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Abstract 
 

The Directed Flood-Routing Framework (DFRF) 
for wireless sensor networks that allows the rapid 
development of application specific routing 
protocols based on directed flooding is introduced 
in this paper. Flood-routing protocols are 
probabilistic methods that make only the best 
effort to route data packets. The presented family 
of protocols can route regular sized data packets 
via broadcast messages according to 
customizable routing policies that govern the way 
intermediate nodes rebroadcast messages. The 
framework automatically supports data packet 
aggregation, and allows in-network data packet 
filtering and alteration. 

1 Introduction 
Routing protocols for wireless sensor 

networks are proliferating. Unlike wired 
networks, where the TCP/IP is dominant, wireless 
sensor networks have no prevailing routing 
protocol.  Even well designed and tested routing 
protocols can exhibit subpar performance under a 
different application load, in a certain deployment 
scenario, or on a new hardware platform. We 
argue that this is unlikely to change in the near 
future, and current research shall focus on 
developing and classifying broad families of 
routing protocols that are easily adaptable to a 
wide variety of real word applications.  

The connectivity and topology of the wireless 
network, as well as the characteristics of the 
medium access control (MAC) of the operating 
system, influence the design of any routing 
protocol fundamentally. Separating the essential 
part, called the policy, of a protocol from the 
implementation techniques common to a family of 
routing protocols, and expressing it in a compact 
representation,  reap substantial benefits. First, 
protocols become easier to understand. Second, 
automatic optimization techniques can be utilized 
to find the best policy that adapts the protocol to 

the target network topology and to the particular 
implementation of the MAC. 

We have identified a rich family of routing 
protocols based on directed flooding that can be 
parameterized by policies, as described above. 
Flood-routing protocols are probabilistic methods 
that make only the best effort to route data 
packets. On the other hand, they are particularly 
resistant to node and link failures because data 
packets can reach their destination through 
different routes. 

In an acoustic shooter localization application 
[5] we have successfully used several flood-
routing protocols to reconfigure the nodes of the 
network and to gather sensor readings, the time of 
muzzle blast and shock wave events, from all 
nodes to a base station. Designing a routing 
protocol that can handle this load is especially 
challenging, since a large subset of nodes detects 
these acoustic events approximately at the same 
time and has to report back to the base station 
under real time constraints. The routing protocols 
that achieved the requirements of the acoustic 
shooter localization application were developed 
using the proposed Directed Flood-Routing 
Framework (DFRF).  

The framework consists of an engine and 
several flooding policies. The engine stores and 
manages data packets enroute to their destination, 
while routing policies define state machines that 
describe which packets need to be rebroadcasted 
by intermediate nodes and when. The framework 
supports automatic data packet aggregation, and 
allows in-network data packet filtering and 
alteration. 

In the next section we introduce the targeted 
hardware platform, and then survey the available 
routing protocols on this hardware. Next, we 
formally define the directed flood-routing 
framework. Finally, we present a set of selected 
flooding polic ies that can be used to build robust 
wireless sensor network applications. 



2 The target platform 
The most widely used platform for 

researching ad-hoc wireless sensor networks with 
limited resources is the Berkeley Mica motes [1]. 
The second generation Mica2 version features a 
7.3 MHz microcontroller, 4 KB of RAM, 128 KB 
of flash memory, and a 433 MHz wireless radio 
transceiver. The motes are powered by two AA 
batteries, which last for a couple of days under 
continuous operation. A wide variety of pluggable 
sensor boards containing light, temperature, 
magnetic and other sensors are available. The 
Mica motes run a small, embedded, open source 
operation system called TinyOS specifically 
designed for resource limited sensor networks [2]. 
Despite its small memory footprint, this event 
driven OS can handle task scheduling, radio 
communication, power management, clocks and 
timers and I/O abstractions. TinyOS applications 
are statically linked graphs of event-driven 
operating system and application components 
written in the nesC language [4]. 

