by providing a clean interface and eliminating
many potential errors. The specific XML format can be used to exchange domain specific data with
other tools that do not need to know an XML format of a particular UDM-based tool.

At the implementation level UDM is a data binding tool and can be compared with other data
binding tools.

ObjectSpace Inc. developed an XML based tool called DXML, which is part of Recursion
Software’s Voyager® Application Server product. The tool uses a DTD to generate a Java based
API. The API wraps the xml files and allows users to create and modify XML tags by creating and
modifying java objects [12].

Zeus is an open source initiative by Enhydra.org. It generates and provides a Java API to ac-
cess and modify XML files. Given a DTD, a Java interface and implementation is generated. Marshal-
ling and unmarshaling code is also generated that can convert XML files to a java object representa-
tion and back [14].

Castor by Exolab Group provides a generic java object to XML marshalling and unmarshaling
framework. The framework allows “the marshalling of any bean-like java object to and from xml” [15].
Castor can also generate the Java classes from XML schemas [17].

The .NET framework by Microsoft has an XML data-binding tool called XSD. XSD can gener-
ate C#, Visual Basic .NET and JScript.NET API for a given XML schema. XSD can also generate
XML schema files from any .NET source file. The API and XML files are bound using a generic tool
called XmlSerializer [18].

The Eclipse Modeling Framework (EMF) is an open source tool developed using the Eclipse
framework. Given an XMI file representing the data model it can generate a Java based API that im-
plements the class diagram specified in XMI. The objects of the generated API can then be serialized
to an XML representation. The generated API can also be extended [16].

All the tools mentioned above can create an API from either a DTD or some XML file. Some
tools such as Castor and .NET can also create XML Schemas from existing code. UDM and EMF on
the other hand create the DTD and code API from class diagrams represented using XMI[6]. The API
generated by DXML is not always intuitive and lacks type safety [13] while Zeus, Castor, .NET and
EMF require marshaling/unmarshaling of the data. The UDM API allows users to directly manipulate
the XML files. The UDM framework supports multiple files formats such as XML, MGA [2] and MEM. It
also supports XMI: UDM metadata can be exported in XMI format. Furthermore, UDM has a generic
API layer that allows users to discover the structure of UDM based objects and then manipulate them
at run-time [18].

Application experience
The UDM framework has been used as the implementation environment for various model transfor-
mation and code generation tools that operate on models. There are currently several projects using
the UDM framework. The two biggest projects are the OTIF (Open Tool Integration Framework)
[8]and the GReAT (Graph Rewriting and Transformation) Code Generator [10] project. In the OTIF
project we extended the basic UDM framework with remote metamodels based using CORBA. GreAT
employs UDM to produce a C++-based translator from a graph-transformation based, high-level rep-
resentation of the translator. The generated translator, in turn, employs UDM to access, traverse, and
manipulate models.
In general, the code generated by UDM features:
• Robustness: The strictly typed UDM interface forces early, compile-time errors, while the run-time

type checking facility built into UDM eases the validation of data networks.
• Efficiency: The proxy pattern used in UDM, by controlling access to a real object, defers the full

cost of the object’s creation and modification until the object is actually modified.
• Traceability: The UML notions (inheritance and composition) are reflected in OO fashion in the

generated C++ interface. Also, because the UDM access methods have the same name as the
attributes and associations in the model, the generated code is easy to trace or debug.

• Flexibility: Platform independence and multiple backends support a wide variety of applications.
We gained the following benefits of the UDM infrastructure:
• Rapid implementation process: The programmer can design the application with a graphical inter-

face (GME) and get a ready-to-compile C++ code corresponding to the designed UML diagram
without implementing a single line of source code.

• Highly customizable solution: Any modification of the designed UML diagram propagates trivially
to the source code.

• Reduced development costs: The speed of the development and the highly customizable nature
of the framework allow reduction in the development effort.

