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Abstract.  Health care is a rapidly evolving field that is increasingly supported 

through clinical information systems (CIS) that integrate care providers, 

patients, and computer applications.  Local and federal regulations require 

health care systems to define and enforce privacy and security policies to 

protect sensitive patient data within CIS.  Service-oriented architectures (SOA) 

have been successfully applied to specific clinical services, such as decision 

support, but have yet to be adopted for large-scale CIS that need to account for 

diverse information technology architectures and complex person-computer 

interactions. In this work, we demonstrate that the incorporation of model-based 

design techniques and high-level modeling abstractions provide a framework to 

rapidly develop, simulate, and deploy CIS prototypes.  This paper describes the 

implementation of a graphical design environment that allows CIS architects to 

develop formal system models and from these automatically generates 

executable code for deployment. The design tool leverages SOA to create 

reusable services that can be rapidly adapted.  We illustrate the functionality of 

the tool by modeling a secure messaging service in the MyHealth@Vanderbilt 

patient portal, a portion of the Vanderbilt University Medical Center CIS.  

Keywords: Model Integrated Computing, Privacy, Patient Portal, Workflow 

1   Introduction 

The treatment of patients is paramount in the health care community, but an 

information system with errors that are difficult to find and address can lead to serious 

mistakes in patient care.  To reduce these errors and minimize administrative burdens, 

health care organizations (HCOs) are migrating from traditional, paper-based records 

to clinical information systems (CIS) that provide a collection of computer-based 

applications that enable sophisticated services for patients and health care providers.  

Already, electronic medical records (EMR) have been shown to both increase staff 

productivity and patient safety [1].  As CIS evolve, HCOs are integrating new 
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applications to provide access to information and manage organizational relationships 

within the healthcare environment. 

CIS leverage and incorporate a variety of technologies, such as electronic medical 

record systems that provide a gateway to numerous information and organizational 

components of the healthcare environment.  As a result, CIS can enable a wide array 

of functions, including data sharing, decision support, training, research, and access to 

reference materials.  CIS ―web portals‖ can be tailored to provide a specific 

experience based on the role of the user [2]. For example, physician portals can be 

designed to support the daily clinical workflow, so that they have access to guidelines, 

educational materials, treatment and cost information, referral directories [3].  

Alternatively, patient portals can be designed that provide patients with access to their 

electronic medical records, billing, and appointment scheduling. [4], [5]. 

The design of CIS presents unique challenges that mainly derive from the fact that 

HCOs are dynamic entities with constantly evolving policies and technologies.  HCOs 

require complex technical, as well as socio-technical, interactions in the clinical 

environment. For instance, workflows in hospitals can vary between departments and 

each department has continuous turnover of employees with differing roles.  

Moreover, CIS administrators must support diverse regulations at the federal, state, 

and local levels that influence both procedural, as well as access policies.  

Nonetheless, due to the sensitivity of patient information and the potential for an 

increased magnitude in errors, the design of CIS is a critical issue that directly affects 

the HCOs, in addition to the well-being of patients.  Complexities in HCOs must be 

modeled in CIS to ensure secure and timely access to health information and services. 

To address this problem, we have evaluated the necessary requirements and  

developed a software tool suite, called Model Integrated Clinical Information Systems 

(MICIS) that assists in the formal design, verification and rapid prototyping of CIS.  

Previously, we presented a high-level overview of the MICIS architecture with 

respect to platform-specific engineering [6] and the type of CIS ―abstractions‖ that are 

necessary for modeling the clinical realm [7].  In this paper, we describe the 

implementation details of MICIS.  The MICIS tool is able to graphically represent 

data, workflow, and organizational aspects of the healthcare environment. MICIS 

translates the formal models into a Service-Oriented Architecture (SOA) and 

transforms them into a secure web-accessible portal that includes both procedural, as 

well as, access policies.  The formal models created in MICIS allow us to perform 

rigorous systems analysis, as well as investigate the privacy and security implications 

of CIS, including the data passed among care providers and where patient information 

is stored.   