The characteristics of the radio transceiver 
and the radio stack of the target platform are of 
special importance for the performance of any 
multi-hop communication protocol. The radio 
chip (CC1000) of the Mica2 mote utilizes a single 
radio channel, have 38.4 Kbps transfer rate and 
approximately 500-foot communication range in 
open space. Close to or on the ground the range 
drops dramatically to tens of feet. TinyOS 
employs up to 36-byte long radio messages. Seven 
bytes are reserved by the OS to store the length, 
the cyclic redundancy check (CRC) and other 
parameters of the message, leaving only 29 bytes 
for application data at most. The MAC is based on 
the carrier sense multiple access (CSMA) 
technique with random backoff [3]. The Mica2 
mote can transmit or receive up to 30 messages 
per second provided no radio collisions occur. 
Due to manufacturing differences and fading 
effects, there are more “polite” motes that will not 
transmit at all if nearby motes are constantly 
occupying the radio channel. Others are more 
prone to start transmitting messages in the middle 
of other transmissions, which causes radio 
collisions. 

Although the directed flood-routing 
framework was designed for and evaluated on this 
platform, it is an equally valid approach for any 

resource constrained platform having a broadcast 
medium. 

3 Existing approaches 
Conventional routing protocols are 

insufficient for ad-hoc wireless sensor networks 
because of their routing related communication 
overhead. Examples of a few proposed protocols 
are: dynamic source routing (DSR) [6], ad-hoc on 
demand distance vector routing (AOVD) [7], 
temporarily ordered routing algorithm (TORA) 
[8], and the zone routing protocol (ZRP) [9]. On 
the other hand, routing protocols for sensor 
networks can exploit the physical properties of the 
environment where the network is deployed. For 
example, the location of nodes and their sensor 
readings in these networks are typically more 
important than their node IDs. 

Existing research mostly focused on location-
aware routing protocols allowing routers to be 
nearly stateless: each node needs to know only the 
position of its neighbors to make the right 
forwarding decisions. The greedy perimeter 
stateless routing protocol (GPSR) use perimeter 
forwarding to get around voids [10]. Location-
aided routing (LAR) improves the efficiency of 
on-demand route-discovery algorithms by 
restricting routing-packet flooding to “request 
zones” [11]. This particular protocol could be 
developed in the proposed DFRF. The Stateless 
protocol for real-time communication (SPEED) 
[12] provides soft real-time communication based 
on feed-back control.  

There are several other routing protocols in 
the literature relevant to the DFRF. The gradient 
broadcast (GRAB) protocol builds and maintains 
a gradient field on a particular subgraph of the 
network describing the direction sensory data is 
forwarded to a sink [13]. The gossip routing 
protocol performs a reliable network broadcasts, 
probabilistically [14]. These two protocols fit 
precisely the proposed DFRF. Flooding policies 
achieving similar functionalities will be presented 
in Sections 5.1 and 5.2. The rumor routing 
protocol is a combination of two flooding 
algorithms: query and event flooding, that best 
utilizes available power resources [15]. A similar 
algorithm can possibly developed in DFRF.  
Constraint based routing (CBR) is another 
directed flood-routing protocol [16]. 



Only the AOVD, SPEED and CBR protocols 
are implemented in TinyOS. 

4 The DFRF algorithm 
The directed flood-routing framework is built 

around a flood-routing engine middleware service 
that manages the flood-routing messages on all 
nodes in the network. Application components 
using the flood-routing engine can send and 
receive regular sized data packets according to a 
flooding policy. Flooding policies specify the 
“direction” of flooding and how intermediate 
nodes rebroadcast messages. The DFRF engine 
keeps the recently received data packets in a table 
together with their priority (which is managed by 
the policy), periodically selects the packets with 
the highest priority, packs them into a single radio 
message and broadcasts it to the neighboring 
nodes. In the rest of this section we will describe 
this algorithm. 

4.1 System architecture 
The modules and their interactions that 

implement the DFRF algorithm on each node are 
depicted in Figure 1. Each node has a single 
routing engine module that can serve several 
application modules. Application modules register 
data packet types and corresponding flooding 
policies with the engine. The same policy can be 
registered for several data packet types. The 
modules interact with each other through method 
invocations, which are depicted as arrows 
originating from the caller. These methods will be 
covered in detail in the following sections. 
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Figure 1. The architecture of the directed flood-

routing framework 

4.2 The data packet 
Most applications of wireless sensor networks 

must send and receive different types of data 
packets, but each of these data types has a well 
defined internal structure. Typically, data packets 
of the same type have the same size, as well. For 
the ease of implementation, and to maximize the 
available radio message space, we made this a 
requirement. The lack of variable length data 
packets allows the DFRF algorithm to aggregate 
many very small (e.g. 2-byte) data packets into a 
single radio message. The DFRF engine does not 
need to know the internal structure of each data 
packet, only its length.  

