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Abstract. Standardizing the care of patients with complex problems in hospital settings is 

a challenge for physicians, nurses and other medical professionals. In acute care settings 

such as intensive care units, the inherent problems of stabilizing and improving vital 

patient parameters is complicated by the division of responsibilities among different 

individuals and teams. The use of evidence-based guidelines for managing complex 

clinical problems has become the standard of practice. Computerized support for 

implementing such guidelines has tremendous potential. The use of model-based 

techniques for specifying and implementing guidelines as coordinated asynchronous 

processes is a promising new methodology for providing advanced clinical decision 

support. Combined with visual dashboards, which show the status of the implemented 

guidelines, a new approach to computer-supported care is possible. These techniques are 

being applied to the management of sepsis in acute care settings at Vanderbilt Medical 

Center. 

Introduction 

Formalization of medical knowledge has been an active area of research since the 1960s. Early 

efforts were focused on creating systems that mapped signs, symptoms and laboratory results 

to probabilistic estimates of different diagnoses [1][2][3]. These systems, embodied as expert 

systems, proved not to be practical for the everyday practice of medicine. Only with the 

development of the electronic medical record (EMR) have knowledge-based systems proven to 

be practical and been adopted by practitioners [4][5]. 

Medical knowledge-based systems today focus on computerized physician order entry 

(CPOE) and clinical decision support advisory systems [6][7][8]. CPOE systems depend on 

comprehensive EMRs to provide means to physicians and nurses to create and execute orders 

for tests, procedures and medications. A system such as WizOrder, developed at Vanderbilt 
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University Medical Center (VUMC) and sold commercially as Horizon Expert Orders by 

McKesson Corporation, contains multiple advisors that help physicians with issues such as 

identifying potential adverse drug interactions or determining which combination of medicines 

might be best for a particular patient [9][10]. CPOE and related systems are often termed 

‗physician workflow‘ systems because they are designed to fit the normative matrix of 

activities that flow from specific surrounding systems and the standardized practice of 

medicine. 

Another area being actively explored is the use of computer-generated alerts. By utilizing 

rule engines through publish/subscribe models to actively monitor the patient‘s real time 

status, they are looking for specific problems which should trigger an alert [11]. 

The next area of application of knowledge-based systems is process management. VUMC is 

pioneering the use of process management ‗dashboards‘ to inform medical staff of the status of 

required activities to be performed for patients with specific problems. This has been applied 

to the management of ventilator acquired pneumonia (VAP), a serious consequence of a 

patient‘s intubation and mechanical ventilation. The ‗bundle‘ of activities required to minimize 

the development of VAP was created, and the status of these activities is shown using red, 

yellow and green indictors. These are made available to the hospital staff as reminders of what 

has been and what needs to be done. 

The overall management of a complex medical process requires a formal representation of 

treatment protocols in order to be able to show the temporal structure and coordination of the 

tasks and the history of measurements that demonstrate status, trends and rates of change. The 

key insight in our work is Model-Integrated Computing (MIC) [12][13][14], an approach and 

its supporting tool suite for model-based software and systems engineering that has been 

developed over the last two decades at Vanderbilt. This infrastructure offers new opportunities 

in creating clinical decision support and process management systems. MIC focuses on formal 

representation, composition, and manipulation of integrated models of information processes 

and security/safety policies, and provides tools for automated system generation directly from 

the models. The open-source MIC tool suite [15][16][17] addresses layered, multiple-view 

system modeling, model transformation, model analysis and validation, execution, and design 

evolution. The application of MIC principles and tools casts the creation of clinical decision 

support and process management systems in the following framework: 

 

1. Design of modeling language for treatment protocols. In MIC, modeling languages 

are formally defined by metamodels [15][17]. The MIC metaprogrammable tools for 

modeling, model management and model transformation are automatically 

customized by the metamodels. 

2. Modeling treatment protocols. Using the modeling language defined in step 1, models 

of specific treatment protocols are created. These models are formal representation of 

guidelines that drive the management of clinical processes. The precise semantic 

foundation of the MIC modeling infrastructure and related tools enable validation and 

verification of the models against a range of safety, privacy and security related 

criteria defined as constraints or policies. 