The remainder of this paper is organized as follows.  In Section 2 we provide 

motivation for SOA in the clinical realm and review research in related areas.  In 

addition, we provide background into the underlying technologies that MICIS is built 

upon, such as model integrated computing. In Section 3, we describe the architectural 

design of MICIS.  We then present how MICIS was implemented using the Oracle 

BPEL server and a model integrated computing toolkit.  Then, in Section 4, we 

discuss a challenge regarding the representation of policies and their enforcement.  

Finally, in Section 5, we discuss some of the limitations and next steps in the 

development of the MICIS tool suite. 
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2 Background and Motivation 

Service Oriented Architectures and the Complexity of CIS 

 

The healthcare environment is highly variable, and may differ greatly between 

disparate HCOs in terms of alternative software systems, as well as within hospitals in 

terms of the responsibilities of particular clinics. SOA provide an intuitive means to 

resolve and integrate such diversity.  Instead of relying on site-specific, ad hoc design 

strategies, SOA provide a formal way to coordinate services by using a web-inspired 

architectural style that relies on loosely-coupled, interacting services to compose 

complex applications [8].  Services, in the context of SOA, are independent, 

heterogeneous components, which can be accessed through predefined interfaces and 

composed into workflows representing business logic [9][10].  The principal design 

goals of using services are composability, adaptability, and platform independence, all 

of which lead to improved interoperability among systems as well as future 

extensibility. 

SOA have been used successfully in the business sector by companies such as 

Amazon [11], and as a result, a rich infrastructure of SOA tools is available [12], [13], 

[14].  By using an existing service-based approach for CIS, we gain maintainability, 

scalability, and generalizability [15]. However, the design and implementation of 

SOA in CIS raises nontrivial challenges.  For instance, the abstractions used for 

service representations in an off-the-shelf product may not adequately capture the role 

of human processes prevalent in a clinical setting.  In traditional business 

applications, the human- workflow interaction is often based on a simple ―accept or 

deny‖ schema where a person serves as an approval checkpoint in order to determine 

if execution can continue.  Yet in the clinical domain, many workflows require human 

tasks that cannot be cast into a binary decision, such as interpreting chart data or 

diagnosing patients; existing SOA tool suites do not provide a way to capture these.   

Furthermore, CIS have unique requirements due to the complexity of their policies.  

Procedural policies require secure and timely delivery of health information while 

privacy policies mandate particular accessibility rules for both patients and healthcare 

providers.  The policies specified in the Privacy and Security Rules of the Health 

Insurance Portability and Accountability Act (HIPAA) present both procedural and 

access policies that must be supported by CIS [16][17].  However, existing SOA 

implementations require procedural policies to be hard-coded into the workflow logic 

and do not provide a uniform method for representing access policies. Simple access 

polices, for example encryption of messages exchanged by service provider and 

invoker can be addressed by Oasis Web Services Security [18], [19]. Although we 

adopt it for our execution engine in MICIS it is clear that for expressing general 

access policies (e.g. restricting the access to personal data) a more elaborate solution 

would be required; otherwise, additional security enforcement is left for the system 

designer. By coupling design and deployment environments, SOA implementations 
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binds potential CIS developers to particular implemented technologies and limit 

future system evolution. 

MICIS is distinct in that it creates verifiable, executable workflows from domain-

specific models tailored to the healthcare environment.  Approaching CIS with SOA 

is not unique.  Kawamoto and Lobach successfully applied a service-oriented 

software framework to clinical decision support systems [20].  However, clinical 

decision support is only one of many components in CIS and does not model patient-

provider interactions, which characterize the healthcare field.  The challenge is to 

design a CIS that is loosely-coupled to a particular SOA environment.  This enables 

the designer to build an experimental infrastructure without being bound to design 

and execution environments that may not adequately represent the particular CIS in 

development or have the adaptability necessary to meet changing system 

requirements. 

