

Institute for Software Integrated Systems
Vanderbilt University

Nashville Tennessee 37235

TECHNICAL REPORT

TR #: ISIS-04-502
Title: The Directed Flood Routing Framework
Author: Miklos Maroti

Copyright © 2004 Vanderbilt University

Directed Flood-Routing Framework

Miklós Maróti
Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA

miklos.maroti@vanderbilt.edu

Abstract

The Directed Flood-Routing Framework (DFRF)
for wireless sensor networks that allows the rapid
development of application specific routing
protocols based on directed flooding is introduced
in this paper. Flood-routing protocols are
probabilistic methods that make only the best
effort to route data packets. The presented family
of protocols can route regular sized data packets
via broadcast messages according to
customizable routing policies that govern the way
intermediate nodes rebroadcast messages. The
framework automatically supports data packet
aggregation, and allows in-network data packet
filtering and alteration.

1 Introduction
Routing protocols for wireless sensor

networks are proliferating. Unlike wired
networks, where the TCP/IP is dominant, wireless
sensor networks have no prevailing routing
protocol. Even well designed and tested routing
protocols can exhibit subpar performance under a
different application load, in a certain deployment
scenario, or on a new hardware platform. We
argue that this is unlikely to change in the near
future, and current research shall focus on
developing and classifying broad families of
routing protocols that are easily adaptable to a
wide variety of real word applications.

The connectivity and topology of the wireless
network, as well as the characteristics of the
medium access control (MAC) of the operating
system, influence the design of any routing
protocol fundamentally. Separating the essential
part, called the policy, of a protocol from the
implementation techniques common to a family of
routing protocols, and expressing it in a compact
representation, reap substantial benefits. First,
protocols become easier to understand. Second,
automatic optimization techniques can be utilized
to find the best policy that adapts the protocol to

the target network topology and to the particular
implementation of the MAC.

We have identified a rich family of routing
protocols based on directed flooding that can be
parameterized by policies, as described above.
Flood-routing protocols are probabilistic methods
that make only the best effort to route data
packets. On the other hand, they are particularly
resistant to node and link failures because data
packets can reach their destination through
different routes.

In an acoustic shooter localization application
[5] we have successfully used several flood-
routing protocols to reconfigure the nodes of the
network and to gather sensor readings, the time of
muzzle blast and shock wave events, from all
nodes to a base station. Designing a routing
protocol that can handle this load is especially
challenging, since a large subset of nodes detects
these acoustic events approximately at the same
time and has to report back to the base station
under real time constraints. The routing protocols
that achieved the requirements of the acoustic
shooter localization application were developed
using the proposed Directed Flood-Routing
Framework (DFRF).

The framework consists of an engine and
several flooding policies. The engine stores and
manages data packets enroute to their destination,
while routing policies define state machines that
describe which packets need to be rebroadcasted
by intermediate nodes and when. The framework
supports automatic data packet aggregation, and
allows in-network data packet filtering and
alteration.

In the next section we introduce the targeted
hardware platform, and then survey the available
routing protocols on this hardware. Next, we
formally define the directed flood-routing
framework. Finally, we present a set of selected
flooding polic ies that can be used to build robust
wireless sensor network applications.

2 The target platform
The most widely used platform for

researching ad-hoc wireless sensor networks with
limited resources is the Berkeley Mica motes [1].
The second generation Mica2 version features a
7.3 MHz microcontroller, 4 KB of RAM, 128 KB
of flash memory, and a 433 MHz wireless radio
transceiver. The motes are powered by two AA
batteries, which last for a couple of days under
continuous operation. A wide variety of pluggable
sensor boards containing light, temperature,
magnetic and other sensors are available. The
Mica motes run a small, embedded, open source
operation system called TinyOS specifically
designed for resource limited sensor networks [2].
Despite its small memory footprint, this event
driven OS can handle task scheduling, radio
communication, power management, clocks and
timers and I/O abstractions. TinyOS applications
are statically linked graphs of event-driven
operating system and application components
written in the nesC language [4].

The characteristics of the radio transceiver
and the radio stack of the target platform are of
special importance for the performance of any
multi-hop communication protocol. The radio
chip (CC1000) of the Mica2 mote utilizes a single
radio channel, have 38.4 Kbps transfer rate and
approximately 500-foot communication range in
open space. Close to or on the ground the range
drops dramatically to tens of feet. TinyOS
employs up to 36-byte long radio messages. Seven
bytes are reserved by the OS to store the length,
the cyclic redundancy check (CRC) and other
parameters of the message, leaving only 29 bytes
for application data at most. The MAC is based on
the carrier sense multiple access (CSMA)
technique with random backoff [3]. The Mica2
mote can transmit or receive up to 30 messages
per second provided no radio collisions occur.
Due to manufacturing differences and fading
effects, there are more “polite” motes that will not
transmit at all if nearby motes are constantly
occupying the radio channel. Others are more
prone to start transmitting messages in the middle
of other transmissions, which causes radio
collisions.

