
 1

Institute for Software Integrated Systems
Vanderbilt University

Nashville Tennessee 37235

TECHNICAL REPORT

TR #: ISIS-04-501
Title: The Flooding Time Synchronization Protocol
Authors: Miklos Maroti, Branislav Kusy, Gyula Simon and Akos Ledeczi

Copyright © 2004 Vanderbilt University

 2

The Flooding Time Synchronization Protocol
Miklos Maroti, Branislav Kusy, Gyula Simon and Akos Ledeczi

The Institute for Software Integrated Systems, Vanderbilt University
miklos.maroti@vanderbilt.edu

Abstract - Wireless sensor network applications,
similarly to other distributed systems, often
require a scalable time synchronization service
enabling data consistency and coordination. This
paper introduces the robust Flooding Time
Synchronization Protocol (FTSP), especially
tailored for applications requiring stringent
precision on resource limited wireless platforms.
The proposed time synchronization protocol
utilizes low communication bandwidth, scales
well for medium sized multi-hop networks, and is
robust against topology changes and node
failures. The FTSP achieves its robustness by
utilizing periodic radio broadcast of
synchronization messages, and implicit dynamic
topology update. The unique high precision
performance is reached by utilizing MAC-layer
time-stamping, comprehensive error
compensation, including linear regression, which
reduces time skew and keeps network traffic
overhead low. The performance of the FTSP,
implemented on Berkeley MICA2 platform, was
evaluated in a multi-hop experiment. The average
network-wide synchronization error was in the
microsecond range, which is approximately a
magnitude lower than that of the existing RBS and
TPSN algorithms. The protocol was further
validated as part of our counter-sniper system that
was field tested in a US military facility.

1. Introduction
The advances in micro electro-mechanical systems
(MEMS) technology, in digital circuits design,
integration and packaging, and in wireless
communication are leading to smaller, cheaper and
lower power sensing and computing devices. Cell
phones and handheld computers already enjoy the
increased popularity of the public. These trends
point towards radically new systems of thousands
or even millions of tiny computing devices
interacting with the environment and
communicating with each other. Research teams
are working on incorporating sensing, processing
and communication in a volume of less than one
cubic millimeter [9], while devices of the size of a

coin built from off-the-shelf components are
commercially available already. The UC Berkeley
Mica2 and Mica2Dot motes are popular research
platforms of this emerging technology [10].

Complex networks built from thousands of such
devices are expected to affect many aspects of our
lives. The potential applications of wireless sensor
networks (WSN) include:
• Monitoring applications: Non-intrusive and non-
disruptive environmental monitoring helps
biologists to study sensitive wildlife habitats and
people with certain medical conditions can receive
constant monitoring through sensors [12]. The
Golden Gate Bridge in San Francisco is monitored
for structural health and sensor networks monitor
the microclimates on Great Duck Island, Maine
which is the habitat of Leach’s Storm Petrel [11].
• Mobile commerce, inventory management:
measuring continuously changing conditions, WSN
will influence the movement of commodities to the
locations where a need exists.
• Smart office, kindergarten: the systems
containing wireless sensors can be part of our
office space; the education process can be tailored
to the individual needs of a child [13], adapt to
context, or coordinate activities of multiple
children.
• Military applications: potential applications
include surveillance, target tracking [14], counter-
sniper systems or battlefield monitoring that
propagates information to the soldiers and vehicles
involved in combat.

The unique characteristics of the sensor network
domain demand the reevaluation of algorithms well
established over a long period of time, and the
design of new solutions for problems once
considered to be solved.

One of the basic middleware services of sensor
networks is network-wide time synchronization.
Time synchronization helps to keep the data
consistent by resolving redundant detection of the
same event, it supports coordination and

 3

communication e.g. TDMA radio scheduling, and it
supports common services in distributed systems
such as cryptography schemes, database queries or
distributed logging for debugging.

In this paper we introduce the Flooding Time
Synchronization Protocol (FTSP) for WSN. Our
goals are to achieve a network wide
synchronization error in the micro-second range
and scalability up to hundreds of nodes, while
being robust to network topology changes and node
failures. To achieve these goals the possible error
sources were identified and systematically
analyzed. The proposed algorithm compensates for
the relevant error sources by utilizing concepts of
MAC layer time-stamping [2], [16] and skew
compensation with linear regression [1].While these
ideas are not completely new, their unique
combination and its effective implementation yield
an order of magnitude better precision than existing
approaches on the same platform. Furthermore, the
utilized broadcast-based synchronization protocol
along with the skew compensation scheme helps to
keep communication overhead low. Finally, the
implicit dynamic topology handling of the FTSP
provides fast convergence and robustness.

The algorithm was implemented on Mica/Mica2
platforms running the TinyOS operating system
[7]. A short overview of the target platform is
given in Section 2. Existing time synchronization
algorithms, with special emphasis on ideas utilized
in FTSP, are surveyed in Section 3. The possible
sources of error using radio message-based
synchronization are described and analyzed in
Section 4. We describe the proposed FTSP
algorithm in details and perform an evaluation
based on a large scale experiment in Section 5. In
Section 6, we compare FTSP to existing
algorithms. A different time synchronization
method that works in networks with aggressive
power management is presented in Section 7.
Finally, an application using FTSP time sync is
described in Section 8 and we offer our
conclusions and plans for further improvements in
Section 9.

2. The target platform
One of the most widely used WSN platforms is the
Berkeley Mica2 mote [10], [7]. The Mica2 mote
has a 7.37 MHz processor, 4 KB of RAM, 128 KB

of flash memory, 433 MHz wireless radio
transceiver (38.4 Kbps transfer rate, 500 feet
range), and is powered by two AA batteries.
Pluggable sensor boards with temperature, light,
magnetic and other sensors are available.