In directed flooding the same data packet 
originating from a single node can reach its 
destination through different routes. This 
necessitates that the final node, as well as 
intermediate nodes, can uniquely identify the 
same data packet in order to discard multiple 
messages. Most routing protocols append a 
globally unique identifier to each data packet for 
this purpose, which adds extra data overhead, 
typically 2-3 bytes. However, this is not necessary 
for some applications where the data packet is 
either already globally unique, or the source of the 
data packet is unimportant. For example, if nodes 
send time-stamped sensor readings to a base 
station, then the node ID (or the 3D coordinates of 
the sensor) together with the time stamp can serve 
as a unique identifier of the data packet. Or in a 
multi-hop network reprogramming application, 
which uploads a new executable image to each 
node in the network, the missing capsule ID can 
be used as the unique identifier of the missing 
capsule message sent to the base station, since it is 
unimportant which node did not receive a 
particular capsule of the image.  

Because of these considerations, the DFRF 
engine does not generate globally unique 
identifiers but requires the user of the algorithm to 
employ data packets that can be uniquely 
identified by their first few bytes. This 
requirement does not put a lot of burden on the 
user, as generating unique IDs where necessary is 
trivial. The number of bytes used to uniquely 
identify data packets is called the unique length of 
the data packet. We say that two data packets are 
analogous if their unique parts (the first unique 
length of bytes) are identical. Note that analogous 



data packets are not necessarily identical, as for 
example, intermediate nodes can modify data 
packets enroute to the destination. 

Each node in the network must know about all 
packet types used in a particular wireless sensor 
application. The packet types are identified by a 
type ID, and they define the length and the unique 
length of the packet. The type ID is transmitted 
with each radio message (which can contain 
several data packets of the same type), and used 
by the engine to slice the radio message to the 
appropriate type of data packets, identify the data 
packets by their unique part, and to notify the 
corresponding application component. 

4.3 The node rank 
When the DFRF engine (re)broadcasts a radio 

message, it does not include the node ID of the 
sender in the message, instead a policy dependent 
value, called the rank of the node, is inserted. The 
rank describes the progress of a data packet in a 
policy dependent way, and is used to determine 
what to do with incoming data packets. For the 
DFRF engine the rank is simply a (possibly 
empty) array of bytes, which is passed to the 
flooding policy when a data packet arrived. The 
broad possibilities of what the rank can describe 
are best illustrated through examples. 

For the converge-cast policy that routes along 
a gradient vector to a base station, the node rank is 
the hop-count distance from the root. In this 
policy, when the rank of the sender is smaller than 
that of the receiver, the receiver simply drops the 
data packet because it comes from a node closer 
to the root than the receiver. For the network wide 
broadcast policy the rank is an empty array. It 
does not matter where the data packet was 
received from, it will be rebroadcasted if this is 
the first time this node has received it. For the 
spanning tree policy that routes message along a 
spanning tree to a base station, the node rank can 
be the node ID of the parent node. Here the parent 
does not care which of its children sent the data 
packet. There is a robust variation of this policy 
where the rank is the node ID of the grandparent, 
which will be covered later. For a geographic 
routing protocol the rank of the node can be the 
coordinates of the node. A data packet is sent 
further if the receiving node is closer to the final 
destination (which is contained in the data packet) 
than the sender. 

It is important to note that the rank does not 
depend on the data packet, thus the single rank 
value is used for multiple aggregated data packets 
of the same type. On the other hand, it is allowed 
that the rank of a node change over time. For 
example, the gradient vector can change if the 
root of the converge-cast is mobile. It is even 
possible to provide flow control through ingenious 
use of ranks. For example, the rank of a node can 
include a flag indicating that temporally the node 
cannot store further data packets for 
retransmission. Neighboring nodes can detect this 
and delay transmitting new data packets. 

The flooding policy has to implement two 
methods (or commands in the nesC language) that 
are used by the DFRF engine. First, the getRank 
method has to return the current rank of the node 
in this flooding policy. This method is invoked for 
each transmitted radio message. Second, for each 
received radio message the accept method is 
consulted whether the message should be 
processed at all based on the rank of the sender. 