Although the directed flood-routing
framework was designed for and evaluated on this
platform, it is an equally valid approach for any

resource constrained platform having a broadcast
medium.

3 Existing approaches
Conventional routing protocols are

insufficient for ad-hoc wireless sensor networks
because of their routing related communication
overhead. Examples of a few proposed protocols
are: dynamic source routing (DSR) [6], ad-hoc on
demand distance vector routing (AOVD) [7],
temporarily ordered routing algorithm (TORA)
[8], and the zone routing protocol (ZRP) [9]. On
the other hand, routing protocols for sensor
networks can exploit the physical properties of the
environment where the network is deployed. For
example, the location of nodes and their sensor
readings in these networks are typically more
important than their node IDs.

Existing research mostly focused on location-
aware routing protocols allowing routers to be
nearly stateless: each node needs to know only the
position of its neighbors to make the right
forwarding decisions. The greedy perimeter
stateless routing protocol (GPSR) use perimeter
forwarding to get around voids [10]. Location-
aided routing (LAR) improves the efficiency of
on-demand route-discovery algorithms by
restricting routing-packet flooding to “request
zones” [11]. This particular protocol could be
developed in the proposed DFRF. The Stateless
protocol for real-time communication (SPEED)
[12] provides soft real-time communication based
on feed-back control.

There are several other routing protocols in
the literature relevant to the DFRF. The gradient
broadcast (GRAB) protocol builds and maintains
a gradient field on a particular subgraph of the
network describing the direction sensory data is
forwarded to a sink [13]. The gossip routing
protocol performs a reliable network broadcasts,
probabilistically [14]. These two protocols fit
precisely the proposed DFRF. Flooding policies
achieving similar functionalities will be presented
in Sections 5.1 and 5.2. The rumor routing
protocol is a combination of two flooding
algorithms: query and event flooding, that best
utilizes available power resources [15]. A similar
algorithm can possibly developed in DFRF.
Constraint based routing (CBR) is another
directed flood-routing protocol [16].

Only the AOVD, SPEED and CBR protocols
are implemented in TinyOS.

4 The DFRF algorithm
The directed flood-routing framework is built

around a flood-routing engine middleware service
that manages the flood-routing messages on all
nodes in the network. Application components
using the flood-routing engine can send and
receive regular sized data packets according to a
flooding policy. Flooding policies specify the
“direction” of flooding and how intermediate
nodes rebroadcast messages. The DFRF engine
keeps the recently received data packets in a table
together with their priority (which is managed by
the policy), periodically selects the packets with
the highest priority, packs them into a single radio
message and broadcasts it to the neighboring
nodes. In the rest of this section we will describe
this algorithm.

4.1 System architecture
The modules and their interactions that

implement the DFRF algorithm on each node are
depicted in Figure 1. Each node has a single
routing engine module that can serve several
application modules. Application modules register
data packet types and corresponding flooding
policies with the engine. The same policy can be
registered for several data packet types. The
modules interact with each other through method
invocations, which are depicted as arrows
originating from the caller. These methods will be
covered in detail in the following sections.

Engine

se
nt

re
ce

iv
ed

ag
ed

ge
tR

an
k

ac
ce

pt

re
ce

iv
e

se
nd

OS / Radio stack

un
re

gi
st

er
re

gi
st

er

PolicyPolicy UserUserApplication(s)

Figure 1. The architecture of the directed flood-

routing framework

4.2 The data packet
Most applications of wireless sensor networks

must send and receive different types of data
packets, but each of these data types has a well
defined internal structure. Typically, data packets
of the same type have the same size, as well. For
the ease of implementation, and to maximize the
available radio message space, we made this a
requirement. The lack of variable length data
packets allows the DFRF algorithm to aggregate
many very small (e.g. 2-byte) data packets into a
single radio message. The DFRF engine does not
need to know the internal structure of each data
packet, only its length.

In directed flooding the same data packet
originating from a single node can reach its
destination through different routes. This
necessitates that the final node, as well as
intermediate nodes, can uniquely identify the
same data packet in order to discard multiple
messages. Most routing protocols append a
globally unique identifier to each data packet for
this purpose, which adds extra data overhead,
typically 2-3 bytes. However, this is not necessary
for some applications where the data packet is
either already globally unique, or the source of the
data packet is unimportant. For example, if nodes
send time-stamped sensor readings to a base
station, then the node ID (or the 3D coordinates of
the sensor) together with the time stamp can serve
as a unique identifier of the data packet. Or in a
multi-hop network reprogramming application,
which uploads a new executable image to each
node in the network, the missing capsule ID can
be used as the unique identifier of the missing
capsule message sent to the base station, since it is
unimportant which node did not receive a
particular capsule of the image.