 

Formal Modeling Tools 

 

MICIS makes use of workflows to capture the business logic of a health portal and 

orchestrate the execution of services.  An orchestration language creates a coherent 

story of service execution from one viewpoint, such as the chronology of the services 

invoked when a patient sends a message to a physician.  The Business Process 

Execution Language (BPEL) is one such language that relies on workflow 

descriptions to represent business logic [21].  By using the BPEL standard as the basis 

for workflow modeling, MICIS is compatible with any OASIS compliant BPEL 

execution engine, which decouples the development of the health portal from 

deployment specific details. 

Policy specification languages are able to separate abstract security policies from 

implementation details.  As a result, policies can be dynamically changed without 

altering the underlying implementation [22].  Sun’s implementation of the eXtensible 

Access Control Markup Language (XACML)[23] is a formal policy language 

specification based on the OASIS standard [24]. Using a formal language for policies 

provides greater reuse for the developer but may not easily represent the high-level 

goals of business processes.  Bridging the gap between low-level abstractions and 

high-level goals is explored in [25], which presents a model-driven approach for 

access policies.  MICIS uses a similar approach by automatically transforming 

domain models into machine-enforceable XACML. 

Model Integrated Computing (MIC) was developed at Vanderbilt University for 

building software-intensive systems. The core idea behind MIC is to provide a 

domain-specific modeling language (DSML) and a corresponding modeling 

environment for the given application domain. The DSML raises the abstraction level 

above traditional programming languages and provides the application 

developer/domain expert with familiar concepts. MIC is used to create and evolve 

integrated, multiple-view models using concepts, relations and model composition 

principles used in the given field. It also facilitates systems/software engineering 

analysis of the models, and enables the automatic synthesis of applications from the 

models. The approach has been successfully applied in several different applications, 
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including automotive manufacturing [26], wireless sensor networks [27], and 

integrated simulation of embedded systems [28], to name a few. 

A core tool in MIC is the Generic Modeling Environment (GME) that can be 

configured and adapted from meta-level paradigm specifications, known as  

metamodels. These metamodels consist of UML class diagrams and OCL constraints. 

They are created in GME and are used to automatically configure it to support the 

new DSML. Specifically, a software tool called the metamodel translator parses the 

metamodels and generates an XML file containing the DSML specifications in a 

concise format. GME in turn reads this file and configures itself to support the new 

DSML. This architecture is illustrated on the top half of Figure 1. GME has a 

sophisticated user interface and a flexible extension mechanism making it easily 

customizable even beyond supporting a wide variety of modeling languages. For 

example, several high-level APIs in different programming languages make it easy to 

create additional tools interfacing with GME as well as model translators. The most 

widely used API is a domain-specific, high-level C++ interface automatically 

generated from the metamodels by the metamodel translator.  

The well documented advantages of MIC in general and the highly flexible 

architecture and customizability of GME in particular, make these technologies an 

ideal candidate for laying the foundation of MICIS. 

3 MICIS Design and Implementation 

To design MICIS for a real world clinical environment, we collaborated with 

administrators and software engineers from the Vanderbilt University Medical Center.  

Specifically, we based MICIS on information learned from the MyHealth@Vanderbilt 

(MHAV) Patient Portal, which is currently in use, and was designed by the Vanderbilt 

University Medical Center (VUMC).  For illustrative purposes in this paper, we use 

workflows that depict services similar to those offered by MHAV [29].  The MHAV 

portal provides services for patients, including access to lab results, billing 

information, scheduling of appointments and secure messaging with doctors. 

 

Architecture Overview 

 

Figure 1 provides an overview of the MICIS architecture. MICIS achieves an agile 

design with the assistance of the GME tool suite (Modeling block) [30]. With the 

help of the GME tool suite, we utilize existing SOA tools in order to provide a 

runtime environment for a designed CIS (Execution Environment block) and 

provide designers with the opportunity to incorporate verification and simulation 

tools. 
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Fig 1. MICIS Architecture, where we facilitate the GME tool suite in the Modeling block to 

create a design environment for CIS. The models that are created in this design environment 

(the Model Editor) then can be translated as input for various analysis and execution engines.  