The Berkeley motes run the TinyOS operating
system [7], [3], an open source, event driven and
modular OS designed to be used with networked
sensors. TinyOS handles task scheduling, radio
communication, clocks and timers, ADC, I/O and
EEPROM abstractions, and power management.
Application developers can select a subset of the
modules implementing these functionalities, extend
or override them if necessary, and statically
compile them into the final executable.

3. Approaches to time sync
Time synchronization algorithms providing a
mechanism to translate between the local times of
nodes or to synchronize the local clocks of the
nodes in the network have been studied in the past.
The most widely adapted protocol used in the
internet domain is the Network Time Protocol
(NTP) devised by Mills [4]. The NTP clients
synchronize their clocks to the NTP time servers
with the accuracy in the order of milliseconds. The
time servers are synchronized by the external time
sources typically using GPS. The NTP has been
widely deployed and proved to be effective, secure
and robust in Internet. In WSN, however, non-
determinism in transmission time caused by the
Media Access Channel (MAC) layer of the radio
stack can introduce several hundreds of
milliseconds delay at each hop. Therefore this
protocol is suitable only for WSN applications with
low precision demands.

The most important examples of existing time
synchronization protocols developed for the
wireless sensor network domain are the Reference
Broadcast Synchronization (RBS) algorithm [1]
and the Timing-sync Protocol for Sensor Networks
(TPSN) [2].

In the RBS, a reference message is broadcasted.
The receivers record their local time when
receiving the reference broadcast and exchange the
recorded times with each other. The main
advantage of RBS is that it eliminates transmitter-
side non-determinism. The disadvantage of the

 4

approach is that additional message exchange is
necessary to communicate the local time-stamps
between the nodes. To our best knowledge the
algorithm has not been extended yet to large multi-
hop networks.

The TPSN algorithm first creates a hierarchical
structure in the network and then performs the
pair-wise synchronization along the edges of the
structure. Each node gets synchronized by
exchanging two synchronization messages with its
reference node one level higher in the hierarchy.
The TPSN achieves two times better performance
than RBS by time-stamping the radio messages in
the Medium Access Control (MAC) layer of the
radio stack [2]. The shortcoming of TPSN is that it
does not estimate the clock drift of nodes, which
limits its accuracy. Moreover, it does not support
dynamic topology changes and its performance was
experimentally verified in a small multi-hop
network only.

4. Uncertainties in the radio message
delivery
Non-deterministic delays in the radio message
delivery in WSN can be magnitudes larger than the
required precision of time-synchronization.
Therefore, these delays need to be carefully
analyzed and compensated for. We shall use the
following decomposition of the sources of the
message delivery delays first introduced by Kopetz
and Schwabl [6] and later extended in [2].

(1)Send Time—time used to assemble the message
and issue the send request to the MAC layer on the
transmitter side. Depending on the system call
overhead of the operating system and on current
processor load, the send time is highly
nondeterministic and can be as high as hundreds of
milliseconds.
(2) Access Time—delay incurred waiting for access
to the transmit channel up to the point when
transmission begins. The access time is the least
deterministic part of the message delivery in WSN
varying from milliseconds up to seconds depending
on the current network traffic.
(3) Transmission Time—the time it takes for the
sender to transmit the message. This time is in the
order of tens of milliseconds depending on the
length of the message and the speed of the radio.

 (4) Propagation Time—the time it takes for the
message to transmit from sender to receiver once it
has left the sender. The propagation time is highly
deterministic in WSN and it depends only on the
distance between the two nodes. Tthis time is less
than one microsecond (for ranges under 300
meters).
(5) Reception Time—the time it takes for the
receiver to receive the message. It is the same as
the transmission time. The transmission and
reception times overlap in WSN as pictured in
Figure 1.
 (6) Receive Time—time to process the incoming
message and to notify the receiver application. Its
characteristics are similar to that of send time.

access transmission

reception

send

receive

sender:

receiver:

propagation

Figure 1 Decomposition of message delivery delay
over a wireless link.

The RBS approach completely eliminates the send
and access time, and with minimal OS
modifications it is also possible to eliminate the
receive time uncertainty. This leaves the mostly
deterministic propagation and reception time in
wireless networks as the sole source of error. The
transmission time is not of concern in WSN as it
overlaps with the reception time. The main strength
of RBS is its broad applicability to commodity
hardware and existing software in wireless
networks.

As the authors of the TPSN protocol observed, on
typical WSN platforms, such as the Mica2 mote,
one has direct access to the MAC layer, and
message time stamping can be performed during
message transmission and reception. This
immediately eliminates the same three main
sources of uncertainties as in RBS. The real
novelty of TPSN however is that with a two-way
handshake of synchronization messages the
unknown propagation time can be calculated and
compensated for on the fly.

Both the RBS and TPSN protocols suffer from the
uncertainties of the overlapping transmission and

 5

reception times. To fully understand the
constituents of this uncertainty we shall describe
the message propagation in the wireless channel in
more detail. We imagine an idealized point of the
transmitted message, such as the end of a particular
byte of the message. Then we follow the
transmission of this idealized point through the
software, hardware and physical levels of the
wireless channel from sender to receiver.

First, the message is transferred to the radio chip
piece by piece, usually in a byte oriented fashion.
The radio chip signals the microcontroller that it is
ready to obtain the next piece. The radio chip then
encodes the pieces and generates an
electromagnetic wave through the antenna. This
wave propagates through space and the receiver’s
antenna and radio chip converts it back to binary
representation. Then the radio chip on the receiver
side signals the microcontroller that a new piece is
ready and can be read through some protocol. The
timing of the actual data transfer mechanism
between the microcontroller and radio chip is
unimportant because data transfer can be done at
any time before a new piece arrives. Therefore we
have the following delivery delays of an idealized
point of the message:

(7) Interrupt Handling Time—the delay between
the radio chip raising and the microcontroller
responding to an interrupt. This time is mostly less
than one microsecond (waiting for the
microcontroller to finish the currently executed
instruction), however when interrupts are disabled
this delay can be large.
(8) Encoding Time—the time it takes for the radio
chip to encode and transform a part of the message
to electromagnetic waves starting from the point
when it raised an interrupt indicating the reception
of the idealized point from the microcontroller.
This time is deterministic and is in the order of a
hundred microseconds.
(9) Decoding Time—the time it takes for the radio
chip on the receiver side to transform and decode
the message from electromagnetic waves to binary
data. It ends when the radio chip raises an interrupt
indicating the reception of the idealized point. This
time is mostly deterministic and is in the order of
hundred microseconds. However, signal strength
fluctuations and bit synchronization errors can
introduce jitter.