Because of these considerations, the DFRF
engine does not generate globally unique
identifiers but requires the user of the algorithm to
employ data packets that can be uniquely
identified by their first few bytes. This
requirement does not put a lot of burden on the
user, as generating unique IDs where necessary is
trivial. The number of bytes used to uniquely
identify data packets is called the unique length of
the data packet. We say that two data packets are
analogous if their unique parts (the first unique
length of bytes) are identical. Note that analogous

data packets are not necessarily identical, as for
example, intermediate nodes can modify data
packets enroute to the destination.

Each node in the network must know about all
packet types used in a particular wireless sensor
application. The packet types are identified by a
type ID, and they define the length and the unique
length of the packet. The type ID is transmitted
with each radio message (which can contain
several data packets of the same type), and used
by the engine to slice the radio message to the
appropriate type of data packets, identify the data
packets by their unique part, and to notify the
corresponding application component.

4.3 The node rank
When the DFRF engine (re)broadcasts a radio

message, it does not include the node ID of the
sender in the message, instead a policy dependent
value, called the rank of the node, is inserted. The
rank describes the progress of a data packet in a
policy dependent way, and is used to determine
what to do with incoming data packets. For the
DFRF engine the rank is simply a (possibly
empty) array of bytes, which is passed to the
flooding policy when a data packet arrived. The
broad possibilities of what the rank can describe
are best illustrated through examples.

For the converge-cast policy that routes along
a gradient vector to a base station, the node rank is
the hop-count distance from the root. In this
policy, when the rank of the sender is smaller than
that of the receiver, the receiver simply drops the
data packet because it comes from a node closer
to the root than the receiver. For the network wide
broadcast policy the rank is an empty array. It
does not matter where the data packet was
received from, it will be rebroadcasted if this is
the first time this node has received it. For the
spanning tree policy that routes message along a
spanning tree to a base station, the node rank can
be the node ID of the parent node. Here the parent
does not care which of its children sent the data
packet. There is a robust variation of this policy
where the rank is the node ID of the grandparent,
which will be covered later. For a geographic
routing protocol the rank of the node can be the
coordinates of the node. A data packet is sent
further if the receiving node is closer to the final
destination (which is contained in the data packet)
than the sender.

It is important to note that the rank does not
depend on the data packet, thus the single rank
value is used for multiple aggregated data packets
of the same type. On the other hand, it is allowed
that the rank of a node change over time. For
example, the gradient vector can change if the
root of the converge-cast is mobile. It is even
possible to provide flow control through ingenious
use of ranks. For example, the rank of a node can
include a flag indicating that temporally the node
cannot store further data packets for
retransmission. Neighboring nodes can detect this
and delay transmitting new data packets.

The flooding policy has to implement two
methods (or commands in the nesC language) that
are used by the DFRF engine. First, the getRank
method has to return the current rank of the node
in this flooding policy. This method is invoked for
each transmitted radio message. Second, for each
received radio message the accept method is
consulted whether the message should be
processed at all based on the rank of the sender.

4.4 The priority
Apart from defining the rank of nodes, the

flooding policy has the primary role to govern the
life-cycle of data packets at each node. Typically,
analogous data packets are received multiple
times at each node because radio messages are
always broadcasted. An intermediate node first
receives the data packet from a node further from
the destination, next it rebroadcasts it, and then it
will normally hear the packet from a node closer
to the destination. This shows that each data
packet (or more precisely, the family of analogous
data packets) has a life cycle at each node. This
life-cycle is governed by the flooding policy.

The life-cycle of a particular data packet is
described by a finite state machine. There are
states in which the data packet is eligible for
retransmission, and there are states in which the
data packet must be remembered but should not
be retransmitted. For example, if an intermediate
node A retransmits a data packet D and then hears
the same packet from a node closer to the target
than A, then it should remember D for some time,
but not retransmit it again to prevent receiving and
consequently retransmitting an analogous data
packet from some node further from the target
than A.

The DFRF engine periodically has to select,
pack and send data packets from its internal table
to the neighbors. Since nodes have very limited
memory, an existing data packet from the table
might have to be evicted when a new data packet
arrives. The flooding policy directs these two
selection processes in the following way. The life-
cycle states are numbered, typically from 0 to 255,
and these numbers are regarded as the priority of
data packets. The DFRF engine selects data
packets for sending or evicting based on their
priority.