4.4 The priority 
Apart from defining the rank of nodes, the 

flooding policy has the primary role to govern the 
life-cycle of data packets at each node. Typically, 
analogous data packets are received multiple 
times at each node because radio messages are 
always broadcasted. An intermediate node first 
receives the data packet from a node further from 
the destination, next it rebroadcasts it, and then it 
will normally hear the packet from a node closer 
to the destination. This shows that each data 
packet (or more precisely, the family of analogous 
data packets) has a life cycle at each node. This 
life-cycle is governed by the flooding policy. 

The life-cycle of a particular data packet is 
described by a finite state machine. There are 
states in which the data packet is eligible for 
retransmission, and there are states in which the 
data packet must be remembered but should not 
be retransmitted. For example, if an intermediate 
node A retransmits a data packet D and then hears 
the same packet from a node closer to the target 
than A, then it should remember D for some time, 
but not retransmit it again to prevent receiving and 
consequently retransmitting an analogous data 
packet from some node further from the target 
than A. 



The DFRF engine periodically has to select, 
pack and send data packets from its internal table 
to the neighbors. Since nodes have very limited 
memory, an existing data packet from the table 
might have to be evicted when a new data packet 
arrives. The flooding policy directs these two 
selection processes in the following way. The life-
cycle states are numbered, typically from 0 to 255, 
and these numbers are regarded as the priority of 
data packets. The DFRF engine selects data 
packets for sending or evicting based on their 
priority. 

We have said that in a subset of states data 
packets are not retransmitted. It can be very 
important to keep and remember a data packet on 
a node even if we do not want to retransmit it 
immediately. The priorities of these data packets 
must be high, to avoid eviction, and marked as 
non-transmittable. To have a dense set of non-
transmittable states, we selected the odd number 
priorities for this purpose. Hence, the DFRF 
engine holds a table of data packets together with 
their priority or state in which they are currently 
in. It selects the data packet with the highest even 
priority (the smallest number) for sending, and 
with the lowest priority (the largest number) for 
evicting. 

There are two special priorities, the smallest 
and largest values. The value 0 is the initial state 
of the state machine, while the value 255 is 
considered the terminal state. If the DFRF engine 
has a data packet in the terminal state then the 
packet is considered invalid and the corresponding 
slot empty. 

4.5 The policy actions 
The flooding policy defines the transitions of 

the finite state machine that describes the life-
cycle of data packets. There are three events: sent, 
received and aged. The first is fired when a data 
packet has been (successfully) broadcasted, the 
second when a new or an analogous data packet 
has been received, and the third is fired at regular 
time intervals. The flooding policy implements 
three corresponding methods: sent, received and 
aged that compute the new state of a data packet 
based on the old state (and on the rank of the 
sender for received). 

When the method sent is invoked, the 
corresponding data packet has been already 
successfully broadcasted. Note that the data 

packet had to pass the selection criteria for it to be 
sent, that is, it had to have one of the highest even 
priorities. However, by the time this method is 
called, it might not have the same (or even an 
even numbered) priority since other actions could 
have modified it between the two events. As radio 
links are naturally unreliable due to collisions and 
fading, flooding policies typically retransmit the 
same data packet a few times by stepping through 
even numbered priorities in increasing order, e.g. 
from 0 to 2, then to 4, etc. This way, the same data 
packet gets gradually lower priorities and could 
become evicted if the engine is short of memory. 

The received method is called for each 
incoming data packet. If this is the first time this 
data packet (or any analogous data packet) is 
received at this node, then priority 0, otherwise 
the priority of the existing analogous data packet 
is passed as an argument to this method. The rank 
of the sender is also available on which the 
flooding policy can base its action. Normally, the 
rank of the sender and that of the current node is 
compared, and if the flooding policy determines 
that the packet was heard from a node “closer” to 
the target than the current node, then it either 
drops or remembers the packet. The packet can be 
dropped by entering state 255 that makes the 
corresponding slot free. It can be remembered by 
walking through a high valued chain of odd 
priorities, e.g. 201, 203, etc., incremented in the 
aged method. 

The aged method is invoked periodically for 
all valid (with priority other than 255) data 
packets. Typically, policy implementations should 
decrease the priority of the packet by increasing 
this number and eventually drop the packet by 
entering priority 255. 

4.6 Message layout 
Each radio message contains one or more data 

packets of the same type. The layout of the 
message is as follows. The first field is the type 
ID (1 byte) followed by the rank of the sender 
node. The rank is stored in zero or more bytes 
depending on the flooding policy that corresponds 
to the type ID. After these two fields come the 
data packets. On the selected platform the number 
of data packets is not included in the message, 
because it can be calculated from the length of the 
radio message and the type ID. The priority of the 
data packet is not transmitted, as it is maintained 



locally and separately by each of the nodes that 
participate in the routing. This compact 
representation keeps the number of extra bytes at 
the absolute minimum, which allows several data 
packets to be aggregated into a single radio 
message. 