Some radio chips cannot capture the byte
alignment of the transmitted message stream on the
receiver side and the radio stack has to determine
the bit offset of the message from the alignment of
a known synchronization byte and then shift the
message accordingly. Since the transmission time
of the byte is a few hundred microseconds the
delay caused by the incorrect byte alignment must
be compensated for. This compensation is
performed by the implementation of TPSN on the
Mica2 platform, but it is not reported in [2].

(10) Byte Alignment Time—the delay incurred
because of the different byte alignment of the
sender and receiver. This time is deterministic and
can be computed on the receiver side from the bit
offset and the speed of the radio.

interrupt handling

encoding

propagation

(byte alignment)

interrupt handling

decoding

se
nd

er
re

ce
iv

er

cpu:

radio:

antenna:

antenna:

radio:

radio:

cpu:

Figure 2 The timing of the transmission of an
idealized point in the software (cpu), hardware (radio
chip) and physical (antenna) layers of the sender and
receiver.

Figure 2 summarizes the decomposition of delivery
delay of the idealized point of the message as it
traverses over a wireless channel. Each line
represents the time scale of the layer as measured
by an ideal clock. The dots represent the time
instance when the idealized point of the message
crosses the layers. The triangles on the first and
last line represent the time when the
microcontroller makes the time stamps. Depending
on the specific hardware the time-stamp is usually
recorded by the microcontroller when it handles the
radio chip interrupts both on the sender and
receiver sides. Alternatively, capture registers
provided by some hardware can be employed to
eliminate the interrupt handling time.

 6

On the Mica2 platform, the interrupt handling time
is around 5µs depending on the length of the code
path between the start of interrupt hander and the
part that records the local time. However, with less
than 2% probability, the interrupt handling time can
be as high as 30µs. The sum of encoding and
decoding times are between 110µs and 112µs. The
byte alignment time is between 0µs (for bit offset
0) and 365µs (for bit offset 7). In contrast, the
propagation time is under 1µs.

Using our definitions we can properly express the
sources of time-stamping errors of the RBS and
TPSN algorithms. The RBS protocol is sensitive to
the propagation, decoding and interrupt handling
time differences between the two receivers. The
main source of error here is the jitter in interrupt
handling and decoding. The TPSN protocol is
sensitive to the encoding, decoding and interrupt
handling time differences between the sender and
receiver. Note that although the propagation time
has been eliminated, the encoding and decoding
times are not because they might not be the same
on the sender and receiver side. It is important to
point out that both the RBS and TPSN protocols
suffer from the two largest sources of uncertainty
of MAC layer time stamping: the jitter of interrupt
handling and decoding time.

5. Flooding Time Synchronization Protocol
The goal of the FTSP is to achieve a network wide
synchronization of the local clocks of the
participating nodes. The error of the
synchronization is in the micro-second range, and
the protocol is scalable for hundreds of nodes,
while being robust to network topology changes
and node failures.

The FTSP achieves time synchronization between
a sender and possibly multiple receivers utilizing a
single radio message time-stamped at the both the
sender and the receiver sides. The detailed analysis
of the error sources suggests MAC layer time-
stamping, as observed by [culler], [2]. However, a
precise time-synchronization at a single point in
time is a partial solution only. Compensation for
the clock drift of the nodes is inevitable to achieve
high precision and low communication overhead.
The FTSP estimates the clock drift using linear
regression (as suggested in [1]).

Typically, WSNs operate in areas larger than the
broadcast range, therefore the FTSP needs to
support a multi-hop synchronization. A single,
dynamically (re)elected node, called the root of the
network, maintains the global time and all other
nodes synchronize their clocks to the local clock of
the root. The nodes form an ad-hoc structure to
transfer the global time from the root to all the
nodes, as opposed to the explicit hierarchical
structure proposed in [2]. This saves the extra
communication necessary to establish the
hierarchical structure and is more robust against
node failures and other topology changes.

5.1 The FTSP time-stamping
The FTS Protocol synchronizes the receiver to the
time provided by the sender of the radio message.
A radio broadcast is used to allow synchronization
of multiple receivers using just one radio message.
The broadcasted message contains the sender time-
stamp which is the global time when sending a
certain byte. The receivers get the corresponding
local time from the local clock when receiving the
message. This way one broadcast message
provides a synchronization point (global, local time
pair) to each of the receivers. Unlike the RBS and
TPSN protocols, the time stamp of the sender
must be embedded in the currently transmitted
message. Therefore, the time stamping on the
sender side must be performed before the bytes
containing the time stamp are transmitted.

Figure 3 Transmitted packets over the radio channel.
Full lines represent the bytes of the buffer and the
dashed lines are the bytes of packets.

Wireless message transmission starts with the
transmission of preamble bytes, followed by SYNC
bytes, then with a message descriptor followed by
the actual message data, and finally ends with CRC
bytes. During the transmission of the preamble
bytes the receiver radio chip synchronizes itself to
the carrier frequency of the incoming signal. From

SYNC Data

the receiver is notified

the bit offset
SYNC Receiver

Preamble CRC Sender

the last bit arrives
propagation

delay
Preamble Data CRC

 7

the SYNC bytes the receiver can calculate the bit
offset it needs to reassemble the message with the
correct byte alignment. The message descriptor
contains the target, the length of the data and other
fields, such as the application layer that needs to be
notified on the receiver side. The CRC bytes are
used to verify that the message was not corrupted.
The message layout is summarized in Figure 3.

