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Abstract - Wireless sensor network applications, 
similarly to other distributed systems, often 
require a scalable time synchronization service 
enabling data consistency and coordination. This 
paper introduces the robust Flooding Time 
Synchronization Protocol (FTSP), especially 
tailored for applications requiring stringent 
precision on resource limited wireless platforms. 
The proposed time synchronization protocol 
utilizes low communication bandwidth, scales 
well for medium sized multi-hop networks, and is 
robust against topology changes and node 
failures. The FTSP achieves its robustness by 
utilizing periodic radio broadcast of 
synchronization messages, and implicit dynamic 
topology update. The unique high precision 
performance is reached by utilizing MAC-layer 
time-stamping, comprehensive error 
compensation, including linear regression, which 
reduces time skew and keeps network traffic 
overhead low. The performance of the FTSP, 
implemented on Berkeley MICA2 platform, was 
evaluated in a multi-hop experiment. The average 
network-wide synchronization error was in the 
microsecond range, which is approximately a 
magnitude lower than that of the existing RBS and 
TPSN algorithms. The protocol was further 
validated as part of our counter-sniper system that 
was field tested in a US military facility. 
 
1. Introduction 
The advances in micro electro-mechanical systems 
(MEMS) technology, in digital circuits design, 
integration and packaging, and in wireless 
communication are leading to smaller, cheaper and 
lower power sensing and computing devices. Cell 
phones and handheld computers already enjoy the 
increased popularity of the public. These trends 
point towards radically new systems of thousands 
or even millions of tiny computing devices 
interacting with the environment and 
communicating with each other. Research teams 
are working on incorporating sensing, processing 
and communication in a volume of less than one 
cubic millimeter [9], while devices of the size of a 

coin built from off-the-shelf components are 
commercially available already. The UC Berkeley 
Mica2 and Mica2Dot motes are popular research 
platforms of this emerging technology [10].  
 
Complex networks built from thousands of such 
devices are expected to affect many aspects of our 
lives. The potential applications of wireless sensor 
networks (WSN) include: 
• Monitoring applications: Non-intrusive and non-
disruptive environmental monitoring helps 
biologists to study sensitive wildlife habitats and 
people with certain medical conditions can receive 
constant monitoring through sensors [12]. The 
Golden Gate Bridge in San Francisco is monitored 
for structural health and sensor networks monitor 
the microclimates on Great Duck Island, Maine 
which is the habitat of Leach’s Storm Petrel [11]. 
• Mobile commerce, inventory management: 
measuring continuously changing conditions, WSN 
will influence the movement of commodities to the 
locations where a need exists.  
• Smart office, kindergarten: the systems 
containing wireless sensors can be part of our 
office space; the education process can be tailored 
to the individual needs of a child [13], adapt to 
context, or coordinate activities of multiple 
children.  
• Military applications: potential applications 
include surveillance, target tracking [14], counter-
sniper systems or battlefield monitoring that 
propagates information to the soldiers and vehicles 
involved in combat.  
 
The unique characteristics of the sensor network 
domain demand the reevaluation of algorithms well 
established over a long period of time, and the 
design of new solutions for problems once 
considered to be solved.  
 
One of the basic middleware services of sensor 
networks is network-wide time synchronization. 
Time synchronization helps to keep the data 
consistent by resolving redundant detection of the 
same event, it supports coordination and 
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communication e.g. TDMA radio scheduling, and it 
supports common services in distributed systems 
such as cryptography schemes, database queries or 
distributed logging for debugging.  
 
In this paper we introduce the Flooding Time 
Synchronization Protocol (FTSP) for WSN. Our 
goals are to achieve a network wide 
synchronization error in the micro-second range 
and scalability up to hundreds of nodes, while 
being robust to network topology changes and node 
failures. To achieve these goals the possible error 
sources were identified and systematically 
analyzed. The proposed algorithm compensates for 
the relevant error sources by utilizing concepts of 
MAC layer time-stamping [2], [16] and skew 
compensation with linear regression [1].While these 
ideas are not completely new, their unique 
combination and its effective implementation yield 
an order of magnitude better precision than existing 
approaches on the same platform. Furthermore, the 
utilized broadcast-based synchronization protocol 
along with the skew compensation scheme helps to 
keep communication overhead low. Finally, the 
implicit dynamic topology handling of the FTSP 
provides fast convergence and robustness.  
 
The algorithm was implemented on Mica/Mica2 
platforms running the TinyOS operating system 
[7]. A short overview of the target platform is 
given in Section 2. Existing time synchronization 
algorithms, with special emphasis on ideas utilized 
in FTSP, are surveyed in Section 3. The possible 
sources of error using radio message-based 
synchronization are described and analyzed in 
Section 4. We describe the proposed FTSP 
algorithm in details and perform an evaluation 
based on a large scale experiment in Section 5. In 
Section 6, we compare FTSP to existing 
algorithms. A different time synchronization 
method that works in networks with aggressive 
power management is presented in Section 7. 
Finally, an application using FTSP time sync is 
described in Section 8 and we offer our 
conclusions and plans for further improvements in 
Section 9. 
 
2. The target platform 
One of the most widely used WSN platforms is the 
Berkeley Mica2 mote [10], [7]. The Mica2 mote 
has a 7.37 MHz processor, 4 KB of RAM, 128 KB 

of flash memory, 433 MHz wireless radio 
transceiver (38.4 Kbps transfer rate, 500 feet 
range), and is powered by two AA batteries. 
Pluggable sensor boards with temperature, light, 
magnetic and other sensors are available.  
 