4.7 The data table 
The DFRF engine maintains a table for each 

type of data packets. This table includes the data 
packets and their priorities. This table holds at 
most one data packet from any family of 
analogous packets at any given time. Currently, 
this table is held in a fixed size array, but a hash 
table based implementation (based on the unique 
first bytes of data packets) is also possible. If a 
data packet has priority 255, it is considered 
invalid and the corresponding slot free. The 
engine has three basic activities: broadcasting and 
receiving radio messages, and aging data packets 
in the table.  

When a message has been sent, the engine 
invokes the sent method to calculate the new state 
for each data packet contained in the message. 
Then it selects the next batch of data packets. It 
looks for the highest (lowest number) even 
priority data packets and packs them in order into 
a radio message buffer until it is full. Then it 
obtains the current rank of the node from the 
flooding policy and passes the radio message 
buffer to the radio stack for transmission. The 
engine stops sending messages if there are no 
more even numbered data packets in any of the 
tables. 

When a new radio message is received, the 
engine first identifies the data type of the packets 
contained in the message, then invokes the accept 
method of the corresponding flooding policy to 
determine if further processing is necessary. If so, 
it unpacks each data packet contained in the 
message. For each packet it locates an analogous 
data packet in the table. If there is no match, then 
the user of the flooding algorithm is notified of 
the newly arrived data packet via the receive 
method. The engine then finds a place for this 
packet by evicting an existing packet with the 
lowest priority from the table. Note that this 
selection includes available free slots as their 
priority is 255, the lowest. This evicted packet is 
overwritten by the newly arrived data packet with 
priority 0. Once the packet (or an analogous 

packet) is in the table, the received method of the 
flooding policy is invoked to calculate the new 
state of the packet, and the next packet in the 
message is considered. 

Finally, the DFRF engine periodically ages all 
valid data packets in the table by invoking the 
aged method of the flooding policy. Currently, 
this time period is half a second. 

4.8 Initialization 
Since the type description and the 

corresponding policy of data packets are not 
passed around in radio messages, all nodes in the 
network (or that part of the network that routes a 
particular type of data packet) must initialize the 
DFRF engine with the same configuration for 
each data type. This configuration consists of the 
type ID, the length and the unique length of the 
data packet, and the selected flooding policy. 
Given that the target platform does not support 
dynamic memory allocation, the configuration 
includes the address and length of a user provided 
memory buffer where the engine will store the 
data packets. The engine keeps track of all 
registered data types and it can route data packets 
of different types concurrently. Typically, the 
types of data packets do not change during the 
lifetime of the application. Nevertheless, it is 
possible to register and unregister configurations 
dynamically. 

4.9 Sending and receiving data packets 
The user of the directed flood-routing 

protocol interacts with the DFRF engine. When 
the user wants to send a data packet it simply 
passes it to the send method of the DFRF engine. 
The engine first checks if an analogous data 
packet is already in the data table. If yes, then it 
simply returns (with an error code) because this 
packet is already being transmitted. If it is not in 
the table, then it evicts an already existing packet 
with the lowest priority from the table, as 
described before, and inserts the new data packet 
with priority 0. The actual transmission and life-
cycle management is taken care of by the engine. 

The receive event is fired by the DRFR 
engine to notify the user of the arrival of a new 
data packet. This event is fired exactly once for 
each family of analogous data packets, at the time 
when the packet was inserted into the table. 
Unlike in other routing algorithms, the receive 



event is fired at each intermediate node towards 
the target. This allows the user to modify or even 
drop the data packet enroute to the destination, a 
critical feature used in smart data aggregation 
protocols. We will present examples exploiting 
both of these features in the following sections. 
Note that this notification scheme does not 
complicate the use of the routing protocol, as the 
user can easily consult the particular routing 
policy at each node to check if it is the true 
destination of the packet.  

The application component implementing the 
receive method gets a pointer to the data packet as 
a parameter and returns a boolean value. The 
received pointer can be used to read the data and 
possibly update its content (other than the first 
unique length bytes that must not be changed). If 
the receive method returns false, the engine drops 
the newly arrived data packet by not inserting it 
into its table. Otherwise, the data packet enters its 
life-cycle on this node, as described in 
Section 4.7. 