The FTSP time stamping effectively reduces the
jitter of the interrupt handling and
encoding/decoding times by recording multiple time
stamps both on the send and receiver side. The
time stamps are made at each byte boundary after
the SYNC bytes as they are transmitted or
received. First, these time stamps are normalized
by subtracting an appropriate integer multiple of the
nominal byte transmission time, which can be
calculated from the transfer rate. The jitter of
interrupt handling time is mainly due to program
sections disabling interrupts on the microcontroller
for short amount of times. This error is not
Gaussian and successfully can be eliminated by
taking the minimum of the normalized time stamps.
The jitter of encoding and decoding time can be
combated by taking the average of these error
corrected normalized time stamps. On the receiver
side this final averaged time stamp must be further
corrected by the byte alignment time that can be
computed from the transmission speed and the bit
offset. The number of bytes put an upper limit on
the achievable error correction using this technique.
However, only with 6 time stamps, the time
stamping precision can be improved from 25µs to
1.4µs on the Mica2 platform.

5.2 Dealing with clock drifts, one hop scenario
A single time-stamp would be sufficient to
synchronize two nodes if the offset of their local
times were constant. However, the frequency
differences of the crystals used in Mica2 motes
introduce drifts up to 40µs in one second time
period. This would mandate continuous re-
synchronization with a period of one second to
keep the error in a micro-second range, which is
not feasible in our domain. Therefore, we need to
estimate the drift of the receiver clock with respect
to the sender clock.

If the short term stability of the clocks is good, the
offset between the two clocks changes in a linear

fashion. We verified the stability of the 7.37 MHz
Mica2 clock by periodically sending a reference
broadcast, which was received by two different
motes. The two motes time-stamped the message
with their local time of arrival and reported the
time-stamp. For each transmitted message the
offset of the two reported time-stamps was
calculated. The offsets were further examined:
linear-regression was used to find the line L best
approximating the dataset and the errors were
analyzed. For a data point (time,offset) and the
regression line L, the error is offset–L(time). A one
hour experiment produced the following results: the
average value of the absolute errors was 0.95µs
and the maximum absolute error was 4.32µs. The
distribution of the errors is shown in Figure 4. This
off-line regression provides the best prediction that
can possibly be achieved, provided the clocks can
be considered stable during the experiment.
Naturally this method cannot be used on-line; it is
used here as a reference to evaluate on-line
solutions.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

-8 -6 -4 -2 0 2 4 6
error (us)

off_line
30sec
300s

Figure 4 The distribution of the errors of linear-
regression (LR): off_line refers to off-line LR, 30sec
refers to time sync interval 30s, query interval 23s,
and 300s refers to time sync interval 300s, query
interval 93s.

The on-line linear regression needs to identify the
trend of the global time relative to the local time
from the data points received in the past.
Moreover, as a consequence of the memory
constraints of the platform, only a limited number
of data points can be stored. The following
scenario was used to test our Mica2
implementation: mote A maintains the global time
and sends synchronization messages to mote B
with a period of T. B estimates the drift of its local
clock using linear regression on the past 8 data

 8

points; and both A and B respond to reference
broadcasts with period t by time-stamping them
with their estimate of the global time, and sending
these time-stamps to a base station. The linear
regression prediction error is the difference
between the global time given by A and the
estimated global time given by B. Figure 4 shows
the distribution of these prediction errors, for (a)
T=30s, t=18s, and (b) T=300s, t=93s. The length
of experiment (a) was 18 hours, the average
absolute error was 1.48µs, and the maximum
absolute error was 6.48µs. The length of
experiment (b) was 8 hours, the average absolute
error was 2.24µs and the maximum absolute error
was 8.64µs.

-10

0

10

20

30

40

50

60

70

0:00 0:10 0:20 0:30 0:40 0:50 1:00 1:10

time (hh:mm)

ab
s

er
ro

r
(u

s)

time sync
was stopped

Figure 5 Time synchronization error between two
motes. The time synchronization was stopped after 30
minutes. The initial small error of the skew estimate
results in increasing error over time.

An important design parameter is the required
resynchronization interval to reach the desired
precision. As shown in Figure 4, the 30s
resynchronization interval gave slightly better
results than 300s. To further evaluate the behavior
of the skew compensation, another experiment was
carried out, the results shown in Figure 5. This
result shows that the resynchronization period,
depending of the accuracy requirements, can go up
to several minutes.

5.3 The multi-hop in FTSP
Most elaborate WSN applications use networks
larger than one hop in radius, thus multi-hop
synchronization is necessary to achieve network-
wide time synchronization.

A possible solution to the problem is to provide a
fraction of the motes with external synchronization
methods, e.g. GPS sensors in such a way that all
other motes are one hop away from them.
However, this solution is cost prohibitive for most
systems. The proposed multi-hop FTSP can
synchronize the network without external time
sources, provided that each node has a unique
identifier, the node ID.

The global time in the multi-hop FTS Protocol is
driven by the local clock of a single node, called
the root. The global time is diffused into the
network by each node periodically broadcasting its
own global time estimate. Using a modified version
of the one-hop synchronization scheme described
in Sections 5.1 and 5.2, motes continuously
synchronize themselves to (possibly multiple)
motes that are closer to the root than themselves.
The protocol defines how to handle redundant
information from different sources, how to elect a
root, and provides a mechanism to overtake the
responsibility of the root by another node if the
root fails.