The Berkeley motes run the TinyOS operating 
system [7], [3], an open source, event driven and 
modular OS designed to be used with networked 
sensors. TinyOS handles task scheduling, radio 
communication, clocks and timers, ADC, I/O and 
EEPROM abstractions, and power management. 
Application developers can select a subset of the 
modules implementing these functionalities, extend 
or override them if necessary, and statically 
compile them into the final executable. 
 
3. Approaches to time sync 
Time synchronization algorithms providing a 
mechanism to translate between the local times of 
nodes or to synchronize the local clocks of the 
nodes in the network have been studied in the past. 
The most widely adapted protocol used in the 
internet domain is the Network Time Protocol 
(NTP) devised by Mills [4]. The NTP clients 
synchronize their clocks to the NTP time servers 
with the accuracy in the order of milliseconds. The 
time servers are synchronized by the external time 
sources typically using GPS. The NTP has been 
widely deployed and proved to be effective, secure 
and robust in Internet. In WSN, however, non-
determinism in transmission time caused by the 
Media Access Channel (MAC) layer of the radio 
stack can introduce several hundreds of 
milliseconds delay at each hop. Therefore this 
protocol is suitable only for WSN applications with 
low precision demands. 
  
The most important examples of existing time 
synchronization protocols developed for the 
wireless sensor network domain are the Reference 
Broadcast Synchronization (RBS) algorithm [1] 
and the Timing-sync Protocol for Sensor Networks 
(TPSN) [2]. 
 
In the RBS, a reference message is broadcasted. 
The receivers record their local time when 
receiving the reference broadcast and exchange the 
recorded times with each other. The main 
advantage of RBS is that it eliminates transmitter-
side non-determinism. The disadvantage of the 
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approach is that additional message exchange is 
necessary to communicate the local time-stamps 
between the nodes. To our best knowledge the 
algorithm has not been extended yet to large multi-
hop networks. 
 
The TPSN algorithm first creates a hierarchical 
structure in the network and then performs the 
pair-wise synchronization along the edges of the 
structure. Each node gets synchronized by 
exchanging two synchronization messages with its 
reference node one level higher in the hierarchy. 
The TPSN achieves two times better performance 
than RBS by time-stamping the radio messages in 
the Medium Access Control (MAC) layer of the 
radio stack [2]. The shortcoming of TPSN is that it 
does not estimate the clock drift of nodes, which 
limits its accuracy. Moreover, it does not support 
dynamic topology changes and its performance was 
experimentally verified in a small multi-hop 
network only.  
 
4. Uncertainties in the radio message 
delivery 
Non-deterministic delays in the radio message 
delivery in WSN can be magnitudes larger than the 
required precision of time-synchronization. 
Therefore, these delays need to be carefully 
analyzed and compensated for. We shall use the 
following decomposition of the sources of the 
message delivery delays first introduced by Kopetz 
and Schwabl [6] and later extended in [2]. 

(1)Send Time—time used to assemble the message 
and issue the send request to the MAC layer on the 
transmitter side. Depending on the system call 
overhead of the operating system and on current 
processor load, the send time is highly 
nondeterministic and can be as high as hundreds of 
milliseconds. 
(2) Access Time—delay incurred waiting for access 
to the transmit channel up to the point when 
transmission begins. The access time is the least 
deterministic part of the message delivery in WSN 
varying from milliseconds up to seconds depending 
on the current network traffic. 
(3) Transmission Time—the time it takes for the 
sender to transmit the message. This time is in the 
order of tens of milliseconds depending on the 
length of the message and the speed of the radio. 

 (4) Propagation Time—the time it takes for the 
message to transmit from sender to receiver once it 
has left the sender. The propagation time is highly 
deterministic in WSN and it depends only on the 
distance between the two nodes. Tthis time is less 
than one microsecond (for ranges under 300 
meters). 
(5) Reception Time—the time it takes for the 
receiver to receive the message. It is the same as 
the transmission time. The transmission and 
reception times overlap in WSN as pictured in 
Figure 1. 
 (6) Receive Time—time to process the incoming 
message and to notify the receiver application. Its 
characteristics are similar to that of send time. 
 

access transmission

reception

send

receive

sender:

receiver:

propagation

 
Figure 1 Decomposition of message delivery delay 
over a wireless link. 

The RBS approach completely eliminates the send 
and access time, and with minimal OS 
modifications it is also possible to eliminate the 
receive time uncertainty. This leaves the mostly 
deterministic propagation and reception time in 
wireless networks as the sole source of error. The 
transmission time is not of concern in WSN as it 
overlaps with the reception time. The main strength 
of RBS is its broad applicability to commodity 
hardware and existing software in wireless 
networks. 
 
As the authors of the TPSN protocol observed, on 
typical WSN platforms, such as the Mica2 mote, 
one has direct access to the MAC layer, and 
message time stamping can be performed during 
message transmission and reception. This 
immediately eliminates the same three main 
sources of uncertainties as in RBS. The real 
novelty of TPSN however is that with a two-way 
handshake of synchronization messages the 
unknown propagation time can be calculated and 
compensated for on the fly. 
 
Both the RBS and TPSN protocols suffer from the 
uncertainties of the overlapping transmission and 
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reception times. To fully understand the 
constituents of this uncertainty we shall describe 
the message propagation in the wireless channel in 
more detail. We imagine an idealized point of the 
transmitted message, such as the end of a particular 
byte of the message. Then we follow the 
transmission of this idealized point through the 
software, hardware and physical levels of the 
wireless channel from sender to receiver.  