We have said that in a subset of states data
packets are not retransmitted. It can be very
important to keep and remember a data packet on
a node even if we do not want to retransmit it
immediately. The priorities of these data packets
must be high, to avoid eviction, and marked as
non-transmittable. To have a dense set of non-
transmittable states, we selected the odd number
priorities for this purpose. Hence, the DFRF
engine holds a table of data packets together with
their priority or state in which they are currently
in. It selects the data packet with the highest even
priority (the smallest number) for sending, and
with the lowest priority (the largest number) for
evicting.

There are two special priorities, the smallest
and largest values. The value 0 is the initial state
of the state machine, while the value 255 is
considered the terminal state. If the DFRF engine
has a data packet in the terminal state then the
packet is considered invalid and the corresponding
slot empty.

4.5 The policy actions
The flooding policy defines the transitions of

the finite state machine that describes the life-
cycle of data packets. There are three events: sent,
received and aged. The first is fired when a data
packet has been (successfully) broadcasted, the
second when a new or an analogous data packet
has been received, and the third is fired at regular
time intervals. The flooding policy implements
three corresponding methods: sent, received and
aged that compute the new state of a data packet
based on the old state (and on the rank of the
sender for received).

When the method sent is invoked, the
corresponding data packet has been already
successfully broadcasted. Note that the data

packet had to pass the selection criteria for it to be
sent, that is, it had to have one of the highest even
priorities. However, by the time this method is
called, it might not have the same (or even an
even numbered) priority since other actions could
have modified it between the two events. As radio
links are naturally unreliable due to collisions and
fading, flooding policies typically retransmit the
same data packet a few times by stepping through
even numbered priorities in increasing order, e.g.
from 0 to 2, then to 4, etc. This way, the same data
packet gets gradually lower priorities and could
become evicted if the engine is short of memory.

The received method is called for each
incoming data packet. If this is the first time this
data packet (or any analogous data packet) is
received at this node, then priority 0, otherwise
the priority of the existing analogous data packet
is passed as an argument to this method. The rank
of the sender is also available on which the
flooding policy can base its action. Normally, the
rank of the sender and that of the current node is
compared, and if the flooding policy determines
that the packet was heard from a node “closer” to
the target than the current node, then it either
drops or remembers the packet. The packet can be
dropped by entering state 255 that makes the
corresponding slot free. It can be remembered by
walking through a high valued chain of odd
priorities, e.g. 201, 203, etc., incremented in the
aged method.

The aged method is invoked periodically for
all valid (with priority other than 255) data
packets. Typically, policy implementations should
decrease the priority of the packet by increasing
this number and eventually drop the packet by
entering priority 255.

4.6 Message layout
Each radio message contains one or more data

packets of the same type. The layout of the
message is as follows. The first field is the type
ID (1 byte) followed by the rank of the sender
node. The rank is stored in zero or more bytes
depending on the flooding policy that corresponds
to the type ID. After these two fields come the
data packets. On the selected platform the number
of data packets is not included in the message,
because it can be calculated from the length of the
radio message and the type ID. The priority of the
data packet is not transmitted, as it is maintained

locally and separately by each of the nodes that
participate in the routing. This compact
representation keeps the number of extra bytes at
the absolute minimum, which allows several data
packets to be aggregated into a single radio
message.

4.7 The data table
The DFRF engine maintains a table for each

type of data packets. This table includes the data
packets and their priorities. This table holds at
most one data packet from any family of
analogous packets at any given time. Currently,
this table is held in a fixed size array, but a hash
table based implementation (based on the unique
first bytes of data packets) is also possible. If a
data packet has priority 255, it is considered
invalid and the corresponding slot free. The
engine has three basic activities: broadcasting and
receiving radio messages, and aging data packets
in the table.

When a message has been sent, the engine
invokes the sent method to calculate the new state
for each data packet contained in the message.
Then it selects the next batch of data packets. It
looks for the highest (lowest number) even
priority data packets and packs them in order into
a radio message buffer until it is full. Then it
obtains the current rank of the node from the
flooding policy and passes the radio message
buffer to the radio stack for transmission. The
engine stops sending messages if there are no
more even numbered data packets in any of the
tables.

When a new radio message is received, the
engine first identifies the data type of the packets
contained in the message, then invokes the accept
method of the corresponding flooding policy to
determine if further processing is necessary. If so,
it unpacks each data packet contained in the
message. For each packet it locates an analogous
data packet in the table. If there is no match, then
the user of the flooding algorithm is notified of
the newly arrived data packet via the receive
method. The engine then finds a place for this
packet by evicting an existing packet with the
lowest priority from the table. Note that this
selection includes available free slots as their
priority is 255, the lowest. This evicted packet is
overwritten by the newly arrived data packet with
priority 0. Once the packet (or an analogous

packet) is in the table, the received method of the
flooding policy is invoked to calculate the new
state of the packet, and the next packet in the
message is considered.