- The election problem: Since there is no
dedicated node in the network to provide time
reference information, the root must be elected
each time the network is started. The election
process utilizes the unique IDs of the nodes. When
a node does not receive time sync messages for a
period of time, it declares itself to be the root and
eventually starts sending time sync messages. It is
possible, of course, that more than one node
declares itself the root of the network. The FTSP
resolves this problem by electing the mote with the
lowest ID as the root of the network in the
following way. All motes remember the ID of the
root, to which they are currently synchronized to,
in a local variable, called myRootID. If a node is
root, then this variable holds its own node ID.
Time synchronization messages contain a field,
called rootID, which stores the myRootID of the
sender. The time synchronization message is
discarded by the receiver if the rootID in the
message is higher than the myRootID of the
receiver. On the other hand, if the rootID is smaller
than the myRootID, then the myRootID of the
receiver is set to rootID. In this case, if the receiver
declared itself the root node of the network
previously, it becomes a regular node at this point.

 9

This guarantees that eventually no more than one
root remains in the network.

- Handling redundant information: The global
time information can arrive to a node from the root
along different routes, and the precision of the
global time estimate may deteriorate over time as it
is passed along the network. Moreover, the linear
regression of a limited number of data points more
accurately estimates the offset and skew of the
local clock if the data points are distributed over a
longer period of time. Therefore, each node has to
select an appropriate subset of the received time
synchronization messages that are entered into the
eight-element regression table, and used for
calculating the regression line. The FTSP employs
sequence numbers for this purpose. Each time
synchronization message contains a seqNum field,
which is set and incremented by the root each time
it sends a new message. Other nodes maintain a
highestSeqNum local variable, which contains the
highest sequence number of those received
messages whose rootID is myRootID. These nodes
set the seqNum field of their broadcasted messages
to the current value of their highestSeqNum.
Consequently, a node considers a time sync
message new if the rootID of the message is less
than or equal to myRootID and the seqNum is
greater than highestSeqNum. ‘New’ time
synchronization messages are entered into the
regression table, others are discarded. This protocol
guarantees that only one data point will be entered
into the table for each rootID and seqNum pair,
namely the one that arrived first. Since the first
synchronization message probably took a short and
good quality path (although it is not enforced that it
has the smallest possible hop-count), it is likely
more accurate than the following messages having
the same seqNum.

- The node and link failure: Errors caused by
failing hardware or drained batteries are the norm
rather than the exception in WSN and the FTSP
needs to be robust against these failures. Periodic
broadcasting of time synchronization messages
handles the regular node and link failures well, but
does not help when the root fails. The following
mechanism, similar to the initial leader election
process, is used to replace the root in case of its
failure. Each node remembers the most recent time
when the root was active. A good approximation of

this is the time when the last new time sync
message arrived (highestSeqNum was changed).
Each node will time out if the root has not been
active for a certain time period and will declare
itself to be the root. Therefore, all nodes in the
network will eventually time-out, and the election
process will resolve multiple root conflicts. It is
clear that inconsistent timing information would be
produced during this election process since multiple
sources of the global time would exist. To avoid
the inconsistency, nodes keep their old global time
estimates and the new root sends its global time
estimate instead of its local time as a new global
time. The new global time is very close to the old
global time this way and the network does not get
out of synchronization during the root reelection.

- Topology changes: Nodes join and leave the
network dynamically, and some of them are
possibly mobile. The only assumption we make
here is that the network remains connected at all
times. The effect of removing the root from the
network was explored before. Another problematic
case is when a new node M with smaller ID than
the root is switched on. If M transmitted its local
time as a new global time immediately after
switching on, all the nodes in the network would
get out of the synchronization. Therefore, each
newly introduced node first waits for a certain time
period, gathers data for the linear regression and
determines the offset and skew of its own local
clock from the global time. This way M is able to
overtake the role of the old root and send a global
time that is close to the old global time in such a
way that the network does not get out of
synchronization. Even if M has a higher node ID
than that of the current root, it still waits for a
certain time period before it rebroadcasts time sync
messages to avoid sending erroneous global time.

Since time sync messages with the lowest rootID
and highest seqNum flood the network, topology
changes do not hinder the algorithm provided the
network stays connected.

- The convergence of the algorithm: The speed of
information propagation (root ID and global time)
to all nodes of the network is very important in the
case of node failures, system startup and resume
from powered down mode (see Section 7). Node
failures can be handled very smoothly, as described

 10

in the previous section, because the remaining
nodes are already synchronized. The initial phases
of switching on or waking up the system from
sleep mode are more critical. There exists a
physical limit on the time it takes for the network
to synchronize. If period is the time period every
node broadcasts a time sync message (note that the
individual motes are transmitting asynchronously),
and radius is the maximum hop-count of nodes to
the root, then the expected value of time it takes
the network to learn about the identity of the root
is radius*period/2. To get an estimate of both the
skew and offset of the local clock, nodes need at
least two data points in the regression table.
Therefore, it takes approximately radius*period
time to synchronize all the nodes in the network.
This illustrates a tradeoff between power
consumption and speed of convergence: decreasing
the period increases the number of messages sent
in a certain time period but allows faster
convergence.

5.4 Experimental data
The implementation of FTSP on the Mica and
Mica2 platforms that was used to carry out the
experiments described in this section is available on
internet (see [8]). We tested the protocol focusing
on the most problematic scenarios, such as
switching off the root of the network, removing a
substantial part of the nodes from the network, so
that the remaining nodes still formed a connected
network, and switching on a substantial number of
the new nodes in the network.

Figure 6 The layout and links of the experimental
setup: 64 motes are distributed in 8 rows and 8
columns and each node can only communicate with its
direct neighbors. The maximum hop distance from the
first and the second leader are 4 and 7 respectively.