3. Generation of process management systems. Using the MIC model transformation 

infrastructure, the verified models are translated into configuration files that 

customize the generic run-time components (such as execution engine, Graphical 

User Interface and EMR Interface) of the process management system. 
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The components of this framework are consistent with the Model-Integrated Clinical 

Information System (MICIS) infrastructure [18], which is a generic tool suite for designing, 

testing and deploying clinical information systems. The goal of this paper is to show the use of 

the framework in creating a Sepsis Treatment Enhanced through Electronic Protocolization 

(STEEP) application. Sepsis management is a complex and extremely information intensive 

process performed in intensive care units and emergency departments. Application of 

guidelines that can evolve with accumulated experience and can be customized to the needs of 

individual patients has huge significance, which makes sepsis management an attractive 

application target for MICIS. Since the overall effort is complex, we restrict our discussion to 

the central issues in the model-integrated development approach: modeling language and 

model specification, model validation and verification and the automated system generation 

process. 

Sepsis Management Problem 

In an effort to maximize the impact of our process management tool, we sought a universal 

clinical paradigm that was common, expensive (both in terms of hospital resources and 

financial expenditures), and has accepted evidence-based treatment guidelines. We found 

sepsis to be an ideal candidate for our intervention. The sepsis syndrome results from a robust 

host reaction to infection and is characterized by a systemic inflammatory response, frequently 

with hypotension and multiple organ failure. This disease process is very common, occurs with 

a worldwide distribution, and can impact patients of any sex, race, or age. About 750,000 cases 

occur in the United States annually [19], and about 30% of septic patients will die from the 

disease [20]. Severely septic patients consume many hospital resources, requiring on average 

7-10 days in the intensive care unit and up to 3-5 weeks total hospital length of stay. In the 

United States, patients may accrue hospital charges of tens of thousands of dollars, and it is 

estimated that sepsis-related expenditures approach $17B in the United States annually [21]. 

Given the large scope of this clinical problem, it is not surprising that many treatment 

strategies have been proposed and investigated. The Surviving Sepsis Campaign (SSC), led by 

experts from numerous professional organizations, seeks to improve the diagnosis, 

management, and clinical outcomes in sepsis. The SSC has published a comprehensive set of 

treatment guidelines based on graded clinical evidence that are widely considered to represent 

the state of the art in sepsis management [22]. 

The SSC guidelines are complex and require multiple time-sensitive interventions based on 

dynamic patient variables. In clinical practice, the treatment guidelines are often grouped into 

―bundles‖ based on their ideal implementation time. For example, certain interventions are 

targeted for completion within 6 hours of diagnosis, including obtaining appropriate cultures, 

administering broad empirical antibiotics, and optimizing hemodynamics with early goal 

directed therapy in patients with septic shock. Other priorities, such as deep venous thrombosis 

and stress ulcer prophylaxis, are less time-sensitive but ideally completed within 24 hours. 

Therefore, correct and timely implementation of the guidelines requires continuous 

assimilation and interpretation of numerous pieces of patient data. 

In the intensive care unit (ICU), the healthcare team must respond in a timely manner to the 

needs of many patients with a diverse array of clinical problems. Managing the massive flow 

of critical clinical information is challenging and may impede excellent care. For this reason, 

the ICU is an excellent test bed for information technology (IT) interventions. Such IT 
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interventions can be categorized generally (in order of increasing sophistication) as clinical 

reminders, clinical pathways, or real-time protocolized decision support tools. Clinical 

reminders are ―pop-ups,‖ or similar passive cues, activated on every patient and intended to 

remind a provider of a universal intervention. For example, clinical reminders are deployed 

frequently to ensure that physicians remember to order deep venous thrombosis prophylaxis, a 

measure required for most inpatients. Clinical pathways are lists of preferred interventions in 

patients with a specific disease. For example, in a patient with hyperglycemia and diabetic 

ketoacidosis, a physician may activate a treatment pathway and choose IV fluids, insulin, and 

other interventions from a list of therapies commonly applied during the treatment process of 

the disease. The most sophisticated IT interventions are real-time clinical advisory tools. Such 

tools continuously monitor specific patient variables, and based on clinical guidelines, provide 

treatment recommendations if an unmet clinical need is detected. There are few examples of 

such sophisticated IT interventions in ICU medicine currently. To our knowledge, the current 

effort is the most comprehensive attempt at managing sepsis though a sophisticated electronic 

detection and management tool. 

