
and the actual occurrence of a failure, and (3) Distinguishability, which describes

the size of the ambiguity sets given a time limit for the observation. Using these

metrics, DTOOL provides three kinds of analyses. In evaluation mode, the diagnos-

ability characteristics of a design with a prede�ned sensor allocation are calculated.

In advice mode, an arbitrary set of requirements can be de�ned for the diagnosability

characteristics, and the tool generates a satisfactory sensor placement. The tool also

provides test tree generation analysis.

Approved Date

ELECTRICAL ENGINEERING

SENSOR-BASED DIAGNOSIS OF DYNAMICAL SYSTEMS

AMIT MISRA

Thesis under the direction of Professor Sztipanovits

In highly automated engineering systems, sensors provide the data needed for

control, monitoring and diagnosis. The reliability and cost of these sensors are im-

portant issues. The thesis describes a model-based approach to handle sensor failures

and to provide optimum sensor allocation in diagnostic systems.

The �rst part of this work deals with providing reliable diagnosis of failures in a

system, given the possibility that sensors might fail. The correctness of diagnostic re-

sults depends upon the reliability of observations. The observations can be erroneous

because (1) faulty data reading by sensors, (2) modeling error, and, (3) in case of a

major fault, loss of model validity. A robust diagnostic system to handle the above

possible causes of errors was developed. The diagnostic system uses the physical and

temporal constraints imposed on observations in a dynamical system to identify the

presence of erroneous observations.

The second part of the work deals with minimizing the costs associated with

sensors without sacri�cing the diagnosability of the system. A Diagnosability Anal-

ysis Tool (DTOOL) was developed, which facilitates the analysis of diagnosability in

terms of the sensors in the system. Three metrics to characterize diagnosability were

de�ned : (1) Detectability, which gives the longest time that is needed to detect a

failure, (2) Predictability, which gives the shortest time between the forewarning

14. Gallanti, M. et al., \A Diagnostic Algorithm Based on Models at Di�erent Levels

of Abstraction," Proceedings of 11th IJCAI, 1989, pp. 1350-1355.

15. J. de Kleer and B. C. Williams, \Diagnosing Multiple Failures," Arti�cial Intelli-

gence, vol. 32, 1987.

16. E. J. McCluskey, \Logic Design Principles," Prentice Hall, Englewood Cli�s, NJ,

1986.

17. Shogo Tanaka, \Diagnosability of Systems and Optimal Sensor Location," Chap-

ter 5 in the book Fault Diagnosis in Dynamic Systems: Theory and Application,

Prentice Hall International (UK), 1989, pp. 21-45.

18. Ethan Scarl, \Diagnosability and Sensor Reduction," in Proceedings of the Work-

shop on AI, Simulation and Planning in High Autonomy Systems, Cocoa Beach,

FL, 1991.

19. S. Chien, R. Doyle and Nicolas Rouquette, \Sensor Placement for Diagnosability
in Space-borne systems: A Model-based Reasoning Approach," Proc. 2nd Int.

Workshop on the Principles of Diagnosis, Milan, Italy, October 1991.

20. Kuipers B., \Common Sense Reasoning about Causality : Deriving Behavior from
Structure," Arti�cial Intelligence, 24, 1984, pp. 169-203.

21. Forbus, D. F., \Qualitative Process Theory," Arti�cial Intelligence, 24, 1984, pp.
85-168.

22. Pattipati, Krishna R. and Alexandridis, Mark G., \Application of Heuristic Search
and Information Theory to Sequential Fault Diagnosis," IEEE Transactions on

Systems, Man and Cybernetics, vol. 20, no. 4, July/August 1990, pp. 872-887.

23. Sheskin, T. J., \Sequencing of Diagnostic Tests for Fault Isolation by Dynamic
Programming," IEEE Trans. Reliability, vol. 27, no. 5, 1978, pp. 353-358.

24. �Siljak, Dragoslav D., \Decentralized Control of Complex Systems," published by
Academic Press, Inc., 1991, pp. 374-378.