The experiment scenario involves 64 Mica2 motes
deployed in 8x8 grid in such way that each mote
can communicate only with its direct neighbors.
Furthermore, the node with the smallest id (ID1) is
located in the middle of the network and the node
with the second smallest id (ID2) is at the edge of
the network as shown in Figure 6. This means that
ID1 will eventually become the root of the network
and ID2 will become the root if ID1 dies. The
maximum hop distance between ID1 and ID2
represents the worst case scenario if the root ID1
dies.

Two other motes were used in the experiment, the
reference broadcaster, and the base station. Their
function was the same as described in Section 5.2.
The topology of the 64 nodes network was
enforced in software and so all the nodes could be
placed within the radio range from the reference
broadcaster. This way the base station and the
broadcaster could talk directly to all 64 nodes and
no multi-hop routing was necessary.

Each of 64 nodes broadcasted one time
synchronization message per 30 seconds. The
reference broadcaster queried the global time from
all nodes in the network once per 30 seconds and
the base station collected the responses.

We performed the following experiment:

• at 0:00 all motes were turned on;
• at 0:41 the root with ID1 was switched off;
• from 1:12 until 1:42 randomly selected motes

were switched off and back on, one per 30s;
• at 1:47 the motes with odd node IDs were

switched off (half of the nodes are removed);
• at 2:02 the motes with odd node IDs were

switched back on (100% new nodes are
introduced);

• at 2:13 the second root with ID2 is switched
off;

Even though there were 64 nodes in the network,
at any time typically only 80.0% of them
succeeded to reply to the reference broadcaster due
to radio collisions. The nodes reported back to the
base station whether they were synchronized (i.e.
have enough values in their regression table) and
what the global time was at the arrival of the
reference broadcast message. For each reference
broadcast round, we calculated the percentage of

ID1– first leader

ID2– second
leader

 11

the motes that were synchronized out of those that
replied. We analyzed the time synchronization
error by first calculating the average G of reported
global times and then for each node calculating the
difference between the reported global time and G.

Consequently, we computed the average and
maximum of the absolute values of these
differences, called the average and maximum time
synchronization error, respectively. The resulting
graph is shown in Figure 7.

Even though there were 64 nodes in the network,
at any time typically only 80.0% of them
succeeded to reply to the reference broadcaster due
to the radio collisions. The nodes reported back to
the base station whether they were synchronized
(i.e. have enough values in their regression table)
and what the global time was at the arrival of the
reference broadcast message. For each reference
broadcast round, we calculated the percentage of
the motes that were synchronized out of those that
replied. We analyzed the time synchronization
error by first calculating the average G of reported
global times, and then for each node calculating the
difference between the reported global time and G.
Consequently, we computed the average and
maximum of the absolute values of these
differences, called the average and maximum time
synchronization error, respectively. The resulting
graph is shown in Figure 7.

The beginning of the experiment has shown the
convergence of the algorithm: during the first 3
minutes the nodes were not synchronized, because
none of them declared itself to be the root. The
nodes were switched on approximately at the same
time, so in the next few minutes many of them
timed out and became the roots of the network.
This was the reason why the average and
maximum synchronization errors soared during this
time period. However, after the 6th minute the
election process has completed and only a single
root remained (ID1).The number of synchronized
nodes started to grow steadily, and the average and
maximum errors became approximately 2.5µs and
7.5µs, respectively. Complete synchronization has
been achieved in 10 minutes as indicated by the
percentage of synchronized motes reaching 100%.

When the root ID1 was switched off, no impact on
the network was immediately observable. What
happened is that the global time had not been
updated for a certain period of time until each node
timed out and declared itself to be the root. The
election process again resulted in a single root ID2
eventually. However, the error stayed low during
this time because nodes did not discard their old
offset and skew estimates and the new root was
broadcasting its estimation of the old global time.
This caused slight deterioration of the maximum
and average errors until all nodes calculated more
accurate drift estimates based on the messages
broadcasted by the new root. In the last part of the
experiment some of the nodes were removed and
new ones were introduced. The impact of these
operations on the average and maximum errors was
minimal. We can observe that the number of
synchronized nodes decreased whenever a new
node was switched on because it takes some time
for the new node to obtain enough data to get
synchronized. Worth noticing is also the fact that
the network recovered faster after the root ID2 was
switched off than after ID1. This was also
expected since the root which took over after ID2
was 1 hop away from ID2.

The 64-mote 7-hop network synchronized in 10
minutes and the average time synchronization error
stayed below 11.7µs. If we divide it by number of
hops, we get the average error of 1.7µs per hop.
The maximum time synchronization error was
below 38µs, which was observed only when the
root was switched off. Switching off and
introducing the new nodes did not introduce a
significant time synchronization error.

6. Comparison to previous approaches
In this section the pros and cons of the proposed
FTSP are compared to those of previously known
protocols. As reference, the RBS and TPSN
algorithms were chosen, because (1) these time
synchronization protocols were also developed with
the special requirements of sensor networks in
mind. as opposed to other, more general
algorithms, (2) actual experimental results are
available for the same platforms (MICA/MICA2),
and (3) ideas from these protocols were used and
enhanced in FTSP.

 12

Figure 7 An 8x8 grid experiment shows the
percentage of synchronized nodes, the maximum and
average error (the maximum and average absolute
offset from the average reported global time). The
nodes were switched on at time A, the root ID1 was
switched off at B, multiple motes were randomly
switched off and back on during the C, half of the
motes were switched off at D, the same motes were
switched back on at E and finally the root ID2 was
switched off at F.

The RBS approach time-stamps messages only on
the receiver side; therefore, it eliminates the access
and the send times. The published method in [1]
does not compensate for byte alignment, but that
could be easily incorporated. The main
achievement of the RBS time-stamping of a
reference broadcast by two receivers is that it
eliminates random delays on the sender side.
However, time-stamping the radio messages in the
low layers of the radio stack used in our method
has practically the same effect and eliminates the
jitter of interrupt handling and decoding times.