We anticipate that the STEEP application will 1) decrease time to detection of patients with 

developing sepsis, 2) improve physician compliance with evidence-based standards as 

described in the SSC, and 3) result in improved clinical outcomes for patients (ICU and total 

inpatient length of stay, number of organ system failures and mortality rate). 

The STEEP tool will monitor real-time patient data streams and, using specific laboratory 

and vital signs criteria, will identify patients with possible sepsis. The lab and vital sign 

abnormalities are quite sensitive for the diagnosis of sepsis, but lack specificity without clinical 

input and contextual interpretation. Therefore, these patients with ―alert status‖ will be 

identified to the healthcare team for further review. The patients are identified first by a visual 

cue on the ICU dashboard; if this visual alert is not addressed in a timely manner, an electronic 

notification via text page will be sent to appropriate team members. When responding to the 

sepsis alert, physicians will be presented with an intuitive, visually rich, and educational 

explanation of why the sepsis alert was activated, and they will be offered the opportunity to 

activate decision support if there is a reasonable suspicion that the abnormal physiological 

parameters are due to infection. If the physician activates decision support, the tool will assess 

various patient parameters and provide customized decision support recommendations. 

Overview of the System Architecture 

On the highest level, MICIS-STEEP has two architectural views: the Modeling and Generation 

view and the Operation view. 

Modeling and Generation Architecture 

The Modeling and Generation architecture is shown in Figure 1. The STEEP application 

includes the model-based Execution Engine and two graphical user interfaces (GUIs), the 

Sepsis Management GUI and the Supervisor GUI. The Execution Engine runs the sepsis 

management process according to the specification in the Derived Protocol Representation 

(XML) file. 
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The Protocol Models containing the formally specified treatment protocols are designed by 

physicians using the Generic Modeling Environment (GME) [17]. The GME tool is a 

metaprogrammable graphical model builder; it can be customized to the designed protocol 

modeling language by defining its metamodel. The Protocol Models built with the help of the 

GME tools are transformed into the Derived Protocol Representation (XML) files used by the 

Execution Engine during operation. 

Physicians use the Sepsis Management GUI to assess the treated patient‘s health status, to 

make decisions based on the evidence-based guidelines present on the screen and to actuate 

their decisions. Protocol Models are validated using Simulation. The Simulation Supervisor 

controls the simulation of a patient‘s treatment using the Supervisor GUI. The supervisor 

controls the environment which includes the patient‘s response to treatment and the behavior 

of the other simulated players, which include nurses administering drugs and laboratories 

delivering the lab results. Sample data for simulated execution of protocols are collected in 

spreadsheets and translated into XML files that are accessed by the Execution Engine. 

 

 

Figure 1 - Modeling and Generation Architecture 

Operation Architecture 

The Operation Architecture in Figure 2 shows the interactions among the Physician, STEEP, 

and the related components of the clinical information system. 
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The interaction between the Physician and the STEEP is facilitated by the Sepsis 

Management GUI by means of two panels: the Monitoring Panel and the Advisory Panel. The 

Monitoring Panel presents a timeline where categorized patient health information can be 

viewed in time in context with the actions of the therapy provided to the patient. Displaying 

cause and effect relations involves linking patient data and treatments so that the effect of one 

on the other can be seen; this is what we refer to as the action-reaction concept. The timeline 

runs from the past, when the treatment started, to the current time. Health indicators, fed to the 

system as a stream of data, include vital signs, such as temperature, blood pressure, heart rate 

and central venous pressure, etc. Laboratory test results, like the white blood cell count, are 

updated on the screen when the information becomes available. The panel also shows the 

actions of the treatment that were provided or are scheduled to be provided to the patient (e.g. 

the start of a normal saline (NS) treatment). All displayed data is temporally aligned in the 

same columns. 