First, the message is transferred to the radio chip 
piece by piece, usually in a byte oriented fashion. 
The radio chip signals the microcontroller that it is 
ready to obtain the next piece. The radio chip then 
encodes the pieces and generates an 
electromagnetic wave through the antenna. This 
wave propagates through space and the receiver’s 
antenna and radio chip converts it back to binary 
representation. Then the radio chip on the receiver 
side signals the microcontroller that a new piece is 
ready and can be read through some protocol. The 
timing of the actual data transfer mechanism 
between the microcontroller and radio chip is 
unimportant because data transfer can be done at 
any time before a new piece arrives. Therefore we 
have the following delivery delays of an idealized 
point of the message: 

(7) Interrupt Handling Time—the delay between 
the radio chip raising and the microcontroller 
responding to an interrupt. This time is mostly less 
than one microsecond (waiting for the 
microcontroller to finish the currently executed 
instruction), however when interrupts are disabled 
this delay can be large. 
(8) Encoding Time—the time it takes for the radio 
chip to encode and transform a part of the message 
to electromagnetic waves starting from the point 
when it raised an interrupt indicating the reception 
of the idealized point from the microcontroller. 
This time is deterministic and is in the order of a 
hundred microseconds. 
(9) Decoding Time—the time it takes for the radio 
chip on the receiver side to transform and decode 
the message from electromagnetic waves to binary 
data. It ends when the radio chip raises an interrupt 
indicating the reception of the idealized point. This 
time is mostly deterministic and is in the order of 
hundred microseconds. However, signal strength 
fluctuations and bit synchronization errors can 
introduce jitter. 
 

Some radio chips cannot capture the byte 
alignment of the transmitted message stream on the 
receiver side and the radio stack has to determine 
the bit offset of the message from the alignment of 
a known synchronization byte and then shift the 
message accordingly. Since the transmission time 
of the byte is a few hundred microseconds the 
delay caused by the incorrect byte alignment must 
be compensated for. This compensation is 
performed by the implementation of TPSN on the 
Mica2 platform, but it is not reported in [2]. 

(10) Byte Alignment Time—the delay incurred 
because of the different byte alignment of the 
sender and receiver. This time is deterministic and 
can be computed on the receiver side from the bit 
offset and the speed of the radio. 

interrupt handling

encoding

propagation

(byte alignment)

interrupt handling

decoding

se
nd

er
re

ce
iv

er

cpu:

radio:

antenna:

antenna:

radio:

radio:

cpu:

 
Figure 2 The timing of the transmission of an 
idealized point in the software (cpu), hardware (radio 
chip) and physical (antenna) layers of the sender and 
receiver. 

Figure 2 summarizes the decomposition of delivery 
delay of the idealized point of the message as it 
traverses over a wireless channel. Each line 
represents the time scale of the layer as measured 
by an ideal clock. The dots represent the time 
instance when the idealized point of the message 
crosses the layers. The triangles on the first and 
last line represent the time when the 
microcontroller makes the time stamps. Depending 
on the specific hardware the time-stamp is usually 
recorded by the microcontroller when it handles the 
radio chip interrupts both on the sender and 
receiver sides. Alternatively, capture registers 
provided by some hardware can be employed to 
eliminate the interrupt handling time. 
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On the Mica2 platform, the interrupt handling time 
is around 5µs depending on the length of the code 
path between the start of interrupt hander and the 
part that records the local time. However, with less 
than 2% probability, the interrupt handling time can 
be as high as 30µs. The sum of encoding and 
decoding times are between 110µs and 112µs. The 
byte alignment time is between 0µs (for bit offset 
0) and 365µs (for bit offset 7). In contrast, the 
propagation time is under 1µs. 
 
Using our definitions we can properly express the 
sources of time-stamping errors of the RBS and 
TPSN algorithms. The RBS protocol is sensitive to 
the propagation, decoding and interrupt handling 
time differences between the two receivers. The 
main source of error here is the jitter in interrupt 
handling and decoding. The TPSN protocol is 
sensitive to the encoding, decoding and interrupt 
handling time differences between the sender and 
receiver. Note that although the propagation time 
has been eliminated, the encoding and decoding 
times are not because they might not be the same 
on the sender and receiver side. It is important to 
point out that both the RBS and TPSN protocols 
suffer from the two largest sources of uncertainty 
of MAC layer time stamping: the jitter of interrupt 
handling and decoding time. 
 
5. Flooding Time Synchronization Protocol 
The goal of the FTSP is to achieve a network wide 
synchronization of the local clocks of the 
participating nodes. The error of the 
synchronization is in the micro-second range, and 
the protocol is scalable for hundreds of nodes, 
while being robust to network topology changes 
and node failures.  
 
The FTSP achieves time synchronization between 
a sender and possibly multiple receivers utilizing a 
single radio message time-stamped at the both the 
sender and the receiver sides. The detailed analysis 
of the error sources suggests MAC layer time-
stamping, as observed by [culler], [2]. However, a 
precise time-synchronization at a single point in 
time is a partial solution only. Compensation for 
the clock drift of the nodes is inevitable to achieve 
high precision and low communication overhead. 
The FTSP estimates the clock drift using linear 
regression (as suggested in [1]). 

 
Typically, WSNs operate in areas larger than the 
broadcast range, therefore the FTSP needs to 
support a multi-hop synchronization. A single, 
dynamically (re)elected node, called the root of the 
network, maintains the global time and all other 
nodes synchronize their clocks to the local clock of 
the root. The nodes form an ad-hoc structure to 
transfer the global time from the root to all the 
nodes, as opposed to the explicit hierarchical 
structure proposed in [2]. This saves the extra 
communication necessary to establish the 
hierarchical structure and is more robust against 
node failures and other topology changes.  
 