Finally, the DFRF engine periodically ages all
valid data packets in the table by invoking the
aged method of the flooding policy. Currently,
this time period is half a second.

4.8 Initialization
Since the type description and the

corresponding policy of data packets are not
passed around in radio messages, all nodes in the
network (or that part of the network that routes a
particular type of data packet) must initialize the
DFRF engine with the same configuration for
each data type. This configuration consists of the
type ID, the length and the unique length of the
data packet, and the selected flooding policy.
Given that the target platform does not support
dynamic memory allocation, the configuration
includes the address and length of a user provided
memory buffer where the engine will store the
data packets. The engine keeps track of all
registered data types and it can route data packets
of different types concurrently. Typically, the
types of data packets do not change during the
lifetime of the application. Nevertheless, it is
possible to register and unregister configurations
dynamically.

4.9 Sending and receiving data packets
The user of the directed flood-routing

protocol interacts with the DFRF engine. When
the user wants to send a data packet it simply
passes it to the send method of the DFRF engine.
The engine first checks if an analogous data
packet is already in the data table. If yes, then it
simply returns (with an error code) because this
packet is already being transmitted. If it is not in
the table, then it evicts an already existing packet
with the lowest priority from the table, as
described before, and inserts the new data packet
with priority 0. The actual transmission and life-
cycle management is taken care of by the engine.

The receive event is fired by the DRFR
engine to notify the user of the arrival of a new
data packet. This event is fired exactly once for
each family of analogous data packets, at the time
when the packet was inserted into the table.
Unlike in other routing algorithms, the receive

event is fired at each intermediate node towards
the target. This allows the user to modify or even
drop the data packet enroute to the destination, a
critical feature used in smart data aggregation
protocols. We will present examples exploiting
both of these features in the following sections.
Note that this notification scheme does not
complicate the use of the routing protocol, as the
user can easily consult the particular routing
policy at each node to check if it is the true
destination of the packet.

The application component implementing the
receive method gets a pointer to the data packet as
a parameter and returns a boolean value. The
received pointer can be used to read the data and
possibly update its content (other than the first
unique length bytes that must not be changed). If
the receive method returns false, the engine drops
the newly arrived data packet by not inserting it
into its table. Otherwise, the data packet enters its
life-cycle on this node, as described in
Section 4.7.

5 Flooding policies
Flooding policies have two central functions.

First, they define the meaning and compute the
value of the node rank. Second, they implement
the state machine that governs the life-cycle of
individual packets on every node. Flooding
policies can be classified by either of these two
traits. We can speak of, for example, broadcast
policies where the node rank is vacuous (an empty
array), or energy-aware policies where the actions
of the state machine depend on the available
power of the node and its neighbors. We grouped
our selection of routing policies according to their
definition of rank.

5.1 Broadcast policy
The broadcast policy is used to route data

packets from an arbitrary source node to all nodes
in the network. A data packet is rebroadcasted one
or more times at every node until all nodes
received. There are several variations where the
target area is limited in an application specific
manner.

The node rank in the broadcast policy is void.
There are several ways intermediate nodes can
retransmit data packets. First, we present the
simplest version where each intermediate node

retransmits the data packet exactly once, as soon
as possible. The nodes remember each data packet
as long as possible to avoid receiving the old
packet and classifying it as new. The
corresponding state machine is depicted in Figure
2.

a

0 2r 3s

s

5

a

79253 …

255

a

a r

Figure 2. The state machine of the broadcast

policy

Each circle represents a state. The states are
numbered by their unique priority, from 0 to 255,
but possibly not all of them are used. State 0 and
state 255 are always the initial and terminal states,
respectively. The arrows represent state
transitions. The label of the arrow describes the
corresponding type of event: ‘s’ for sent, ‘r’ for
received, and ‘a’ for aged. State transitions that do
not change the state are not shown. For example,
the aged event does not change the state of the
machine in states 0 and 2. Arrows originating
from a composite state, a dashed rounded
rectangle, represent transitions from each of the
contained states. Recall that a data packet is
eligible for transmission only in even numbered
states.