 

 

Figure 2 - Operation Architecture 

 

Once physicians have assessed the patient information they must actively make a decision 

that the patient does or does not have sepsis. This decision is made in the Advisory Panel, 

which is the main view for performing the protocol-based treatment of the patient. Once the 

physician has assessed the patient data (visible on the Monitoring Panel) and any other 

information (e.g. patient history, admission notes, and physical exams), the physician then 

makes a formal diagnosis by using the built-in logic and the available action controls on the 

Advisory Panel. These actions include higher level control (e.g. selecting the sepsis severity 

level) as well as lower level controls (e.g. ordering of specific medications and procedures). 
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Design of the Clinical Process Management Language (CPML) 

CPML is a domain specific modeling langue (DSML) designed for representing treatment 

protocols. Specification of DSMLs requires the specification of their abstract syntax, concrete 

syntax, semantic domain and the mapping between the abstract and concrete syntax (syntactic 

mapping) and the abstract syntax and the semantic domain (semantic mapping) [16]. The 

formal representations of these specifications are the meta-models and the language we use for 

describing meta-models is the meta-language. In MIC, the meta-language for representing the 

abstract syntax of DSML-s and the syntactic mapping is based on UML class diagrams (with 

stereotypes) and the Object Constraint Language (OCL) [23]. The abstract syntax defines the 

concepts, relationships, and integrity constraints available in the DSML. Thus, the abstract 

syntax determines all the (syntactically) correct ―sentences‖ (domain models) that can be built. 

In MIC, the formal representation of the semantic mapping is done by using graph re-writing 

rules [15][24]. 

The precise specification of CPML has proved to be a hard problem due to the following 

issues. First, operational protocols, policies and treatment guidelines of healthcare 

organizations are rarely ever phrased in mathematically sound, unambiguous manner, which 

makes the design of a formal modeling language difficult. Second, the protocols that describe 

the medical processes constituting a treatment, their triggering conditions and their 

coordination methods need to be considered as guidelines, and not rigid workflows that must 

be enacted always the same way. This requirement is essential for the design of the execution 

semantics of models. 

Due to these challenges, the language development took several iterations. In our first 

attempt, the language explicitly represented treatment trajectories as a connected, directed, 

bipartite graph structure. The nodes were either decision points with predefined multiple 

possible outcomes or actions representing treatment steps. The advantages of this approach 

were that it followed the formalization efforts presented in the available medical literature [25] 

and that it was simple enough. However, this approach did not prove to be efficient for 

expressing complex treatments (like the one for described for sepsis) because it was not scaling 

well due to the exponentially large number of potential trajectories generated by the many 

concurrent and interacting treatment processes. 

The following iteration of the CPML approached the problem from a new direction: 

treatment steps were grouped together under the concept of processes. Processes are 

concurrent, asynchronous and can interact with each other via events. In order to capture the 

decision logic concisely, processes can be organized in a hierarchical manner. Processes listen 

to events happening around them and will only start running if their triggering conditions are 

satisfied. Coordination of processes is done with the help of events (and related messages). The 

execution semantics of the selected process model corresponds to the well known 

Communicating Sequential Process (CSP) model [26]. The major advantages of the CSP 

approach is the possibility of using hierarchies and defining segments of a complex protocol 

independently from each other (processes compose in CSP). This semantics proved to be more 

intuitive to the physicians too, because it is closer to the way they tend to think of the different 

cases they deal with. 

The CPML language is defined by the metamodel, which is the placeholder for the 

definitions of the various concepts we use to define a protocol. These concepts include the 

aforementioned abstractions: the process and the protocol, to which the precise models 
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(defined in GME) are shown in Figure 3. The two highlighted boxes show the building blocks 

of a protocol and the building blocks of a process. 

 

 

Figure 3 - Segments of the CPML Metamodel (partial view) 

 

To explain the metamodel in detail is not the focus of this paper however some of the major 

concepts, without which the protocol modeling language would not be complete, are listed and 

described in Table 1. 

 

 

Table 1 - High-level concepts of CPML 

Abstraction Description 

Protocol Top level concept, in which medical protocols can be 

described. 

Medical Library Top level concept, which serves as the placeholder for 

hierarchically categorizing general medical knowledge on the 

three main information categories that are referred to in our 

protocols: Patient Vitals, Patient Labs and possible 

Medications. 
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Orderables Top level concept for building a hierarchy of bundles from 

the elements defined in the Medical Library. Orderables are 

the items that Activities of a Protocol refer to and are specific 

to healthcare organizations. 

Process Coordinated group of activities used in Protocols. Processes 

help to decompose the treatment protocol and to categorize 

the treatment steps. They are concurrent, asynchronous and 

can interact with each other via Events. 