25. Horowitz, E. and S. Sahni, \Fundamentals of Data Structures," published by CBS

Publishers and Distributors, New Delhi, India, 1983, pp. 306-307.

139

REFERENCES

1. R. Patton, P. Frank and R. Clark, \Fault Diagnosis in Dynamic Systems: Theory

and Application," Prentice Hall International (UK), 1989.

2. F. Hayes-Roth et al., \Building Expert Systems," Addison-Wesley, Reading, Mass.

1983.

3. R. O. Duda and P. E. Hart, \Pattern Classi�cation and Scene Analysis," John

Wiley & Sons, 1973, pp. 228-243.

4. Y. Peng and J. Reggia, \A Connectionist Model for Diagnostic Problem Solving,"

IEEE Trans. Syst., Man and Cybernetics, vol. SMC-19, no. 2, March/April 1989,

pp. 285-298.

5. T.-H. Guo and J. Nurre, \Sensor Failure Detection and Recovery by Neural Net-
works," in Proc. Int. Joint. Conf. on Neural Networks, July 1991, vol. I, pp.
221-226.

6. M. S. Fox, S. Lowen�eld and P. Klienosky, \Techniques for Sensor-Based Diagno-
sis," in Proc. 8th Int. Joint. Conf. Arti�cial Intelligence, 1983, pp. 158-163.

7. E. Scarl et al., \Diagnosis and Sensor Validation through Knowledge of Structure
and Function," IEEE Trans. Syst., Man and Cybernetics, vol. SMC-17, no. 3,
May./June 1987, pp. 360-368.

8. S. J. Chang, F. DiCesare and G. Goldbogen, Evaluation of Diagnosability of Fail-

ure Knowledge in Manufacturing Systems, Proceedings, 1990 IEEE International
Conference on Robotics and Automation, Vol 1, pp. 696-701.

9. N. H. Narayanan and N. Vishwanadham, \A Methodology for Knowledge Acqui-

sition and Reasoning in Failure Analysis of Systems," IEEE Trans. Syst., Man

and Cybernetics, vol. SMC-17, no. 2, Mar./Apr. 1987, pp. 274-288.

10. Biegl, C. A., \Design and Implementation of an Execution Environment for

Knowledge-Based Systems," Ph.D. Thesis, Department of Electrical Engineering,
Vanderbilt University, 1988.

11. S. Padalkar et al., \Real-Time Fault Diagnostics," IEEE Expert, Vol. 6, No.3, pp.

75-85, June 1991.

12. Hamscher, W. C., \Modeling Digital Circuits for Troubleshooting," Arti�cial In-

telligence, vol. 51, 1991, pp. 223-271.

13. Yu, X. and G. Biswas, \A Method for Diagnosis of Continuous-valued Systems,"

Working Papers: Third Intl. Workshop on Principles of Diagnosis, Rosario, WA,
1992, pp. 57-66.

138

It also performs the same analysis for all possible combinations of failures in this set

and generates a trace.

Consistency Checking: When DTOOL �rst comes up, it reads in the model

�les and checks the models for consistency. If it �nds something inconsistent, it may

(1) list all the inconsistencies in the system and exit or (2) assume an appropriate

default and continue on. In either case, the user is given warning messages and enough

information about the inconsistencies which can be used to remove the errors in the

model.

137

The analysis algorithms described in Chapter IV used matrices (A�; Amin and

Amax) for reachability and minimum and maximum time for propagation form one

failure to another. Using the matrices made the analysis very fast but had two

drawbacks (particularly with large systems, having 500 or more failures) :

1. A considerable amount of memory was used up by the matrices.

2. The time to build these matrices was very large since the algorithms to compute,

for example, the A� matrix is O(n3). Thus, it took a lot of time to build up

these data structures, e�ectively rendering DTOOL useless for large systems.

To reduce the computational complexity, the analyses algorithms were modi�ed

such that :

� The calls to determine the reachability and minimum and maximum times for

propagation were used as few times as possible.