The TPSN approach eliminates the access time,
byte alignment time and propagation time by
making use of the implicit acknowledgments to
transmit information back to the sender. This
protocol gains an additional accuracy over RBS
due to time-stamping the radio message multiple

times and averaging these time-stamps. TPSN was
implemented on the Mica platform and it would
face certain implementation problems on later
platforms. Unfortunately in the Mica2 platform
implicit acknowledgments can not be effectively
implemented because of long settling time of the
radio chip when switching from the receiving mode
to transmission mode. Another disadvantage of the
TPSN protocol is that the two-way communication
prohibits the use of message broadcasting, which
results in higher communication.

The accuracy of the RBS time-stamping reported
by the authors is ~11µs. Least square linear
regression is used to account for the clock drifts
which results in 7.4µs average error between two
motes after a 60 second interval. The multi-hop
scenario involves the local time transferring through
the intermediary nodes. The function of the
Berkeley motes was limited to providing wireless
communication to PDAs (iPAQ). The authors of
TPSN algorithm implemented both TPSN and
RBS on the Mica platform using a 4 MHz clock for
time-stamping, and compared the precision of the
two algorithms. The resulting average errors for a
single hop case for two nodes are 16.9µs and
29.1µs for the TPSN and RBS algorithms,
respectively.

The proposed FTSP algorithm uses a fine-grained
clock, MAC-layer time-stamping with several jitter
reducing techniques to achieve high precision. This
approach eliminates the send, access, interrupt
handling, encoding, decoding and receive time
errors, but does not compensate for the
propagation time. Multiple time-stamps with linear
regression are used to estimate clock skew and
offset. The average error of the algorithm for a
single hop case using two nodes was 1.48µs,
according to measurements described in Section
5.2. For multi-hop case the average error was
11.7µs in a 7-hop network, resulting in a 1.7µs per
hop accuracy.

The applied flood-based communication protocol in
FTSP provides a very robust network, and still
induces only small network traffic. The network
hierarchy is maintained using the time
synchronization messages, without additional
message passing, as opposed to the solution in
TPSN [2]. FTSP also utilizes less network

0

5

10

15

20

25

30

35

40

45

50

0:00 0:10 0:20 0:30 0:40 0:50 1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30

Time (hh:mm)

m
ic

ro
se

co
n

d
s

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

p
er

ce
n

ta
g

e

average error (µs)

maximum error (µs)

synchronized motes (%)

all nodes get
synchronized

single root elected

A B F E D C

 13

resources either both RBS or TPSN. If the
resynchronization period is t seconds, then each
node sends 1 message per t seconds in FTSP, 2
messages per t seconds in TPSN (1 message to
parent and 1 response) and 1.5 message per t
seconds in RBS (0.5 for a reference broadcast and
1 for a time-stamp exchange message). The
robustness of the protocol was demonstrated by
the harsh experiment described in Section 5.5.
Unfortunately, no similar data is readily available
for TPSN or RBS for comparison.

7. Time synchronization in powered down
sensor networks
The FTSP described above makes use of
continuous time synchronization where every mote
periodically broadcasts time synchronization
messages. Although measurements suggest that the
broadcast period can be as high as several minutes,
depending on the accuracy requirements (see
Figure 4), the protocol still requires continuous
operation of the motes, thus limiting the lifetime of
the application. The approach we previously
described for both the single and multi-hop cases is
definitely not applicable for systems operating over
several weeks or months. These applications are
not required to be continuously active, and are
powered down most of the time to save energy.
The question arising naturally is whether
continuous time synchronization is really
necessary.

As pointed out in [1], in many cases post facto
synchronization is enough, no continuous
synchronization is required. Especially those
systems collecting data or reacting to rare events,
but requiring exact time measurements belong to
this case.

A possible way of post facto synchronization is
described in [1], utilizing explicit pair-wise
synchronization after message passing. We propose
an alternative method embedded into the routing
protocol which does not require any additional
message exchange apart from the routing messages.

Figure 8 Estimation of detection time TEVENT can be
iteratively determined along a routing path A,B,C,S as
TrcvS – offsetA – offsetB – offsetC

The basic problem is the following: a sensor detects
an event and the target node needs to know the
time of the event in its own local time. The sensor
and the target nodes may be several hops apart
from each other. Still, it is possible to solve the
problem without any explicit time synchronization
in the network. An implicit synchronization may be
performed during the routing process.

Along with the sensor reading a radio message
includes an age field, which contains the elapsed
time since the occurrence of the event. This
additional information adds only a very small
overhead to the message. Each intermediate mote
measures the offset, which is the elapsed time from
the reception of a sensor reading till its
retransmission. The age field is updated upon
transmission using the time stamping method
described in Section 5.2. When the sensor reading
arrives to the destination, the age field contains the
sum of the offsets measured by each of the motes
along the path. The destination node can determine
the time of the event by subtracting age from the
time of arrival of the message. The concept is
illustrated in Figure 8: An event is detected at node
A at time instant TEVENT, then a notification
message is sent to destination node S through
nodes B and C. The message delays at the nodes
are offsetA, offsetB, and offsetC, respectively. The
message arrives to S at time instant TrcvS,
containing an age field offsetA+offsetB+offsetC. The
time of the event can be calculated as TEVENT =
TrcvS- age.

 14

One possible problem with this approach is that the
time measurement units of the intermediate nodes
are not of the same length, because of the slight
differences in their clock frequencies. Since this
method does not compensate for skew errors,
significant error can accumulate if the routing of
the sensor reading takes a long time. According to
MICA2 platform specification, the clock skew
error is less than 40µs per second. Thus the worst-
case post-facto synchronization error can be
estimated as 4*10-5TR, where TR is the worst-case
time of the message routing.