 

Components and their implementations 

 

The first component of MICIS is the Domain-specific modeling language editor, 

which is shown in Figure 1 as component 1) of the Modeling block.  The editor is 

used for the design and creation of domain-specific modeling languages, or 

―metamodels‖. 

 

We used the editor to create the component Metamodels, a formal language that 

represents the necessary abstractions of the CIS domain. This is shown as component 

2) in the Modeling block of Figure 1.  Tailoring the clinical abstractions required a 

series of interactions with the designers of the MHAV patient portal and the hospital 

staff at VUMC. Through these interactions, we have created the abstractions that 

drive the Domain-specific model editor (component 4 of the Modeling block). The 
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development of these abstractions was an iterative process requiring several revisions 

of the (meta)models. In the current iteration, we partition the abstractions into five 

classes: A) workflows, B) data structures, C) policies, D) deployments, and E) 

organizational structures.  The details of the abstractions are described in [7]. Through 

this set of abstractions, a CIS designer can specify the orchestration logic for a CIS. 

During this process, called the modeling process, the designer can identify the 

services the CIS should provide.  The designer can also specify the manner by which 

people and computer-based entities interact with the components that are in charge of 

implementing these services. 

The Metamodel Translator of the GME tool suite – shown in Figure 1 as 

component 3) of the Modeling block – uses the modeling language to automatically 

configure GME for the domain thus enforcing our abstractions.  This operation allows 

the Domain-specific model editor, to enable the creation of instances of the 

abstraction in form of models in our graphical modeling environment. The Domain-

specific model editor is depicted in Figure 1 as component 4) of the Modeling block. 

In the model editor we created sample Models, – shown in Figure 1 as component 

5) of the Modeling block, – which are based on MHAV. An example workflow model 

taken from the model editor is presented in Figure 2.  This workflow depicts a 

scenario in which a patient, currently logged in to MHAV, attempts to retrieve the 

history of a messaging session with the medical staff. 

 

 
Fig. 2. Service ppMsgHistory retrieves the history of a messaging session. 

 

Figure 2 shows the model editor, which has four principal components: A) the 

model builder pane (shown in the upper left corner of the figure), B) the tree view of 

the hierarchical component structure (shown in the upper right corner of the figure ), 

C) the model parts browser (shown in the lower left corner of the figure) and D) the 
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model information pane, with Attributes, Preferences and Properties tabs that allow 

for the configuration of models (shown in the lower right corner of the figure).  

In the model builder pane (block A of Figure 2) the example workflow model walks 

through a series of steps described by the control flow.  Here, we use the term model 

to describe any element in the hierarchical structure of models; i.e., for both basic 

building blocks and complex structures. Complex structures, such as the example 

workflow model in Figure 2, can be built from both simple and other complex 

building blocks.  In block A the roman numbers describe the three basic categories of 

the models: I. contains the data structures, II. shows the workflow logic and III. 

presents the participating services. In the workflow, unlabeled black lines are drawn 

between the inputAction (black filled circle), which represents the starting point, and 

the outputAction (empty circle), which represents the endpoint. In this example, the 

series of steps are a simple sequence of operations.  The operations in the sequence 

are 1) a reception of the user input (receive model); 2) a local operation called 

―LookUpOldMsg‖ task, which performs a lookup in a database table with a message 

ID as an input and returns with the message history text as an output; 3) a service 

invocation that invokes the remote service called ―genHistoryPage‖ that assembles 

the results into a viewable format; 4) a reception of the result of the invoked service; 

and finally 5) the sending of the requested information back to the user with a reply.  

The flow of information (data structures marked by blue hexagons) travels in and 

out of components of the control flow and is described with data flows (the blue, 

tagged lines in the diagram). This mechanism helps the creator of a workflow tie two 

distinct aspects of two separate control structures together with the help of a common 

data schema. For further explanation on how the model editor works we refer the 

reader to [30] and for information on what the language is capable of expressing, as 

well as additional examples, we refer the reader to [7]. 