5.1 The FTSP time-stamping 
The FTS Protocol synchronizes the receiver to the 
time provided by the sender of the radio message. 
A radio broadcast is used to allow synchronization 
of multiple receivers using just one radio message. 
The broadcasted message contains the sender time-
stamp which is the global time when sending a 
certain byte. The receivers get the corresponding 
local time from the local clock when receiving the 
message. This way one broadcast message 
provides a synchronization point (global, local time 
pair) to each of the receivers. Unlike the RBS and 
TPSN protocols, the time stamp of the sender 
must be embedded in the currently transmitted 
message. Therefore, the time stamping on the 
sender side must be performed before the bytes 
containing the time stamp are transmitted.  
 

 
Figure 3 Transmitted packets over the radio channel. 
Full lines represent the bytes of the buffer and the 
dashed lines are the bytes of packets.  

Wireless message transmission starts with the 
transmission of preamble bytes, followed by SYNC 
bytes, then with a message descriptor followed by 
the actual message data, and finally ends with CRC 
bytes. During the transmission of the preamble 
bytes the receiver radio chip synchronizes itself to 
the carrier frequency of the incoming signal. From 

SYNC Data 

the receiver is notified 

the bit offset 
SYNC Receiver 

Preamble CRC Sender 

the last bit arrives 
propagation 

delay 
Preamble Data CRC 
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the SYNC bytes the receiver can calculate the bit 
offset it needs to reassemble the message with the 
correct byte alignment. The message descriptor 
contains the target, the length of the data and other 
fields, such as the application layer that needs to be 
notified on the receiver side. The CRC bytes are 
used to verify that the message was not corrupted. 
The message layout is summarized in Figure 3. 
 
The FTSP time stamping effectively reduces the 
jitter of the interrupt handling and 
encoding/decoding times by recording multiple time 
stamps both on the send and receiver side. The 
time stamps are made at each byte boundary after 
the SYNC bytes as they are transmitted or 
received. First, these time stamps are normalized 
by subtracting an appropriate integer multiple of the 
nominal byte transmission time, which can be 
calculated from the transfer rate. The jitter of 
interrupt handling time is mainly due to program 
sections disabling interrupts on the microcontroller 
for short amount of times. This error is not 
Gaussian and successfully can be eliminated by 
taking the minimum of the normalized time stamps. 
The jitter of encoding and decoding time can be 
combated by taking the average of these error 
corrected normalized time stamps. On the receiver 
side this final averaged time stamp must be further 
corrected by the byte alignment time that can be 
computed from the transmission speed and the bit 
offset. The number of bytes put an upper limit on 
the achievable error correction using this technique.  
However, only with 6 time stamps, the time 
stamping precision can be improved from 25µs to 
1.4µs on the Mica2 platform.  
 
5.2 Dealing with clock drifts, one hop scenario 
A single time-stamp would be sufficient to 
synchronize two nodes if the offset of their local 
times were constant. However, the frequency 
differences of the crystals used in Mica2 motes 
introduce drifts up to 40µs in one second time 
period. This would mandate continuous re-
synchronization with a period of one second to 
keep the error in a micro-second range, which is 
not feasible in our domain. Therefore, we need to 
estimate the drift of the receiver clock with respect 
to the sender clock. 
 
If the short term stability of the clocks is good, the 
offset between the two clocks changes in a linear 

fashion. We verified the stability of the 7.37 MHz 
Mica2 clock by periodically sending a reference 
broadcast, which was received by two different 
motes. The two motes time-stamped the message 
with their local time of arrival and reported the 
time-stamp. For each transmitted message the 
offset of the two reported time-stamps was 
calculated. The offsets were further examined: 
linear-regression was used to find the line L best 
approximating the dataset and the errors were 
analyzed. For a data point (time,offset) and the 
regression line L, the error is offset–L(time). A one 
hour experiment produced the following results: the 
average value of the absolute errors was 0.95µs 
and the maximum absolute error was 4.32µs. The 
distribution of the errors is shown in Figure 4. This 
off-line regression provides the best prediction that 
can possibly be achieved, provided the clocks can 
be considered stable during the experiment. 
Naturally this method cannot be used on-line; it is 
used here as a reference to evaluate on-line 
solutions. 
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Figure 4 The distribution of the errors of linear- 
regression (LR): off_line refers to off-line LR, 30sec 
refers to time sync interval 30s, query interval 23s, 
and 300s refers to time sync interval 300s, query 
interval 93s. 

The on-line linear regression needs to identify the 
trend of the global time relative to the local time 
from the data points received in the past. 
Moreover, as a consequence of the memory 
constraints of the platform, only a limited number 
of data points can be stored. The following 
scenario was used to test our Mica2 
implementation: mote A maintains the global time 
and sends synchronization messages to mote B 
with a period of T. B estimates the drift of its local 
clock using linear regression on the past 8 data 
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points; and both A and B respond to reference 
broadcasts with period t by time-stamping them 
with their estimate of the global time, and sending 
these time-stamps to a base station. The linear 
regression prediction error is the difference 
between the global time given by A and the 
estimated global time given by B. Figure 4 shows 
the distribution of these prediction errors, for (a) 
T=30s, t=18s, and (b) T=300s, t=93s. The length 
of experiment (a) was 18 hours, the average 
absolute error was 1.48µs, and the maximum 
absolute error was 6.48µs. The length of 
experiment (b) was 8 hours, the average absolute 
error was 2.24µs and the maximum absolute error 
was 8.64µs. 
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Figure 5 Time synchronization error between two 
motes. The time synchronization was stopped after 30 
minutes. The initial small error of the skew estimate 
results in increasing error over time.  

An important design parameter is the required 
resynchronization interval to reach the desired 
precision. As shown in Figure 4, the 30s 
resynchronization interval gave slightly better 
results than 300s. To further evaluate the behavior 
of the skew compensation, another experiment was 
carried out, the results shown in Figure 5. This 
result shows that the resynchronization period, 
depending of the accuracy requirements, can go up 
to several minutes. 
 