Activity Activities are the lowest level components of a Protocol. They 

are the items that a physician can order, including Lab 

Bundles, Medication Bundles, single Medications and 

Procedures. 

Event Component used in Processes. Events refer to the activation, 

starting and completion events of other components, such as 

Protocols, Processes and Activities. They help to create 

dependencies among the mentioned runnable components. 

Step Example of a coordination primitive. It is the connecting 

element with which the execution order of Activities within a 

Process can be specified. 

Synchronizing Merge Coordination primitive used together with the Step 

connection. It defines a synchronization point in between 

activities where multiple paths of the Step connection 

converge into one single one. This means that if more than 

one path is taken, synchronization of the active paths needs to 

take place. 

 

The example model in Figure 4 describes two components of a complete sepsis protocol 

that were represented using CPML. The first open window in the figure shows the contents of 

a fairly simple process, called ―Order Labs‖, which initiates the ordering of laboratory tests 

(such as blood culture, etc.). It is a process with no entry condition and marked initially active, 

which means that it will start executing immediately after the protocol starts. Since there are no 

dependencies among the provided actions, (various laboratory tests), their execution will be 

initiated simultaneously. During the execution of the protocol this translates to the following 

behavior: after activating the sepsis protocol the physician receives reminders on the Sepsis 

Management GUI that the ordering of the listed laboratory tests is advised. 

The second example, in the second open window in Figure 4, describes the coordination 

among the components of the ―Early Goal-Directed Therapy‖ process (EGDT) [25]. The 

EGDT process contains subprocesses that get activated in the order specified by the activation 

arrows (from left to right) once EGDT starts executing. This activation mechanism has no 

control over the execution order of the processes, it just specifies when the components start to 

listen. Only in runtime will the execution order be determined, when the entry conditions for 

process can get evaluated (completely independently from the activations). 



10 

 

 

Figure 4 - Sepsis management models expressed using CPML (partial view) 

Model Validation and Verification 

With the help of the approach presented in the previous section we were able to represent 

treatment processes, operational policies and guidelines of Health Care Organizations as a set 

of well-formed and explicitly defined protocols. Also, as mentioned, by defining abstractions 

in CPML that are based on the basic concepts that healthcare professionals use in daily 

treatment we achieved that the formally defined protocols themselves can now be interpreted 

by the healthcare professionals. Treatment protocols, even if they serve as guidelines in the 

patient management, are safety critical and their validation and verification is an essential part 

of the protocol specification process.  One of the key advantages of the MICIS approach is that 

the modeling languages are formally sound and provide foundation for disciplined validation 

and verification processes.  

Validation 

The role of protocol validation is to test if the generated decision support guidance corresponds 

to the clinicians‘ expectations. The first step of the validation is to model walk-through-s with 

clinicians. Expressiveness of the modeling language is an extremely important help in this 

process and fully confirms the importance of using DSML-s highly customized to the clinical 

environment. The second step of the validation is simulation based studies. As described 

earlier, the MICIS-STEEP architecture supports the generation of simulated execution. The 

simulation function includes Sample Data import, interface to the Execution Engine and a 

Supervisor GUI through which the simulated execution of the protocol can be controlled. 
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An essential part of the validation process is that it is needed to be conducted in a realistic 

environment, where ICU personnel can face near real-life situations of sepsis management and 

can interact with the STEEP system to make decisions. The validation process needs to be 

closely monitored and the results precisely evaluated. The infrastructure for this evaluation is 

provided by the Simulation Center of the Center for Experiential Learning and Assessment at 

Vanderbilt University Medical Center [27] (see Figure 5). 