A collection of the (MICIS) models are intended to illustrate a formal 

representation of the logic that drives a CIS, or a certain part of it.  However, the 

collection only serves as a formal documentation in this form, because it lacks a 

model interpreter, which would translate the models into executable code.  This is the 

purpose of the Translator for the Execution Environment (Translator EE), which 

connects the Models block with the Execution Environment block in Figure 1. It 

traverses the models with the help of the GME interface [30] and produces executable 

code, in the form of configuration files for the Execution Environment, using a layer 

of functions that build on C++ and TinyXML [31]. 

To generate code in a cost efficient manner we facilitate the powerful arsenal of 

applications created for Service-Oriented Architectures in order to implement the 

Execution Environment block [Fig.1]. The Execution Environment is a group of 

applications running on a set of servers that contain the Execution Engine, the Policy 

Decision Point and the Front End.  The Execution Engine is in charge of providing 

the defined services for a CIS, such as managing the incoming requests and executing 

the defined workflows based on the defined policies. The Front End provides access 

to the services maintained by the execution engine. To find a suitable application 

serving as an Execution Engine we have examined various applications that could be 

configured with workflow descriptions. We decided on the Oracle BPEL Process 

Manager (Version 10.0.1.3) [32], which uses a BPEL-based workflow representation 
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and has a mature set of tools including a web-based console that provides access for 

managing workflow instances.  We recognize that there are alternative tools and we 

note that we have also experimented with the open-source ActiveBPEL [33] and have 

evaluated the compatibility of our workflows with it. We have concluded that the 

source files can be exchanged between the two engines with minor changes. 

We found that the explicit representation of policies over the orchestration logic 

(represented by workflows) in the CIS domain is a necessity. We discuss some of the 

aspects of policy representations in the following section.  In our architecture the 

Policy Decision Point (PDP) implements all the decisions that have to be made in the 

execution of a workflow, which enforces the existing defined policies. A subset of 

these policies defines access control within the CIS. In order to implement these 

policies we have chosen to generate XACML expressions (using Translator EE) and 

enforce them with the help of Sun's XACML Implementation, Axis 1.2 and Tomcat 

5.5 – installed on dedicated servers. 

To make MICIS compatible with the SOA tools that form the Execution Engine we 

implemented Translator EE so that it generates code (based on our models in the 

modeling environment) in a language that can be interpreted by the components of the 

Execution Engine. The model translator Translator EE is composed of three main 

components: A) the model translator for workflow orchestration (with policy 

enforcement) that generates input for the Oracle BPEL Process Manager, B) the 

model translator for creating policy decisions and C) the model translator for creating 

the front-end interface for users (in form of html/jsp pages). 

 

 

 
Fig 3. Source files generated with Translator EE based on ppMsgHistory workflow. 

 

 

Figure 3 shows the source files that are generated by component A) of Translator 1. 

The source files are required by the Oracle Process Manager for correct execution of 

workflows.  These correspond to 1) the BPEL source file, which describes the 

orchestration logic; 2) the Web Service Definition Language (WSDL) interface file 

with the necessary data structures in the form of XML Schema Definition (XSD) 

files, which defines the input and output messages for the service to allow other 
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processes to connect it; 3) the BPEL deployment descriptor file (bpel.xml), which 

defines the location of the used WSDL files; and 4) the compilation and deployment 

(Apache Ant) script file (build.xml), which is in charge of deploying the previous files 

onto the Process Manager. The policy enforcement is integrated into workflows by A) 

and also translated to XACML-based policy decision points by B). The C) component 

of Translator EE has not been developed yet, which means that when we generate 

input for the Execution Engine we have to manually create the front-end web pages to 

be able to interact with the services. The development of C) is currently work in 

progress. In order to generate the front-end pages we plan to utilize the input and 

output data structures of the workflow models. 

 

Future components of MICIS 

 

The purpose of the Simulator Translator (Translator S) working together with the 

Simulator of [Fig. 1] is to provide CIS developers with the possibility to simulate and 

test the implemented orchestration logic. This is a future component of our 

architecture and we are looking into using UPPAAL [34], CPN Tools [35] or even the 

built-in simulator of the ActiveBPEL design environment [33]. 