5.3 The multi-hop in FTSP  
Most elaborate WSN applications use networks 
larger than one hop in radius, thus multi-hop 
synchronization is necessary to achieve network-
wide time synchronization. 
 

A possible solution to the problem is to provide a 
fraction of the motes with external synchronization 
methods, e.g. GPS sensors in such a way that all 
other motes are one hop away from them. 
However, this solution is cost prohibitive for most 
systems. The proposed multi-hop FTSP can 
synchronize the network without external time 
sources, provided that each node has a unique 
identifier, the node ID. 
 
The global time in the multi-hop FTS Protocol is 
driven by the local clock of a single node, called 
the root. The global time is diffused into the 
network by each node periodically broadcasting its 
own global time estimate. Using a modified version 
of the one-hop synchronization scheme described 
in Sections 5.1 and 5.2, motes continuously 
synchronize themselves to (possibly multiple) 
motes that are closer to the root than themselves. 
The protocol defines how to handle redundant 
information from different sources, how to elect a 
root, and provides a mechanism to overtake the 
responsibility of the root by another node if the 
root fails.  
 
- The election problem: Since there is no 
dedicated node in the network to provide time 
reference information, the root must be elected 
each time the network is started. The election 
process utilizes the unique IDs of the nodes. When 
a node does not receive time sync messages for a 
period of time, it declares itself to be the root and 
eventually starts sending time sync messages. It is 
possible, of course, that more than one node 
declares itself the root of the network. The FTSP 
resolves this problem by electing the mote with the 
lowest ID as the root of the network in the 
following way. All motes remember the ID of the 
root, to which they are currently synchronized to, 
in a local variable, called myRootID. If a node is 
root, then this variable holds its own node ID. 
Time synchronization messages contain a field, 
called rootID, which stores the myRootID of the 
sender. The time synchronization message is 
discarded by the receiver if the rootID in the 
message is higher than the myRootID of the 
receiver. On the other hand, if the rootID is smaller 
than the myRootID, then the myRootID of the 
receiver is set to rootID. In this case, if the receiver 
declared itself the root node of the network 
previously, it becomes a regular node at this point. 
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This guarantees that eventually no more than one 
root remains in the network. 
 
- Handling redundant information: The global 
time information can arrive to a node from the root 
along different routes, and the precision of the 
global time estimate may deteriorate over time as it 
is passed along the network. Moreover, the linear 
regression of a limited number of data points more 
accurately estimates the offset and skew of the 
local clock if the data points are distributed over a 
longer period of time. Therefore, each node has to 
select an appropriate subset of the received time 
synchronization messages that are entered into the 
eight-element regression table, and used for 
calculating the regression line. The FTSP employs 
sequence numbers for this purpose. Each time 
synchronization message contains a seqNum field, 
which is set and incremented by the root each time 
it sends a new message. Other nodes maintain a 
highestSeqNum local variable, which contains the 
highest sequence number of those received 
messages whose rootID is myRootID. These nodes 
set the seqNum field of their broadcasted messages 
to the current value of their highestSeqNum. 
Consequently, a node considers a time sync 
message new if the rootID of the message is less 
than or equal to myRootID and the seqNum is 
greater than highestSeqNum. ‘New’ time 
synchronization messages are entered into the 
regression table, others are discarded. This protocol 
guarantees that only one data point will be entered 
into the table for each rootID and seqNum pair, 
namely the one that arrived first. Since the first 
synchronization message probably took a short and 
good quality path (although it is not enforced that it 
has the smallest possible hop-count), it is likely 
more accurate than the following messages having 
the same seqNum. 
 
- The node and link failure: Errors caused by 
failing hardware or drained batteries are the norm 
rather than the exception in WSN and the FTSP 
needs to be robust against these failures. Periodic 
broadcasting of time synchronization messages 
handles the regular node and link failures well, but 
does not help when the root fails. The following 
mechanism, similar to the initial leader election 
process, is used to replace the root in case of its 
failure. Each node remembers the most recent time 
when the root was active. A good approximation of 

this is the time when the last new time sync 
message arrived (highestSeqNum was changed). 
Each node will time out if the root has not been 
active for a certain time period and will declare 
itself to be the root. Therefore, all nodes in the 
network will eventually time-out, and the election 
process will resolve multiple root conflicts. It is 
clear that inconsistent timing information would be 
produced during this election process since multiple 
sources of the global time would exist. To avoid 
the inconsistency, nodes keep their old global time 
estimates and the new root sends its global time 
estimate instead of its local time as a new global 
time. The new global time is very close to the old 
global time this way and the network does not get 
out of synchronization during the root reelection. 
 
- Topology changes: Nodes join and leave the 
network dynamically, and some of them are 
possibly mobile. The only assumption we make 
here is that the network remains connected at all 
times. The effect of removing the root from the 
network was explored before. Another problematic 
case is when a new node M with smaller ID than 
the root is switched on. If M transmitted its local 
time as a new global time immediately after 
switching on, all the nodes in the network would 
get out of the synchronization. Therefore, each 
newly introduced node first waits for a certain time 
period, gathers data for the linear regression and 
determines the offset and skew of its own local 
clock from the global time. This way M is able to 
overtake the role of the old root and send a global 
time that is close to the old global time in such a 
way that the network does not get out of 
synchronization. Even if M has a higher node ID 
than that of the current root, it still waits for a 
certain time period before it rebroadcasts time sync 
messages to avoid sending erroneous global time.  
 
Since time sync messages with the lowest rootID 
and highest seqNum flood the network, topology 
changes do not hinder the algorithm provided the 
network stays connected. 
  