 

 

Figure 5 - Simulation Center at the Center for Experiential Learning and Assessment 

Verification 

Another benefit of using DSMLs is that the formal verification of the domain models against 

established criteria becomes possible. This is a significant step ahead, because in traditional 

approaches where the system is hardcoded (using programming languages, like Java, C, etc.), 

the model is not explicit and cannot be independently verified. Verification using our models 

can be performed on the following three levels: 

 

1. Static model verification. This is the first line of defense, which is provided by the 

MICIS modeling tool, GME. As we described before, the metamodels of protocol 

modeling languages (such as CPML) include wellformedness rules that separate 

syntactically correct models (that can be translated into executable protocols) from 

incorrect models. The constraints are expressed using the Object Constraint language 

(OCL). In modeling time, GME (with the help of its constraint checker) enforces the 

wellformedness rules defined as constraints. These constraints include clinical limits 

for parameters as well as more sophisticated constraints that would be extremely hard 

to check without automated verification. An example for an OCL constraint is 

presented below: 

 

Treatment processes should not contain references to medical procedures 

that have not been defined yet or have been deleted from the available 

medical procedures library. 
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Formally:  
 

let RefSet = self.referenceParts() in 

let NotEmptyRefSet = RefSet->notEmpty() in 

if NotEmptyRefSet then RefSet->forAll( not 

refersTo().isNull() ) else true endif 

 

Development of OCL constraints requires expertise in clinical constraints on 

protocols and in metamodeling. However, this is a crucial part of the development 

process and greatly contributes to the safety of protocol specifications. 

2. Verification of dynamic properties at design time. Models are transformed into 

behaviors by the Execution Engine. In fact, protocols are instantiated into a complex, 

multi-threaded program that interacts with ICU personnel, patient data and events. 

Using a well defined, clean execution semantics (such as CSP) is crucial for 

verifiability of the models against a set of predefined behavioral properties such as 

determinacy, livelock, deadlock and others. At this point, we have developed a model 

translator to map the protocol models into an intermediate executable model – 

Stateflow [28]. The Stateflow models can drive a number of verification tools (model 

checkers, simulators, reachability analysis tools) that we plan to use in implementing 

our dynamic verification strategy. This is a planned activity in the next phase of our 

research. 

3. Run-time checking. Critical actions that are performed during the treatment need to be 

checked at runtime. Security and privacy policies determine access rights to data 

published through the STEEP GUI and to the invocation of actions (initiating 

treatment processes, ordering medication, etc.). In the current implementation, STEEP 

access control is part of the general access control policies of the ICU, but we intend 

to make this customizable in later phases. Decisions present in the protocol allow 

various actions to be ordered by the healthcare professionals during treatment that are 

not only need to be logged, but they have to be matched against a set of legal 

regulations and the hospital‘s own policies. A number of these checks are performed 

by systems interfaced to STEEP, such as the WizOrder order management system that 

checks all medication related actions against a large suite of rules.  

 

Continuation of this research in the area of validation and verification will allow the model-

integrated approach to provide safe customization of individualized guideline-driven clinical 

decision support and process management systems. This is the primary area of our current 

research efforts and the motivation for the further development of the MICIS infrastructure. 

Results and Ongoing Work 

The project started in 2007, as a collaborative effort between the Vanderbilt School of 

Engineering and Vanderbilt University Medical Center to apply advanced model-based 

computing techniques to the management of complex clinical management processes which 
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occur in acute care settings in hospitals. The initial results of that effort – MICIS – were 

reported at the MOTHIS 2007 Conference [29]. STEEP has been implemented as part of the 

MICIS framework. The team has completed much of the work on the first prototype of STEEP 

and is preparing to launch a clinical test of the system in late 2008. The completed work 

includes the completion of the modeling language, the runtime environment and the gathering 

of the testing data samples. 

At present, the followings are our primary focus: 

 

1. In order to be able to seamlessly integrate the STEEP application into the existing 

information systems architecture currently in place at the VUMC we plan to 

implement a Surveillance Tool (see Figure 2, also briefly mentioned in the 

Introduction). This tool will initiate the sepsis protocol by constantly monitoring the 

patients‘ health status and issuing alerts for the healthcare professionals if a 

predefined set of criteria is met. 

2. Another challenge we are currently addressing is the development of a generic GUI 

that can be customized from protocol models. While we have solved this problem in 

case of the Simulation Panel the rest of the GUI elements (the Monitoring and the 

Advisory Panels) are still specific to STEEP and their configurability is limited. The 

solution will require the specification of a new aspect in CPML, which will allow the 

customization of the GUI elements. Otherwise all components of Figure 1 are 

completed and functional. 

3. We are in the process of designing and performing a carefully coordinated, multi-

phase experiment to evaluate the presented approach in terms of usability and 

effectiveness. The discussion of the evaluation plan is not in the scope of this paper. 
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