5 Flooding policies 
Flooding policies have two central functions. 

First, they define the meaning and compute the 
value of the node rank. Second, they implement 
the state machine that governs the life-cycle of 
individual packets on every node. Flooding 
policies can be classified by either of these two 
traits. We can speak of, for example, broadcast 
policies where the node rank is vacuous (an empty 
array), or energy-aware policies where the actions 
of the state machine depend on the available 
power of the node and its neighbors. We grouped 
our selection of routing policies according to their 
definition of rank. 

5.1 Broadcast policy 
The broadcast policy is used to route data 

packets from an arbitrary source node to all nodes 
in the network. A data packet is rebroadcasted one 
or more times at every node until all nodes 
received. There are several variations where the 
target area is limited in an application specific 
manner. 

The node rank in the broadcast policy is void. 
There are several ways intermediate nodes can 
retransmit data packets. First, we present the 
simplest version where each intermediate node 

retransmits the data packet exactly once, as soon 
as possible. The nodes remember each data packet 
as long as possible to avoid receiving the old 
packet and classifying it as new. The 
corresponding state machine is depicted in Figure 
2. 
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Figure 2. The state machine of the broadcast 

policy 

Each circle represents a state. The states are 
numbered by their unique priority, from 0 to 255, 
but possibly not all of them are used. State 0 and 
state 255 are always the initial and terminal states, 
respectively. The arrows represent state 
transitions. The label of the arrow describes the 
corresponding type of event: ‘s’ for sent, ‘r’ for 
received, and ‘a’ for aged. State transitions that do 
not change the state are not shown. For example, 
the aged event does not change the state of the 
machine in states 0 and 2. Arrows originating 
from a composite state, a dashed rounded 
rectangle, represent transitions from each of the 
contained states. Recall that a data packet is 
eligible for transmission only in even numbered 
states. 

A data packet always starts its life-cycle in 
state 0, either because the packet originates from 
this node (the user called the send method of the 
engine), or when it is received for the first time by 
this node. If it is the latter, then its state is 
immediately changed to state 2 by the flooding 
policy, because we want packets originating from 
this node to have higher priority (i.e. 0) than those 
that we received from another node. Once the 
packet is in either state 0 or 2, we wait until it gets 
selected and transmitted by the engine. After 
transmission, we enter state 3. The sequence of 
states, starting from 3 up to 255, is used to 
remember the same packet for 126 aging actions 
(63 seconds in the current implementation) before 
dropping it. If during this period the node receives 
the same packet again, we start counting again 



from state 3. Note that in general this procedure 
does not prevent a data packet getting into an 
infinite cycle in a large dynamic network. 
However, the user can terminate this broadcast 
when handling the receive event. 

As an application of the broadcast policy, we 
outline how to measure the hop-count distance 
from a root node to all other nodes in the network. 
The data packet shall contain a field for the 
“current” hop-count, and possibly others for the 
node ID of the root, etc. The unique part of the 
packet should not include the hop-count field. 
When the root initiates the network-wide 
broadcast, it fills in 0 for the hop-count in the 
packet. Upon receiving a data packet of this type, 
the application code should increment the current 
hop-count value in the receive event. The DFRF 
engine will not change this value, even if it later 
receives an analogous message with a different 
hop-count value, and will retransmit it with the 
incremented value. To get a more valuable 
estimate of the hop-count distance, the application 
should measure the hop-count distance from the 
root several times and the nodes should use the 
average of the measured values. 

The range of the broadcast can also be limited 
in a similar way. For example, the root enters the 
required maximum number of hops into the hop-
count field of the original message. Upon 
receiving the message, the hop-count fields needs 
to be decremented. If it reaches zero, then the 
receive method should return false, which will 
terminate the retransmission of the packet. 

We found this basic policy to work very well 
on the Mica2 platform for planar networks with 
average degree of five or higher. This can be 
attributed to the sensible connectivity of the 
network and to the excellent radio collision 
avoidance of the radio stack. However, the same 
policy does not perform well on linear networks 
or on platforms with erratic radio collision 
avoidance. Nevertheless, this can be overcome by 
retransmitting each data packet two or more times 
on each node, with random delay in between. One 
particular implementation of this modified 
broadcast policy is shown in Figure 3. 