- The convergence of the algorithm: The speed of 
information propagation (root ID and global time) 
to all nodes of the network is very important in the 
case of node failures, system startup and resume 
from powered down mode (see Section 7). Node 
failures can be handled very smoothly, as described 
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in the previous section, because the remaining 
nodes are already synchronized. The initial phases 
of switching on or waking up the system from 
sleep mode are more critical. There exists a 
physical limit on the time it takes for the network 
to synchronize. If period is the time period every 
node broadcasts a time sync message (note that the 
individual motes are transmitting asynchronously), 
and radius is the maximum hop-count of nodes to 
the root, then the expected value of time it takes 
the network to learn about the identity of the root 
is radius*period/2. To get an estimate of both the 
skew and offset of the local clock, nodes need at 
least two data points in the regression table. 
Therefore, it takes approximately radius*period 
time to synchronize all the nodes in the network. 
This illustrates a tradeoff between power 
consumption and speed of convergence: decreasing 
the period increases the number of messages sent 
in a certain time period but allows faster 
convergence.  
 
5.4 Experimental data 
The implementation of FTSP on the Mica and 
Mica2 platforms that was used to carry out the 
experiments described in this section is available on 
internet (see [8]). We tested the protocol focusing 
on the most problematic scenarios, such as 
switching off the root of the network, removing a 
substantial part of the nodes from the network, so 
that the remaining nodes still formed a connected 
network, and switching on a substantial number of 
the new nodes in the network.  

 
Figure 6 The layout and links of the experimental 
setup: 64 motes are distributed in 8 rows and 8 
columns and each node can only communicate with its 
direct neighbors. The maximum hop distance from the 
first and the second leader are 4 and 7 respectively. 

The experiment scenario involves 64 Mica2 motes 
deployed in 8x8 grid in such way that each mote 
can communicate only with its direct neighbors. 
Furthermore, the node with the smallest id (ID1) is 
located in the middle of the network and the node 
with the second smallest id (ID2) is at the edge of 
the network as shown in Figure 6. This means that 
ID1 will eventually become the root of the network 
and ID2 will become the root if ID1 dies. The 
maximum hop distance between ID1 and ID2 
represents the worst case scenario if the root ID1 
dies. 
 
Two other motes were used in the experiment, the 
reference broadcaster, and the base station. Their 
function was the same as described in Section 5.2.  
The topology of the 64 nodes network was 
enforced in software and so all the nodes could be 
placed within the radio range from the reference 
broadcaster. This way the base station and the 
broadcaster could talk directly to all 64 nodes and 
no multi-hop routing was necessary. 
 
Each of 64 nodes broadcasted one time 
synchronization message per 30 seconds. The 
reference broadcaster queried the global time from 
all nodes in the network once per 30 seconds and 
the base station collected the responses.  
 
We performed the following experiment: 

• at 0:00 all motes were turned on; 
• at 0:41 the root with ID1 was switched off; 
• from 1:12 until 1:42 randomly selected motes 

were switched off and back on, one per 30s; 
• at 1:47 the motes with odd node IDs were 

switched off (half of the nodes are removed); 
• at 2:02 the motes with odd node IDs were 

switched back on (100% new nodes are 
introduced); 

• at 2:13 the second root with ID2 is switched 
off; 

 
Even though there were 64 nodes in the network, 
at any time typically only 80.0% of them 
succeeded to reply to the reference broadcaster due 
to radio collisions. The nodes reported back to the 
base station whether they were synchronized (i.e. 
have enough values in their regression table) and 
what the global time was at the arrival of the 
reference broadcast message. For each reference 
broadcast round, we calculated the percentage of 

ID1– first leader 

ID2– second 
leader 
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the motes that were synchronized out of those that 
replied. We analyzed the time synchronization 
error by first calculating the average G of reported 
global times and then for each node calculating the 
difference between the reported global time and G.  
 
Consequently, we computed the average and 
maximum of the absolute values of these 
differences, called the average and maximum time 
synchronization error, respectively. The resulting 
graph is shown in Figure 7. 
 
Even though there were 64 nodes in the network, 
at any time typically only 80.0% of them 
succeeded to reply to the reference broadcaster due 
to the radio collisions. The nodes reported back to 
the base station whether they were synchronized 
(i.e. have enough values in their regression table) 
and what the global time was at the arrival of the 
reference broadcast message. For each reference 
broadcast round, we calculated the percentage of 
the motes that were synchronized out of those that 
replied. We analyzed the time synchronization 
error by first calculating the average G of reported 
global times, and then for each node calculating the 
difference between the reported global time and G. 
Consequently, we computed the average and 
maximum of the absolute values of these 
differences, called the average and maximum time 
synchronization error, respectively. The resulting 
graph is shown in Figure 7. 
 
The beginning of the experiment has shown the 
convergence of the algorithm: during the first 3 
minutes the nodes were not synchronized, because 
none of them declared itself to be the root. The 
nodes were switched on approximately at the same 
time, so in the next few minutes many of them 
timed out and became the roots of the network. 
This was the reason why the average and 
maximum synchronization errors soared during this 
time period. However, after the 6th minute the 
election process has completed and only a single 
root remained (ID1).The number of synchronized 
nodes started to grow steadily, and the average and 
maximum errors became approximately 2.5µs and 
7.5µs, respectively. Complete synchronization has 
been achieved in 10 minutes as indicated by the 
percentage of synchronized motes reaching 100%. 
 