 

The Verification Tool Translator (Translator V) is the model translator for policy 

and workflow verification.  It generates input for the Verification Tool [Fig. 1], 

which is a component of the proposed architecture that works tightly together with the 

Simulator.  The verification tool creates the possibility to reason about and verify 

certain properties of a given CIS system. These properties could be anything from a 

simple reachability analysis of workflow structures to a policy validation. This is a 

component that has not been implemented yet, we are currently looking into using 

Prolog and CPN Tools. 

4 Challenges to Policy Representation 

It required several iterations to find a suitable representation for the workflows so that 

it is tailored to the problem set and easily interpretable by the CIS design staff. 

Defining abstractions for representing a broad range of policies is a similarly difficult 

challenge. 

When the Execution Engine instantiates and executes the example workflow in 

Figure 2, we assume that the user who invoked the service has already been validated 

against a user data-base. We found that this type of access control policy validation 

can be achieved by implementing policy decisions points in the workflows.  However, 

this approach requires the designer to insert a decision point into the control flow of 

each workflow that requires the particular access policy.  

One can avoid inserting multiple policy decision points that enforce the same policy 

by combining the relevant workflows into another that implements the PDP. This 

approach is depicted in Figure 4.  The ppSecInvocation service implements the 

services and policies required by our example Patient Portal messaging.  In the 

example, we create one, main service, which sends and receives messages to and from 
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patients and clinical staff.  Such a service requires the invocation of subservices, like 

retrieving a contact list and sending a message, where each subservice adheres to the 

same access policy.  Instead of adding a PDP to each workflow for user validation, we 

created a higher-level workflow that groups together services requiring the same 

access policy, creating a simple visual confirmation that all messaging subservices 

conform to our specified policy.  The example workflow results in an ―unauthorized 

user‖ fault if the current user does not have access privileges for a given service. 

 

 
Fig 4. Service ppSecInvocation shows how invocation of various services can be tied together 

in a workflow. First the user gets authenticated by the validateUser task, which is a policy 

decision point implemented by the workflow. Assuming that the user gets successfully 

authenticated, the workflow decides which service to invoke based on user’s input (such as a 

URL reference). 

 

If we tie together all of the subservices it would result in a series of steps described 

by the picture in Figure 5. Figure 5 is a sequence diagram that illustrates an example 

case in which a user logs in to the example Patient Portal system and after a 

successful login invokes the messaging service (ex: with clicking on a URL reference 

on the main page). The user invocation causes the Execution Engine to instantiate the 

previously described ppSecInvocation service, which would then validate the user 

before presenting him or her the messaging options.  In the example the user then 

invokes the service (ppMsgHistory) that would display the history of his or her 

messaging, which again would have to go through the ppSecInvocation service. 
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Fig 5. One possible execution path that a user (of the presented simple Patient Portal) could 

take. The services that the user invokes are the Log In service and some of the subservices of 

the ppSecInvokation service [Fig.4]. 

 

 

There are disadvantages of this approach. First, we are not only creating an 

additional service component, where we have to tie all the ―real‖ services that we 

want to implement in a centralized fashion, but by flattening two different concepts 

into one we make it difficult to understand the underlying logic. One can imagine 

what kind of chaos a changing, already implemented, policy would create in a real life 

system, which usually have numerous workflows and policies defined. 

 

An optimal case, in which policies are not modeled and implemented as part of the 

workflows, is depicted in Figure 6.  
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Fig 6. The execution of the same example (as seen in Fig.5) but this time with PDP 

implemented on a separate abstraction layer than workflows.  

 

This method assumes the enforcement of the defined policies with the help of PDPs 

implemented independently of workflows. In order to achieve it operations of the 

control flow – defined in the workflows – would need to be intercepted and matched 

against the defined set of policies. Depending on the type of operation and the calling 

data, an operation could be either allowed or denied at the decision point. 