� Whenever these calls are made, a depth �rst search of the FPG is initiated,

which is only O(n2).

In addition, some other optimizations were done such that the total time for

analysis was reduced by two orders of magnitude, thus making DTOOL usable for

very large systems also.

Miscellaneous

Multiple Fault Analysis: The user may want to see how interacting failures

e�ect the propagations of failures in the system. For this, DTOOL allows the user to

specify a set of failure modes for multiple failure analysis. DTOOL then assumes that

all of these failure modes have occurred and gives a trace of the failure propagations.

136

Figure 33. Report Panel

The diagnosability scores for the failure modes and discrepancies can be seen by

clicking on the corresponding node. DTOOL writes the scores in the text window

above the FPG area.

Report Panel

The report panel is popped up when the user asks to generate the report on screen.

It contains the evaluation and analysis results in textual form. Clicking on the text

area of the report panel pops down the panel. Figure 33 shows the report panel.

Computational Complexity

The �rst version of DTOOL used

135

clicking on the corresponding button in the row above the text window. When a

button, say, for detectability, is gray text on white, the detectability advice will be

shown. When it is white text on gray, the advice won't be shown. When the user asks

for results of a speci�c advice, but no such advice has been generated yet, nothing

happens to the FPG. However, if such an advice has been generated, then some of

the nodes in the FPG are colored di�erently to show the results.

The detectability advice results are shown by turning white the nodes for the

failure modes that were selected for advice. The discrepancies that need alarms and

the sensor states that need to be BIT and enabled to satisfy the detectability criteria

are turned yellow. If a failure mode which was selected for advice is not detectable, the

text in that node is written in red otherwise it is written in gray. Clicking on a failure

mode that is detectable (gray text on white) will make a yellow discrepancy/sensor

state to turn black for one second and then yellow again. This way one can �nd out

which discrepancy is needed to detect which failure mode.

The distinguishability advice results are shown in the samemanner as detectability

advice results except that the failure modes, discrepancies and sensor states that are

colored di�erently correspond to distinguishability advice.

The predictability advice is shown by turning the discrepancies/sensor states that

were selected for advice black. If a discrepancy is predictable, the text for that node

is written in pink or green depending upon whether it is monitored or not, otherwise

the text is written in red. If a sensor state is predictable, the text is written in

orange or pale green depending upon whether it is enabled BIT or not. Other the

text is written in red. The discrepancies that need alarms to satisfy the predictability

criterion are colored yellow.

If the Statistical button is turned on, the results shown are those which were

generated by statistical analysis.

134

� All the discrepancies and sensor states that were already \selected-for- pre-

dictability" advice are now reverse video, i.e., pink or green text on black for a

discrepancy, and orange or pale green text on black for a sensor state.

The user can click on any discrepancy to toggle its selected-for-predictability ad-

vice status and correspondingly toggle its colors. Clicking on failure modes won't

have any e�ect.

Changing Alarm and Sensor State Allocation

When the user wants to change alarm allocation, the FPG panel is popped without

any special coloring. The discrepancies that are currently monitored are colored pink

and those that are not are colored green. The user can change the alarm allocation by

clicking on any of these discrepancies. When the user clicks on a discrepancy node,

its monitored status is toggled, i.e., if it had an alarm on it, the alarm is removed

and vice-versa. The color of the node is also changed accordingly. Similarly, the user

can change the sensor state allocation by clicking on sensor state buttons.

Note that changes in alarm and sensor state allocation are local to the current

study. Thus, two di�erent studies could be operating on the same functionality and

have completely di�erent alarm and sensor state allocations for that functionality.

When the user �nishes changing the alarm and sensor state allocation, DTOOL auto-

matically recomputes the diagnosability scores for the failure modes and discrepancies

in the functionality.