When the root ID1 was switched off, no impact on 
the network was immediately observable. What 
happened is that the global time had not been 
updated for a certain period of time until each node 
timed out and declared itself to be the root. The 
election process again resulted in a single root ID2 
eventually. However, the error stayed low during 
this time because nodes did not discard their old 
offset and skew estimates and the new root was 
broadcasting its estimation of the old global time. 
This caused slight deterioration of the maximum 
and average errors until all nodes calculated more 
accurate drift estimates based on the messages 
broadcasted by the new root. In the last part of the 
experiment some of the nodes were removed and 
new ones were introduced. The impact of these 
operations on the average and maximum errors was 
minimal. We can observe that the number of 
synchronized nodes decreased whenever a new 
node was switched on because it takes some time 
for the new node to obtain enough data to get 
synchronized. Worth noticing is also the fact that 
the network recovered faster after the root ID2 was 
switched off  than after ID1. This was also 
expected since the root which took over after ID2 
was 1 hop away from ID2. 
 
The 64-mote 7-hop network synchronized in 10 
minutes and the average time synchronization error 
stayed below 11.7µs. If we divide it by number of 
hops, we get the average error of 1.7µs per hop. 
The maximum time synchronization error was 
below 38µs, which was observed only when the 
root was switched off. Switching off and 
introducing the new nodes did not introduce a 
significant time synchronization error. 
 
6. Comparison to previous approaches 
In this section the pros and cons of the proposed 
FTSP are compared to those of previously known 
protocols. As reference, the RBS and TPSN 
algorithms were chosen, because (1) these time 
synchronization protocols were also developed with 
the special requirements of sensor networks in 
mind. as opposed to other, more general 
algorithms, (2) actual experimental results are 
available for the same platforms (MICA/MICA2), 
and (3) ideas from these protocols were used and 
enhanced in FTSP.
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Figure 7 An 8x8 grid experiment shows the 
percentage of synchronized nodes, the maximum and 
average error (the maximum and average absolute 
offset from the average reported global time). The 
nodes were switched on at time A, the root ID1 was 
switched off at B, multiple motes were randomly 
switched off and back on during the C, half of the 
motes were switched off at D, the same motes were 
switched back on at E and finally the root ID2 was 
switched off at F. 

The RBS approach time-stamps messages only on 
the receiver side; therefore, it eliminates the access 
and the send times. The published method in [1] 
does not compensate for byte alignment, but that 
could be easily incorporated. The main 
achievement of the RBS time-stamping of a 
reference broadcast by two receivers is that it 
eliminates random delays on the sender side. 
However, time-stamping the radio messages in the 
low layers of the radio stack used in our method 
has practically the same effect and eliminates the 
jitter of interrupt handling and decoding times. 
 
The TPSN approach eliminates the access time, 
byte alignment time and propagation time by 
making use of the implicit acknowledgments to 
transmit information back to the sender. This 
protocol gains an additional accuracy over RBS 
due to time-stamping the radio message multiple 

times and averaging these time-stamps. TPSN was 
implemented on the Mica platform and it would 
face certain implementation problems on later 
platforms. Unfortunately in the Mica2 platform 
implicit acknowledgments can not be effectively 
implemented because of long settling time of the 
radio chip when switching from the receiving mode 
to transmission mode. Another disadvantage of the 
TPSN protocol is that the two-way communication 
prohibits the use of message broadcasting, which 
results in higher communication.  
 
The accuracy of the RBS time-stamping reported 
by the authors is ~11µs. Least square linear 
regression is used to account for the clock drifts 
which results in 7.4µs average error between two 
motes after a 60 second interval. The multi-hop 
scenario involves the local time transferring through 
the intermediary nodes. The function of the 
Berkeley motes was limited to providing wireless 
communication to PDAs (iPAQ). The authors of 
TPSN algorithm implemented both TPSN and 
RBS on the Mica platform using a 4 MHz clock for 
time-stamping, and compared the precision of the 
two algorithms. The resulting average errors for a 
single hop case for two nodes are 16.9µs and 
29.1µs for the TPSN and RBS algorithms, 
respectively. 
 
The proposed FTSP algorithm uses a fine-grained 
clock, MAC-layer time-stamping with several jitter 
reducing techniques to achieve high precision. This 
approach eliminates the send, access, interrupt 
handling, encoding, decoding and receive time 
errors, but does not compensate for the 
propagation time. Multiple time-stamps with linear 
regression are used to estimate clock skew and 
offset. The average error of the algorithm for a 
single hop case using two nodes was 1.48µs, 
according to measurements described in Section 
5.2. For multi-hop case the average error was 
11.7µs in a 7-hop network, resulting in a 1.7µs per 
hop accuracy.  
 
The applied flood-based communication protocol in 
FTSP provides a very robust network, and still 
induces only small network traffic. The network 
hierarchy is maintained using the time 
synchronization messages, without additional 
message passing, as opposed to the solution in 
TPSN [2]. FTSP also utilizes less network 
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resources either both RBS or TPSN. If the 
resynchronization period is t seconds, then each 
node sends 1 message per t seconds in FTSP, 2 
messages per t seconds in TPSN (1 message to 
parent and 1 response) and 1.5 message per t 
seconds in RBS (0.5 for a reference broadcast and 
1 for a time-stamp exchange message). The 
robustness of the protocol was demonstrated by 
the harsh experiment described in Section 5.5. 
Unfortunately, no similar data is readily available 
for TPSN or RBS for comparison.  
 
7. Time synchronization in powered down 
sensor networks 
The FTSP described above makes use of 
continuous time synchronization where every mote 
periodically broadcasts time synchronization 
messages. Although measurements suggest that the 
broadcast period can be as high as several minutes, 
depending on the accuracy requirements (see 
Figure 4), the protocol still requires continuous 
operation of the motes, thus limiting the lifetime of 
the application. The approach we previously 
described for both the single and multi-hop cases is 
definitely not applicable for systems operating over 
several weeks or months. These applications are 
not required to be continuously active, and are 
powered down most of the time to save energy.  
The question arising naturally is whether 
continuous time synchronization is really 
necessary. 
 