A data packet always starts its life-cycle in
state 0, either because the packet originates from
this node (the user called the send method of the
engine), or when it is received for the first time by
this node. If it is the latter, then its state is
immediately changed to state 2 by the flooding
policy, because we want packets originating from
this node to have higher priority (i.e. 0) than those
that we received from another node. Once the
packet is in either state 0 or 2, we wait until it gets
selected and transmitted by the engine. After
transmission, we enter state 3. The sequence of
states, starting from 3 up to 255, is used to
remember the same packet for 126 aging actions
(63 seconds in the current implementation) before
dropping it. If during this period the node receives
the same packet again, we start counting again

from state 3. Note that in general this procedure
does not prevent a data packet getting into an
infinite cycle in a large dynamic network.
However, the user can terminate this broadcast
when handling the receive event.

As an application of the broadcast policy, we
outline how to measure the hop-count distance
from a root node to all other nodes in the network.
The data packet shall contain a field for the
“current” hop-count, and possibly others for the
node ID of the root, etc. The unique part of the
packet should not include the hop-count field.
When the root initiates the network-wide
broadcast, it fills in 0 for the hop-count in the
packet. Upon receiving a data packet of this type,
the application code should increment the current
hop-count value in the receive event. The DFRF
engine will not change this value, even if it later
receives an analogous message with a different
hop-count value, and will retransmit it with the
incremented value. To get a more valuable
estimate of the hop-count distance, the application
should measure the hop-count distance from the
root several times and the nodes should use the
average of the measured values.

The range of the broadcast can also be limited
in a similar way. For example, the root enters the
required maximum number of hops into the hop-
count field of the original message. Upon
receiving the message, the hop-count fields needs
to be decremented. If it reaches zero, then the
receive method should return false, which will
terminate the retransmission of the packet.

We found this basic policy to work very well
on the Mica2 platform for planar networks with
average degree of five or higher. This can be
attributed to the sensible connectivity of the
network and to the excellent radio collision
avoidance of the radio stack. However, the same
policy does not perform well on linear networks
or on platforms with erratic radio collision
avoidance. Nevertheless, this can be overcome by
retransmitting each data packet two or more times
on each node, with random delay in between. One
particular implementation of this modified
broadcast policy is shown in Figure 3.

Arrows pointing to a composite state stand for
transitions that enter one of the contained states
based on a random choice. There are several
subtle design choices that make this broadcast
policy more robust than the one pictured in Figure

2. First, note that the composite states (2,3,5) and
(6,7,9) facilitate the random delay via the aging
event. Not only does it wait for a random number
of aging events, but also the aging events are
executed asynchronously in the network. Second,
the priority value is decreased inside these
composite states, because if the engine is short of
memory, we want to keep those packets that we
can retransmit sooner. What is more, the ‘r’ self-
loop at the composite state (6,7,9) implements a
random backoff functionality. Observe that the ‘s’
arrow to state 11 does not come from state 6, the
only even numbered state in (6,7,9) allowing
retransmission, but from the whole composite
state. The reason is that the engine can select the
packet in state 6 for transmission, pass the radio
message buffer to the OS, receive an analogous
message that restarts the backoff delay, and only
then does the OS complete the transmission of the
previously packed message. As a final point, the
source node of the broadcast transmits the packet
three times in contrast to relaying nodes, which
transmit every packet only twice.

s

255
s

a1315… a

0 5
s,r a 3 2a

a a7 69

r

a

253 11

r

Figure 3. The state machine of the reliable
broadcast policy

5.2 Gradient convergecast
Convergecast policies are used to route data

packets from all nodes of the network to a
selected node, called the root. Intermediate nodes
rebroadcast a data packet zero, one or more times
until it is received from a node “closer” to the root
than the current node. In the gradient convergecast
policy, being closer means that the hop-count
distance from the root is smaller. Thus, the rank of
each node is the hop-count distance from the root,
and the hop-count distances of the sender and

receiver are compared. The same data packet can
reach the root through several different paths,
always descending in the gradient field. This
guarantees robustness and fast message delivery at
the expense of higher communication overhead.
The data packet typically arrives at the root first
through unreliable “long” links, then through
more reliable “short” links.

The hop-count distance can be calculated, for
example, by an application of the broadcast
policy, as described in Section 5.1 above. The
gradient convergecast policy implements this
functionality and allows the user to set and query
the current root in the network. Data packets of
several types can share the same gradient field, or
different gradient fields can be computed if there
are multiple roots in the network. The overall cost
of calculating the gradient field is rather large;
possibly several network-wide broadcasts.
However, once the field is calculated, it takes very
little memory space, 1 or 2 bytes, to store it.

s
255

11 …a

a

253

r-

7 9a

0 1 3

4

s

5

a

a

6 sa

r+

Figure 4. The state machine of the gradient

convergecast policy

Figure 4 depicts the state machine of the
gradient convergecast policy. The receive action
has been split into two separate actions: ‘r- ’ and
‘r+’ for messages received from nodes closer to
and further from the root than the current node,
respectively. Note that nodes with the same rank
have been explicitly excluded from this list,
because we want to direct the flooding as mush as
possible by preventing the same data packet to
spread among nodes having the same hop-count
distance. The policy avoids this case by returning
false in the accept method for radio messages with
the same rank as of the receiving node (see
Section 4.7).