Viewing Results

When viewing results one may choose to view the results of detectability, distin-

guishability or predictability advice, or any combinations thereof. This is done by

133

Detectability Advice

When the user wants to select failure modes for detectability advice, the FPG

panel is popped with the following changes from the normal coloring scheme:

� The Detectability button is now gray text on white.

� All the failure modes that were already \selected-for-detectability" advice are

also gray on white.

The user can click on any failure mode to toggle its selected-for-detectability advice

status and correspondingly toggle its colors. Clicking on discrepancies or sensor states

won't have any e�ect.

Distinguishability Advice

When the user wants to select failure modes for distinguishability advice, the FPG

panel is popped with the following changes from the normal coloring scheme:

� The Distinguishability button is now gray text on white.

� All the failure modes that were already \selected-for-distinguishability" advice

are also gray on white.

The user can click on any failure mode to toggle its selected-for-distinguishability

advice status and correspondingly toggle its colors. Clicking on discrepancies or sensor

states won't have any e�ect.

Predictability Advice

When the user wants to select discrepancies/sensor states for predictability advice,

the FPG panel is popped with the following changes from the normal coloring scheme:

� The Predictability button is now gray text on white.

132

display is on, clicking on any node in the graph will make DTOOL draw all

the paths leading to that node in red. This way the user can highlight all the

failure propagations that can lead to that node.

� Set Time : This button is used to set the time parameter for advice.

� Set Probability : This button is used to set the probability parameter for

advice.

� All : This button is used to select all the failure modes/discrepancies/sensor

states for advice.

� Statistical : This is used to turn on the display of the results of statistical

analysis.

The colors of some of the buttons on the FPG panel are:

� The Detectability, Distinguishability and Predictability buttons are

normally grey with white text.

� Failure modes are gray, with the text in white. The text on failure mode nodes

contain the name of the component followed by the name of the failure mode.

� A discrepancy node is colored pink if it is a monitored discrepancy and colored

green if it is a non-monitored discrepancy. The text on the discrepancy node is in

black and contains the name of the sub-functionality to which this discrepancy

belongs followed by the name of the discrepancy.

� A sensor state node is colored orange if it is an enabled BIT sensor state,

otherwise it is colored pale green. The text is in black and contains the name

of the sensor state.

131

The large part in the middle of the panel shows the Failure Propagation Graph

(FPG) of the functionality (individual or
at hierarchy) that is being operated on.

The nodes of the graph represent the failure modes and discrepancies in the FPG.

The edges represent the propagations between them. All the nodes corresponding

to failure modes are drawn in a column at the left and discrepancies are drawn in

columns to the right of the failure mode column. The colors of the nodes and edges are

used to convey certain information to the user, which will be discussed in upcoming

sections.

Below the FPG area and to its right are scroll bars which can be used to scroll the

graph (if the graph is too large to �t in the display area). Above the FPG area are two

rows of buttons and one text window. The text window, just above the FPG area, is

used to display the diagnosability scores of the failure modes and discrepancies. The

Detectability, Distinguishability and Predictability buttons above the text

window are used to select the advice whose results are to be shown.

The top row has buttons to zoom in and out of the FPG and to \close" the FPG

panel, i.e., to pop down this panel and go back to the analysis panel. There are a few

more buttons which do the following:

� E�ects : When the user clicks on this button, the e�ects display is toggled

(white text on gray { o�, gray text on white { on). Normally all the edges in

the FPG are drawn with color blue. However, when the e�ects display is on,

clicking on any node in the graph will make DTOOL draw all the paths in the

graph originating in that node to be drawn in yellow. This way the user can

highlight the failure propagations in the FPG starting from any node.

� Caused By : When the user clicks on this button, the caused-by display is

toggled (white text on gray { o�, gray text on white { on). When the caused-by

130

Figure 32. FPG Panel

129

Selecting Individual Functionality

When the user clicks on the Select Functionality button in the analysis panel,

DTOOL pops up the hierarchy panel and prompts the user to select a functionality.