5 Discussion and Conclusions 

The MICIS tool suite provides a domain-specific modeling environment for explicitly 

defining workflows, data, organization, and policy in relation to health portal. It 

transforms CIS domain-models into executable code that can be managed by an off-

the-shelf technology, such as Oracle, which, as a result, decouples the developer from 

a particular deployment architecture and allows greater design flexibility.  MICIS 

incorporates several technologies that allow for deployment from a set of user-defined 

models. 

 

MICIS is a work-in-progress and, as such, possesses several shortcomings.  The 

most prominent of these reflects the incomplete status of the tool suite: Many of the 

code-generating translators have yet to be fully implemented and provide only a 

subset of functionality.  Currently, translation to BPEL does not support all of the 

workflow constructs, and policy translation requires user data-tags instead of 

automatically generating them from the model.  These problems are only the result of 

time constraints and will be addressed in the near future. 
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A second limitation affecting policies also results from its incomplete status; 

however, our short-term solution will require modification in the future.  Currently, 

policy enforcement is achieved through XACML, which has no support for temporal 

policies, such as those that specify an action must occur before another action or 

while some event is occurring.  Mitchell has proposed a language that can correct this 

limitation [36], but an execution engine has yet to be developed for it. 

Despite these limitations, MICIS is currently capable of modeling health portals 

with formal domain-specific models and is able to generate executable code with 

policy enforcement for limited examples. By extending the functionality of MICIS to 

automatically deploy interacting services with temporal policy enforcement, our 

future goal is to overcome the current system limitations and create a tool suite 

capable of modeling, simulating, verifying and deploying prototype CIS. 

References 

1. Davies NM. Healthcare Information and Management Systems Society: The ROI of EMR-

EHR: Productivity Soars, Hospitals Save Time and, Yes, Money. HIMSS Journal. 2006. 

2. Shepherd, M., Zitner, D., Watters, C.: Medical portals: web-based access to medical 

information. Proc 33rd HICSS. 2000: 5003. 

3. Barnett, G., Barry, M., Robb-Nicholson, C., Morgan, M.: Overcoming information 

overload: an information system for the primary care physician.  In: Proceedings of 

Medinfo 11(Pt 1) (2004) 273-276. 

4. Masys, D., Baker, D., Butros, A., Cowles, K. Giving patients access to their medical 

records: the PCASSO experience. Journal of the American Medical Informatics 

Association. 9 (2002) 181- 191. 

5. Cimino, J., Patel, V., Kushniruk, A. The patient clinical information system (PatCIS). 

International Journal of Medical Informatics. 68 (2002) 113-127. 

6. Werner, J., Mathe, J.L., Duncavage, S., Malin, B., Ledeczi, A., Jirjis, J. Sztipanovits, J. In: 

Proceedings of the 5th IEEE International Conference on Industrial Informatics. (2007) 

Forthcoming. 

7. Duncavage, S., Mathe, J.L., Werner, J., Malin, B., Ledeczi, A., Sztipanovits, J. A 

modeling environment for patient portals. Proceedings of the 2007 American Medical 

Informatics Association Annual Symposium. 2007; Forthcoming.  

8. Yanchuk, A., Ivanyukovich, A., Marchese, M.: ―Towards a Mathematical Foundation for 

Service-Oriented Applications Design‖, 

http://www.science.unitn.it/~marchese/pdf/Towards_SOAD_JoS_06.pdf 

9. Portier, B.: "SOA terminology overview, Part 1: Service, architecture, governance, and 

business terms", http://www-128.ibm.com/developerworks/library/ws-soa-

term1/index.html 

10. Portier, B.: "SOA terminology overview, Part 2: Development processes, models, and 

assets", http://www-128.ibm.com/developerworks/library/ws-soa-term2/index.html 

11. Gray, J.:  A conversation with Werner Vogels, CTO, Amazon.com. Web Services 2006 

http://portal.acm.org/ft_gateway.cfm?id=1142065&type=pdf 

12. Service-Oriented Architecture, http://www.oracle.com/technologies/soa/index.html 

13. Service-Oriented Architecture (SOA), http://www.sun.com/products/soa/index.jsp 

http://www.science.unitn.it/~marchese/pdf/Towards_SOAD_JoS_06.pdf
http://www-128.ibm.com/developerworks/library/ws-soa-term1/index.html
http://www-128.ibm.com/developerworks/library/ws-soa-term1/index.html
http://www-128.ibm.com/developerworks/library/ws-soa-term2/index.html
http://www.oracle.com/technologies/soa/index.html
http://www.sun.com/products/soa/index.jsp