This time synchronization algorithm can be further
refined by exploiting the usual properties of certain
wireless routing protocols. Because of unreliable
radio channels the same radio message may be
rebroadcasted several times at intermediate nodes,
and it can arrive to the base station multiple times
along different paths. Even though these multiple
messages hold the same sensor reading, the
attached elapsed time can vary, mainly caused by
the different clock frequencies of the nodes along
the different routes. The destination node can use a
statistical analysis of the received elapsed times to
get a better estimate of the time the event occurred.

The main advantage of the proposed integrated
time synchronization and routing algorithm is that it
does not require additional radio messages, and the
overhead imposed on the original routing messages
is very low.

8. Applications
The FTSP algorithm was excessively tested as a
component of a countersniper application. The
system utilized a network of MICA2 motes each of
which was attached to a custom acoustic sensor
board. The sensors measured both the muzzle blast
and shock wave to accurately determine both the
location of the shooter and the trajectory of the
bullet [15]. The basic idea is simple: using the
arrival times of the acoustic events at different
sensor positions, the shooter position can be
accurately calculated using the speed of sound and
the location of the sensors provided the clocks of
the sensor nodes are precisely synchronized. Thus,
the time synchronization protocol was a key
element of the system.

The MICA2 application, in addition to the FTSP,
contained several services, such as message
routing, data aggregation, remote configuration and
debugging services, along with application-specific
software components. A typical test scenario
involved 50 to 60 motes distributed in an urban
environment. The network was approximately 8
hops wide. The system was tested repeatedly for 4
to 8 hours of continuous operation. During testing
some of the motes were switched off and on, the
temperature and humidity of the environment
changed drastically influencing the stability of the
crystals. All nodes remained synchronized during
these tests, but no other explicit time
synchronization data was obtained. However, the
overall performance of the countersniper system (1
meter localization accuracy in 3D in an urban
environment) and the fact that there was no
performance degradation over time clearly verified
that the FTSP performed well.

9. Conclusions and further improvements
We have introduced the Flooding Time
Synchronization Protocol for WSN. The protocol
was implemented on the UCB Mica and Mica2
platforms running TinyOS. The precision of 1.5µs
in the single hop scenario and the average precision
of 1.7µs per hop in the multi-hop case were shown
by providing experimental results. This
performance is significantly better than those of
other existing time synchronization approaches on
the same platform.

Furthermore, the protocol was tested and its
performance was verified in a real-world
application. This is significant because the service
had to operate not in isolation, but as part of a
complex application where resource constraints as
well as intended and unintended interactions
between components can and usually do cause
undesirable effects. Moreover, the system operated
in the field for extended periods and not under
laboratory conditions. This is a testimony to the
robustness of the protocol and its implementation.

Further work may focus on more precise time
estimates by time stamping multiple bytes of the
message during transmission. Taking an average of
these and working with fractional time-stamps can
reduce the time resolution error.

 15

Another research area is to improve the
convergence of the multihop case by using two
different broadcast periods in the protocol: a small
period for an initial synchronization period (until all
the nodes get synchronized) and a long period for
the normal operation of the time synchronization
protocol.

10. References
[1] J. Elson, L. Girod and D. Estrin, “Fine-Grained
Network Time Synchronization using Reference
Broadcasts,” Proceedings of the fifth symposium
OSDI ‘02, December 2002.
[2] S. Ganeriwal, R. Kumar, M. B. Srivastava,
“Timing-Sync Protocol for Sensor Networks,”
SenSys ’03, November 2003
[3] TinyOS, http://webs.cs.berkeley.edu/tos/
[4] D. L. Mills. “Internet Time Synchronization:
The Network Time Protocol” In Z. Yang and T.
A. Marsland, Global States and Time Distributed
Systems. IEEE Computer Society Press, 1994
[5] J. E. Elson, “Time Synchronization in Wireless
Sensor Networks”, dissertation, University of
California, Los Angeles 2003
[6] H. Kopetz and W. Schwabl. Global time in
distributed real-time systems. Technical Report
15/89, Technische Universitat Wien, 1989.
[7] J. Hill and D. Culler, “Mica: A Wireless
Platform for Deeply Embedded Networks”, IEEE
Micro., vol 22(6), Nov/Dec 2002, pp 12-24.
[8] The TinyOS implementation of the FTSP:
http://cvs.sourceforge.net/viewcvs.py/tinyos/minita
sks/02/vu/tos/lib/TimeSync/
[9] J. M. Kahn, R. H. Katz and K. S. J. Pister,
"Mobile Networking for Smart Dust", ACM/IEEE
Intl. Conf. on Mobile Computing and Networking
(MobiCom 99), Seattle, WA, August 17-19, 1999
[10] Mica2 and Mica2Dot platforms: http://www.
xbow.com/Products/Wireless_Sensor_Networks.ht
m
[11] A. Mainwaring, J. Polastre, R. Szewczyk, D.
Culler, J. Anderson , “Wireless Sensor Networks
for Habitat Monitoring”, ACM International
Workshop on Wireless Sensor Networks and
Applications (WSNA'02), Atlanta, Georgia,
September 2002
[12] L. Schwiebert, S. K.S. Gupta and J.
Weinmann, “Research Challenges in Wireless
Networks of Biomedical Sensors”, SIGMOBILE
2001

[13] M. Srivastava, R. Muntz and M. Potkonjak,
”Smart Kindergarten: Sensor-based Wireless
Networks for Smart Developmental Problem-
solving Environments”, SIGMOBILE 2001
[14] H. Yang and B. Sikdar, A Protocol for
Tracking
Mobile Targets using Sensor Networks,
Proceedings of IEEE Workshop on Sensor
Network Protocols and Applications, 2003
[15] Ledeczi, A. et al.: “Sensor Network-Based
Countersniper System,” to appear in the Proc. of
Mobisys, Boston, MA, June 2004
[16] Woo, A. and Culler, D.: “A Transmission
Control Scheme for Media Access in Sensor
Networks,” Proc. Mobicom, 2001