As pointed out in [1], in many cases post facto 
synchronization is enough, no continuous 
synchronization is required. Especially those 
systems collecting data or reacting to rare events, 
but requiring exact time measurements belong to 
this case.  
 
A possible way of post facto synchronization is 
described in [1], utilizing explicit pair-wise 
synchronization after message passing. We propose 
an alternative method embedded into the routing 
protocol which does not require any additional 
message exchange apart from the routing messages.  
 

 
Figure 8 Estimation of detection time TEVENT can be 
iteratively determined along a routing path A,B,C,S as 
TrcvS – offsetA – offsetB – offsetC  

The basic problem is the following: a sensor detects 
an event and the target node needs to know the 
time of the event in its own local time. The sensor 
and the target nodes may be several hops apart 
from each other. Still, it is possible to solve the 
problem without any explicit time synchronization 
in the network. An implicit synchronization may be 
performed during the routing process. 
 
Along with the sensor reading a radio message 
includes an age field, which contains the elapsed 
time since the occurrence of the event. This 
additional information adds only a very small 
overhead to the message. Each intermediate mote 
measures the offset, which is the elapsed time from 
the reception of a sensor reading till its 
retransmission. The age field is updated upon 
transmission using the time stamping method 
described in Section 5.2. When the sensor reading 
arrives to the destination, the age field contains the 
sum of the offsets measured by each of the motes 
along the path. The destination node can determine 
the time of the event by subtracting age from the 
time of arrival of the message. The concept is 
illustrated in Figure 8: An event is detected at node 
A at time instant TEVENT, then a notification 
message is sent to destination node S through 
nodes B and C. The message delays at the nodes 
are offsetA, offsetB, and offsetC, respectively. The 
message arrives to S at time instant TrcvS, 
containing an age field offsetA+offsetB+offsetC. The 
time of the event can be calculated as TEVENT = 
TrcvS- age. 
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One possible problem with this approach is that the 
time measurement units of the intermediate nodes 
are not of the same length, because of the slight 
differences in their clock frequencies. Since this 
method does not compensate for skew errors, 
significant error can accumulate if the routing of 
the sensor reading takes a long time. According to 
MICA2 platform specification, the clock skew 
error is less than 40µs per second. Thus the worst-
case post-facto synchronization error can be 
estimated as 4*10-5TR, where TR is the worst-case 
time of the message routing.  
 
This time synchronization algorithm can be further 
refined by exploiting the usual properties of certain 
wireless routing protocols. Because of unreliable 
radio channels the same radio message may be 
rebroadcasted several times at intermediate nodes, 
and it can arrive to the base station multiple times 
along different paths. Even though these multiple 
messages hold the same sensor reading, the 
attached elapsed time can vary, mainly caused by 
the different clock frequencies of the nodes along 
the different routes. The destination node can use a 
statistical analysis of the received elapsed times to 
get a better estimate of the time the event occurred.  
 
The main advantage of the proposed integrated 
time synchronization and routing algorithm is that it 
does not require additional radio messages, and the 
overhead imposed on the original routing messages 
is very low. 
 
8. Applications  
The FTSP algorithm was excessively tested as a 
component of a countersniper application. The 
system utilized a network of MICA2 motes each of 
which was attached to a custom acoustic sensor 
board. The sensors measured both the muzzle blast 
and shock wave to accurately determine both the 
location of the shooter and the trajectory of the 
bullet [15]. The basic idea is simple: using the 
arrival times of the acoustic events at different 
sensor positions, the shooter position can be 
accurately calculated using the speed of sound and 
the location of the sensors provided the clocks of 
the sensor nodes are precisely synchronized. Thus, 
the time synchronization protocol was a key 
element of the system. 
 

The MICA2 application, in addition to the FTSP, 
contained several services, such as message 
routing, data aggregation, remote configuration and 
debugging services, along with application-specific 
software components. A typical test scenario 
involved 50 to 60 motes distributed in an urban 
environment. The network was approximately 8 
hops wide. The system was tested repeatedly for 4 
to 8 hours of continuous operation. During testing 
some of the motes were switched off and on, the 
temperature and humidity of the environment 
changed drastically influencing the stability of the 
crystals. All nodes remained synchronized during 
these tests, but no other explicit time 
synchronization data was obtained. However, the 
overall performance of the countersniper system (1 
meter localization accuracy in 3D in an urban 
environment) and the fact that there was no 
performance degradation over time clearly verified 
that the FTSP performed well.  
 
9. Conclusions and further improvements 
We have introduced the Flooding Time 
Synchronization Protocol for WSN. The protocol 
was implemented on the UCB Mica and Mica2 
platforms running TinyOS. The precision of 1.5µs 
in the single hop scenario and the average precision 
of 1.7µs per hop in the multi-hop case were shown 
by providing experimental results. This 
performance is significantly better than those of 
other existing time synchronization approaches on 
the same platform. 
 
Furthermore, the protocol was tested and its 
performance was verified in a real-world 
application. This is significant because the service 
had to operate not in isolation, but as part of a 
complex application where resource constraints as 
well as intended and unintended interactions 
between components can and usually do cause 
undesirable effects. Moreover, the system operated 
in the field for extended periods and not under 
laboratory conditions. This is a testimony to the 
robustness of the protocol and its implementation. 
 
Further work may focus on more precise time 
estimates by time stamping multiple bytes of the 
message during transmission. Taking an average of 
these and working with fractional time-stamps can 
reduce the time resolution error. 
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Another research area is to improve the 
convergence of the multihop case by using two 
different broadcast periods in the protocol: a small 
period for an initial synchronization period (until all 
the nodes get synchronized) and a long period for 
the normal operation of the time synchronization 
protocol.  
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