Implementing a Model-Based Design Environment for Clinical Information Systems      15 

14. SOA Software – Solutions – SOA Fabric, 

http://www.soa.com/index.php/section/solutions/soa_fabric/ 

15. O’Brien, L., Bass, L., Merson, P.: Quality Attributes and Service-Oriented Architectures.  

Technical Note, Software Architecture Technology Initiative (2005). 

16. U.S. Department of Health and Human Services. Standards for privacy of individually 

identifiable health information; Final Rule. Federal Register, 2002 Aug 12; 45 CFR: Parts 

160-164. 

17. U.S. Department of Health and Human Services, Office for Civil Rights. Standards for 

protection of electronic health information; Final Rule. Federal Register, 2003 Feb 20; 45 

CFR: Pt. 164.  

18. OASIS Web Services Security (WSS) TC,     

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss 

19. 1.3 Using Oracle SOA Suite to Adopt SOA,  

http://download.oracle.com/docs/cd/B31017_01/core.1013/b28764/intro003.htm 

20. Kawamoto, K., Lobach, D.: Proposal for fulfilling strategic objectives of the U.S. roadmap 

for national action on decision support through a service-oriented architecture leveraging 

HL7 services. J Am Med Inform Assoc. 2007; 14: 146-55. 

21. OASIS Web Services Business Process Execution Language. http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsbpel 

22. Sloman, M.S.: Policy Driven Management for Distributed Systems. Journal of Network 

and Systems Management, 2(4), pp. 333-360, 1994.  

23. Sun’s XACML Implementation, http://sunxacml.sourceforge.net/ 

24. OASIS eXtensible Access Control Markup Language (XACML) TC, http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=xacml 

25. Alam, M., Hafner, M., Breu, R.: A Constraint based Role Based Access Control in the 

SECTET: A Model-Driven Approach 

26. Long E., Misra A., Sztipanovits J.: Increasing Productivity at Saturn, IEEE Computer 

Magazine, August, 1998 

27. Volgyesi P., Maroti M., Dora S., Osses E., Ledeczi A.: Software Composition and 

Verification for Sensor Networks, Science of Computer Programming (Elsevier), 56, 1-2, 

pp. 191-210, April, 2005. 

28. Ledeczi A., Davis J., Neema, S., Agrawal, A.: Modeling Methodology for Integrated 

Simulation of Embedded Systems, ACM Transactions on Modeling and Computer 

Simulation, 13, 1, pp. 82-103, January, 2003 

29. MyHealth@Vanderbilt website, https://www.myhealthatvanderbilt.com/app 

30. The Generic Modeling Environment website,  

http://www.isis.vanderbilt.edu/projects/gme/ 

31. TinyXML project website, http://www.grinninglizard.com/tinyxml 

32. Oracle BPEL Process Manager website,  

http://www.oracle.com/technology/bpel/index.html 

33. ActiveBPEL Open Source Engine Project website, http://www.active-

endpoints.com/active-bpel-engine-overview.htm 

34. UPPAAL, http://www.uppaal.com/ 

35. cpntools, http://wiki.daimi.au.dk/cpntools/cpntools.wiki 

36. Barth, A., Datta, A., Mitchell, J.C., Nissenbaum, H.: Privacy and Contextual Integrity: 

Framework and Applications.  2006 IEEE Symposium on Security and Privacy, pp. 184—

198, IEEE Press, New York (2006) 

 

 

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://sunxacml.sourceforge.net/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.myhealthatvanderbilt.com/app
http://www.grinninglizard.com/tinyxml
http://www.oracle.com/technology/bpel/index.html
http://www.uppaal.com/