Summary, conclusions
We have described UDM: a framework for implementing a data layer in support of a DSML. UDM is
generative techniques: the implementation is generated from UML class diagrams used as metamod-
els, it provides a number of backends for the physical implementation and persistence of data struc-
tures, it has a constraint evaluator that checks integrity constraints, it supports reflection, and it has
been successfully used in implementing a number (~10) of model transformation tools [10]. Obviously,
there is a performance penalty when used, but in our experience the price for flexibility and generality
was acceptable. UDM is a part of our infrastructure software and we plan to develop it further.

Acknowledgement
The DARPA/IXO MOBIES program and USAF/AFRL has supported under contract F30602-00-1-
0580, in part, the activities described in this paper. The first implementation of UDM was created by
Miklos Maroti.

References
[1] J. Bézivin, “Tooling the MDA framework: a new software maintenance and evolution scheme pro-

posal”.
[2] The Generic Modeling Environment (GME 2000),

http://www.isis.vanderbilt.edu/projects/gme/Doc.html
[3] Steven Kelly, “Improving the Integration of a Domain-Specific Modeling Tool”, Workshop on Tool

Integration in System Development, ESEC/FSE, Helsinki, Finland, 2003.
[4] Tony Clark, Andy Evans, Stuart Kent: Engineering Modelling Languages: A Precise Metamodel-

ling Approach. FASE 2002: 159-173
[5] OMG Unified Modeling Language Specification, Version 1.4 draft, February 2001,

http://www.omg.org
[6] OMG XML Metadata Interchange (XMI) Specification, Version 1.2, January 2002,

http://www.omg.org
[7] J.O. Coplien. Advanced C++ Programming Styles and Idioms. Addison-Wesley, 1992
[8] OTIF (Open Tool Integration Framework), http://micc.isis.vanderbilt.edu:8080/Portal and

http://www.isis.vanderbilt.edu/Projects/WOTIF/default.html
[9] The Xerces C++ Parser, http://xml.apache.org/xerces-c/index.html
[10] http://www.isis.vanderbilt.edu/Projects/mobies/default.html.
[11] E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Design Patterns”, Addison-Wesley, 1995.

[12] Recursion Software Inc., Voyager® Application Server 4.6 Data Sheet,
http://www.recursionsw.com/products/voyager/datasheets/appserver_ds.asp

[13] DXML Review, http://www.jfind.com/listings/74.shtml, Jfind.com.

[14] Zeus, http://zeus.enhydra.org/index.html, Enhydra.org.

[15] The Castor Project, http://castor.exolab.org/index.html, Exolab Group.

[16] “The Eclipse Modeling Framework (EMF) Overview”, Sept. 8, 2002.

[17] Ronald Bourret, “XML Data Binding Resources”,
http://www.rpbourret.com/xml/XMLDataBinding.htm, May 2, 2003.

[18] Niel Bornstein, “XML Data-Binding: Comparing Castor to .NET”,
http://www.xml.com/pub/a/2002/07/24/databinding.html, xml.com, July 24, 2002.

http://www.isis.vanderbilt.edu/projects/gme/Doc.html
http://www.omg.org/
http://www.omg.org/
http://micc.isis.vanderbilt.edu:8080/Portal
http://www.isis.vanderbilt.edu/Projects/WOTIF/default.html
http://xml.apache.org/xerces-c/index.html
http://www.isis.vanderbilt.edu/Projects/mobies/default.html
http://www.recursionsw.com/products/voyager/datasheets/appserver_ds.asp
http://www.jfind.com/listings/74.shtml
http://zeus.enhydra.org/index.html
http://castor.exolab.org/index.html
http://www.rpbourret.com/xml/XMLDataBinding.htm
http://www.xml.com/pub/a/2002/07/24/databinding.html

	UDM: An Infrastructure for Implementing Domain-Specific Modeling Languages
	
	
	
	Nashville, TN 37235, USA

	Abstract
	Introduction
	Design considerations for UDM
	The UDM Tools and Architecture
	API generator
	Meta access and dynamic metamodel loading
	The backends
	XML Backend
	GME Backend
	MEMory Backend
	CORBA Backend

	OCL Evaluator
	Comparison with other tools
	Application experience
	Summary, conclusions
	Acknowledgement
	References