Each node retransmits a data packet up to
three times, with two and one aging actions in
between. The delay between the first and second
transmissions is relatively long but it leaves the
nodes receiving the first transmission enough time
and radio channel bandwidth to retransmit the
packet. The transition labeled by ‘r- ’ on the left
hand side in Figure 4 implements implicit
acknowledgment in the following way. If node A
sends a packet that is received by node B that is
closer to the root than A, and then B rebroadcast
this packet, which is received, among others, by
A, then the state of the packet on A becomes 7
and A will not retransmit the packet again. The
policy remembers each data packets for a certain
time period since the last time it was received
from a node further from the root. This is enough,
because even if the node receives an analogous
packet from a node closer to the root later, it will
immediately enter state 7 again.

Clearly, this policy does not guarantee
message delivery, but best effort only. This is not
a serious limitation for most wireless sensor
network applications because they have to prepare
for message loss as the result of failing nodes and
unreliable links. However, a variation of this
policy can guarantee message delivery in
connected networks provided the hop-count
distance gradient field remains accurate. This
variation retransmits the packet on each node
other than the root until it is received from a node
closer to the root.

The gradient convergecast policy yields a
very fast and robust routing protocol to deliver
messages to a root node, but at the expense of
significant message overhead. Depending on the
topology of the network, the number of
transmissions during the routing of a single data
packet can grow as the square of the distance
between the sender and the root.

5.3 Spanning tree convergecast
The major shortcoming of the gradient

convergecast is its message overhead. The optimal
solution, with respect to the number of messages,
would be to route the data packet along a
spanning tree towards the root. However, this
algorithm is inherently fragile: the radio links are
not reliable causing message loss in any fixed
path. Moreover, a single node failure close to the
root can cut off a large portion of the network

from the root. The speed and robustness of the
gradient convergecast and the low message
overhead of the spanning tree routing protocol can
be combined in the following way. Instead of
utilizing a single path starting from the source
node towards the root, define a small
neighborhood of this path and flood the data
packet in this “lane”. The lane can be defined as
all nodes one hop away in the spanning tree from
the nodes of the path. This is illustrated in Figure
5, where solid arrows represent the edges of the
spanning tree, and the dotted lines are the other
links of the network. The indicated region is the
lane surrounding the highlighted path from the
source node to the root.

source

root

Figure 5. The channel surrounding the path from

source to root

This particular definition of the lane allows a
strikingly simple implementation of the directed
flood-routing in the lane with minimal storage
requirement. Each node has to know the node IDs
of its parent, grandparent, great-grandparent and
its parent. The node rank is simply the node ID of
the grandparent. The relationship between the
sender and the receiver of a radio message can be
computed by the receiver from the rank of the
sender, which is stored in the message, as follows:

(1) If the rank of the sender is the node ID of the
receiver or its parent, then the sender is
further from the root than the receiver. The
corresponding event will be denoted by ‘r+’.

(2) If the rank of the sender is the node ID of the
grandparent of the receiver, then the sender is
at the same distance from the root as the
receiver. These types of message are ignored
by returning false in the accept method of the
policy.

(3) If the rank of the sender is the node ID of the
great-grandparent or its parent of the receiver,
then the sender is closer to the root than the
receiver. The corresponding event will be
denoted by ‘r- ’.

(4) If the rank of the sender is none of the above,
then the receiver is either not in the lane of the
source, or more than two steps away from the
sender. In both cases we ignore the message.

The spanning tree can be constructed and the
node IDs of the four ancestors found by a simple
network-wide broadcast, or by other methods.
Finding the spanning tree that best supports
directed flood-routing is possibly a challenging
problem and is not addressed here.

Once the spanning tree is formed and the ‘r+’
and ‘r- ’ receive events defined, we can reuse the
state machine of the gradient convergecast policy
(see Figure 4) for the spanning tree convergecast
policy. The performance of the spanning tree
convergecast for arbitrary networks will be similar
to that of the gradient convergecast for essentially
linear networks. In particular, the number of
messages required to route a data packet from the
source to the root is proportional to the hop-count
distance of the source from the root.