Arrows pointing to a composite state stand for 
transitions that enter one of the contained states 
based on a random choice. There are several 
subtle design choices that make this broadcast 
policy more robust than the one pictured in Figure 

2. First, note that the composite states (2,3,5) and 
(6,7,9) facilitate the random delay via the aging 
event. Not only does it wait for a random number 
of aging events, but also the aging events are 
executed asynchronously in the network. Second, 
the priority value is decreased inside these 
composite states, because if the engine is short of 
memory, we want to keep those packets that we 
can retransmit sooner. What is more, the ‘r’ self-
loop at the composite state (6,7,9) implements a 
random backoff functionality. Observe that the ‘s’ 
arrow to state 11 does not come from state 6, the 
only even numbered state in (6,7,9) allowing 
retransmission, but from the whole composite 
state. The reason is that the engine can select the 
packet in state 6 for transmission, pass the radio 
message buffer to the OS, receive an analogous 
message that restarts the backoff delay, and only 
then does the OS complete the transmission of the 
previously packed message. As a final point, the 
source node of the broadcast transmits the packet 
three times in contrast to relaying nodes, which 
transmit every packet only twice. 
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Figure 3. The state machine of the reliable 
broadcast policy 

5.2 Gradient convergecast 
Convergecast policies are used to route data 

packets from all nodes of the network to a 
selected node, called the root. Intermediate nodes 
rebroadcast a data packet zero, one or more times 
until it is received from a node “closer” to the root 
than the current node. In the gradient convergecast 
policy, being closer means that the hop-count 
distance from the root is smaller. Thus, the rank of 
each node is the hop-count distance from the root, 
and the hop-count distances of the sender and 



receiver are compared. The same data packet can 
reach the root through several different paths, 
always descending in the gradient field. This 
guarantees robustness and fast message delivery at 
the expense of higher communication overhead. 
The data packet typically arrives at the root first 
through unreliable “long” links, then through 
more reliable “short” links. 

The hop-count distance can be calculated, for 
example, by an application of the broadcast 
policy, as described in Section 5.1 above. The 
gradient convergecast policy implements this 
functionality and allows the user to set and query 
the current root in the network. Data packets of 
several types can share the same gradient field, or 
different gradient fields can be computed if there 
are multiple roots in the network. The overall cost 
of calculating the gradient field is rather large; 
possibly several network-wide broadcasts. 
However, once the field is calculated, it takes very 
little memory space, 1 or 2 bytes, to store it. 
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Figure 4. The state machine of the gradient 

convergecast policy 

Figure 4 depicts the state machine of the 
gradient convergecast policy. The receive action 
has been split into two separate actions: ‘r- ’ and 
‘r+’ for messages received from nodes closer to 
and further from the root than the current node, 
respectively. Note that nodes with the same rank 
have been explicitly excluded from this list, 
because we want to direct the flooding as mush as 
possible by preventing the same data packet to 
spread among nodes having the same hop-count 
distance. The policy avoids this case by returning 
false in the accept method for radio messages with 
the same rank as of the receiving node (see 
Section 4.7). 

Each node retransmits a data packet up to 
three times, with two and one aging actions in 
between. The delay between the first and second 
transmissions is relatively long but it leaves the 
nodes receiving the first transmission enough time 
and radio channel bandwidth to retransmit the 
packet. The transition labeled by ‘r- ’ on the left 
hand side in Figure 4 implements implicit 
acknowledgment in the following way. If node A 
sends a packet that is received by node B that is 
closer to the root than A, and then B rebroadcast 
this packet, which is received, among others, by 
A, then the state of the packet on A becomes 7 
and A will not retransmit the packet again. The 
policy remembers each data packets for a certain 
time period since the last time it was received 
from a node further from the root. This is enough, 
because even if the node receives an analogous 
packet from a node closer to the root later, it will 
immediately enter state 7 again. 

Clearly, this policy does not guarantee 
message delivery, but best effort only. This is not 
a serious limitation for most wireless sensor 
network applications because they have to prepare 
for message loss as the result of failing nodes and 
unreliable links. However, a variation of this 
policy can guarantee message delivery in 
connected networks provided the hop-count 
distance gradient field remains accurate. This 
variation retransmits the packet on each node 
other than the root until it is received from a node 
closer to the root. 

The gradient convergecast policy yields a 
very fast and robust routing protocol to deliver 
messages to a root node, but at the expense of 
significant message overhead. Depending on the 
topology of the network, the number of 
transmissions during the routing of a single data 
packet can grow as the square of the distance 
between the sender and the root. 

5.3 Spanning tree convergecast 
The major shortcoming of the gradient 

convergecast is its message overhead. The optimal 
solution, with respect to the number of messages, 
would be to route the data packet along a 
spanning tree towards the root. However, this 
algorithm is inherently fragile: the radio links are 
not reliable causing message loss in any fixed 
path. Moreover, a single node failure close to the 
root can cut off a large portion of the network 



from the root. The speed and robustness of the 
gradient convergecast and the low message 
overhead of the spanning tree routing protocol can 
be combined in the following way. Instead of 
utilizing a single path starting from the source 
node towards the root, define a small 
neighborhood of this path and flood the data 
packet in this “lane”. The lane can be defined as 
all nodes one hop away in the spanning tree from 
the nodes of the path. This is illustrated in Figure 
5, where solid arrows represent the edges of the 
spanning tree, and the dotted lines are the other 
links of the network. The indicated region is the 
lane surrounding the highlighted path from the 
source node to the root. 
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Figure 5. The channel surrounding the path from  

source to root 

This particular definition of the lane allows a 
strikingly simple implementation of the directed 
flood-routing in the lane with minimal storage 
requirement. Each node has to know the node IDs 
of its parent, grandparent, great-grandparent and 
its parent. The node rank is simply the node ID of 
the grandparent. The relationship between the 
sender and the receiver of a radio message can be 
computed by the receiver from the rank of the 
sender, which is stored in the message, as follows: 

(1) If the rank of the sender is the node ID of the 
receiver or its parent, then the sender is 
further from the root than the receiver. The 
corresponding event will be denoted by ‘r+’. 

(2) If the rank of the sender is the node ID of the 
grandparent of the receiver, then the sender is 
at the same distance from the root as the 
receiver. These types of message are ignored 
by returning false in the accept method of the 
policy. 

(3) If the rank of the sender is the node ID of the 
great-grandparent or its parent of the receiver, 
then the sender is closer to the root than the 
receiver. The corresponding event will be 
denoted by ‘r- ’. 

(4) If the rank of the sender is none of the above, 
then the receiver is either not in the lane of the 
source, or more than two steps away from the 
sender. In both cases we ignore the message. 

The spanning tree can be constructed and the 
node IDs of the four ancestors found by a simple 
network-wide broadcast, or by other methods. 
Finding the spanning tree that best supports 
directed flood-routing is possibly a challenging 
problem and is not addressed here. 

Once the spanning tree is formed and the ‘r+’ 
and ‘r- ’ receive events defined, we can reuse the 
state machine of the gradient convergecast policy 
(see Figure 4) for the spanning tree convergecast 
policy. The performance of the spanning tree 
convergecast for arbitrary networks will be similar 
to that of the gradient convergecast for essentially 
linear networks. In particular, the number of 
messages required to route a data packet from the 
source to the root is proportional to the hop-count 
distance of the source from the root. 

6 Conclusion 
We have introduced the Directed Flood-

Routing Framework for wireless sensor networks. 
The supporting engine and flooding policies were 
implemented for TinyOS and extensively tested 
on the Mica and Mica2 platforms. The gradient 
convergecast policy was used in an acoustic 
shooter localization application to route acoustic 
events back to a base station. A network of 60 
motes covering a 100 by 40 meter urban area with 
diameter of 10 hops was used to evaluate the 
performance of both the routing and shooter 
localization algorithms. Typically, 25-30 motes 
were triggered by a shot, half  of them managed to 
report their events in the first second, and the 
other half in the next second. 

There are several research opportunities in 
directed flood-routing in general and flooding 
policies in particular. For example, it seems 
possible to design convergecast flooding policies 
that implement flow control by delaying 
retransmission of data packets if nodes closer to 
the root are overloaded. Another challenging 



research area is the study of topology changes 
with respect to convergecast policies. For 
example, is it possible to dynamically update the 
gradient field or the spanning tree if the root node 
is mobile? 

The state machines of flooding policies can 
clearly be optimized for different hardware 
platforms and network configurations, as well as 
for speed, reliability and power consumption. 
Since these state machines have a limited number 
of actions and are relatively small, it seems 
possible that they can be mechanically optimized 
utilizing a simulator to compute the fitness of 
policies. 
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