6 Conclusion
We have introduced the Directed Flood-

Routing Framework for wireless sensor networks.
The supporting engine and flooding policies were
implemented for TinyOS and extensively tested
on the Mica and Mica2 platforms. The gradient
convergecast policy was used in an acoustic
shooter localization application to route acoustic
events back to a base station. A network of 60
motes covering a 100 by 40 meter urban area with
diameter of 10 hops was used to evaluate the
performance of both the routing and shooter
localization algorithms. Typically, 25-30 motes
were triggered by a shot, half of them managed to
report their events in the first second, and the
other half in the next second.

There are several research opportunities in
directed flood-routing in general and flooding
policies in particular. For example, it seems
possible to design convergecast flooding policies
that implement flow control by delaying
retransmission of data packets if nodes closer to
the root are overloaded. Another challenging

research area is the study of topology changes
with respect to convergecast policies. For
example, is it possible to dynamically update the
gradient field or the spanning tree if the root node
is mobile?

The state machines of flooding policies can
clearly be optimized for different hardware
platforms and network configurations, as well as
for speed, reliability and power consumption.
Since these state machines have a limited number
of actions and are relatively small, it seems
possible that they can be mechanically optimized
utilizing a simulator to compute the fitness of
policies.

7 Acknowledgment
The DARPA/IXO NEST program (F33615-

01-C-1903) has supported, in part, the activities
described in this paper.

8 References
[1] J. Hill and D. Culler, “Mica: A Wireless

Platform for Deeply Embedded Networks,”
IEEE Micro., vol 22(6), Nov/Dec 2002, pp
12-24.

[2] J. Hill, R. Szewczyk, A. Woo, S. Hollar and
D. C. K. Pister, “System architecture
directions for networked sensors,”
ASPLOS, November 2000.

[3] A. Woo and D. Culler, “A Transmission
Control Scheme for Media Access in Sensor
Networks,” Mobicom 2001, July 2001,
Rome.

[4] D. Gay, P. Levis, R. von Behren, M. Welsh,
E. Brewer and D. Culler, “The nesC
Language: A Holistic Approach to
Networked Embedded Systems,”
Proceedings of Programming Language
Design and Implementation (PLDI) 2003,
June 2003.

[5] Gy. Simon, M. Maroti, A. Ledeczi, Gy.
Balogh, B. Kusy, A. Nadas, G. Pap, J. Sallai
and K. Frampton, “Sensor network-based
countersniper system,” Submitted to
MobySIS 2004.

[6] D. B. Johnson and D.A. Maltz, “Dynamic
Source Routing in Ad Hoc Wireless
Networks.” In Mobile Computing, Chapter
5, pages 153-181, Kluwer Academic
Publishers, 1996.

[7] C. E. Perkins and E. M. Royer, “Ad-hoc On
Demand Distance Vector Routing.” In
WMCSA'99, February 1999.

[8] V. D. Park and M.S. Corson, “A highly
adaptive distributed routing algorithm for
mobile wireless networks.” In Proceedings
of IEEE INFOCOM, April 1997.

[9] M. R. Pearlman and Z.J. Haas,
"Determining the Optimal Configuration for
the Zone Routing Protocol," IEEE JSAC,
special issue on Ad-Hoc Networks, Vol. 17,
No. 8, August 1999.

[10] B. Karp and H. T. Kung. “GPSR: Greedy
Perimeter Stateless Routing for Wireless
Networks.” In IEEE MobiCom, August
2000.

[11] Y. B. Ko and N. H. Vaidya. “Location-
Aided Routing (LAR) in Mobile Ad Hoc
Networks.” In IEEE MobiCom 1998,
October 1998.

[12] T. He, J. A. Stankovic, C. Lu and T. F.
Abdelzaher, “SPEED: A Stateless Protocol
for Real-Time Communication in Sensor
Networks”, In International Conference on
Distributed Computing Systems (ICDCS
2003), Providence, RI, May 2003.

[13] F. Ye, G. Zhong, S. Lu and L. Zhang,
“GRAdient Broadcast: A Robust Data
Delivery Protocol for Large Scale Sensor
Networks,” accepted by ACM WINET
(Wireless Networks).

[14] M. Lin, K. Marzullo and S. Masini, “Gossip
versus deterministic flooding: Low message
overhead and high reliability for
broadcasting on small networks.” UCSD
Technical Report TR CS99-0637.

[15] D. Braginsky and D. Estrin, “Rumor
Routing Algorithm for Sensor Networks,”
ACM WSNA, 2002.

[16] Yi Shang, Markus P.J. Fromherz, Ying
Zhang, and Lara S. Crawford: "Constraint-
based Routing for Ad-hoc Networks." In:
IEEE Int. Conf. on Information
Technology: Research and Education (ITRE
2003), Newark, NJ, USA, Aug. 2003, pp.
306-310.