The user must then click on one of the functionalities that have at least one child

functionality. Clicking on a functionality which is a leaf of the hierarchy will result

in an error message from DTOOL. Once the user clicks on a functionality that has

children, that functionality becomes the individual functionality for analysis in the

current study. If the user tries to close the panel without selecting a functionality,

DTOOL gives an error message.

Flat Hierarchy

The hierarchy panel is also used to select a part of the hierarchy to
atten and

to display this information. Normally the buttons corresponding to functionalities in

the hierarchy are colored green unless they are part of the
at hierarchy, in which case

they are colored brown. Thus, when the user clicks on Select All in the analysis

panel, all the buttons will be colored brown. When the user Resets the
at hierarchy,

all buttons will be colored green.

When the user wants to Specify a part of the hierarchy to
atten, DTOOL

prompts the user to �rst select a functionality that is the root of the subtree of

interest and then a functionality which is a leaf of the subtree of information. Then

the subtree is displayed using color brown.

FPG Panel

The FPG panel is popped up whenever the user wants to select failure modes

and/or discrepancies/sensor states for advice, to view the results or to change alarm

allocation. Figure 32 shows the FPG panel.

128

Figure 31. Hierarchy Panel

Hierarchy Panel

The hierarchy panel is popped up whenever the user wants to select an individual

functionality or to specify a part of the hierarchy to
atten. Figure 31 shows the

hierarchy panel. In the middle of the panel, the functional hierarchy is displayed. At

the bottom and right of the hierarchy are scroll bars to scroll the hierarchy (this is

useful if the hierarchy is so big that it does not �t in the display area). At the top

are buttons to zoom the hierarchy �gure in or out (again, useful if the hierarchy does

not �t into the display area). There is also a Close button which will \close" this

panel, i.e, pop down this panel and go back to the analysis panel.

127

characters) with extension .sdy. The �le will be written in the study directory.

Any already existing �le with the same name will be overwritten. Note that

any study not explicitly saved will be lost once DTOOL is exited.

Clicking on the Load button will pop up a scrollable list of all the �les with

.sdy extension that DTOOL could �nd in the study directory. By clicking on

one of the �lenames, the user can ask DTOOL to load the �le. If the study

in the selected �le has the same name as an already existing study, the �le is

not loaded. Otherwise the �le is loaded and the study contained in that �le

becomes the current study.

The study directory can be changed by clicking on the Change Directory but-

ton. DTOOL will prompt the user to type in the path of the directory. If the

directory exists, it will become the current study directory, else DTOOL will

give an error message.

� Copy Study : This can be used to create a study with some (perhaps all) of

parameters already set. When the user clicks on this button, DTOOL prompts

the user for a new study name. After getting the name, DTOOL creates the

new study, copies the parameters of the current study into the new study and

makes the new study the current study. This is useful if the user wants to create

a new study which di�ers from the current study in only a parameter or two,

but does not want to go through the process of specifying every parameter.

� Change Attributes : This is reserved for future use.

126

browse through the report. When the user asks that the report be saved on the

disk, the report is saved in the study directory in a �le named by appending

\.rep.fmt1" or \.rep.fmt2" (corresponding to the format) to the name of the

study.

Manipulating Studies

The row of buttons titled Study just below the analysis buttons described in the

previous section is used for manipulating studies. DTOOL maintains a list of studies

with all of their parameters that have been speci�ed. At any given time only one of

these studies is \open" and is called the current study. These studies can be written

to disks for retrieval and further experimentations later. The manipulation of studies

is done by functions o�ered by the \study" buttons, which are:

� New Study : This is used to create a new study. When the user clicks on

this button, DTOOL prompts the user for the name of the study. After getting

the name, DTOOL create an empty study, i.e., a study for which none of the

parameters have been speci�ed. The new study becomes the current study. The

user can then select the parameters for the study.

� Select Study : Clicking on this button pops up a scrollable list of names of the

studies present. The user can then select a study by clicking on its name and

that study will become the current study, with all of its parameters restored.

� File : Clicking on this button will pop up a menu which will allow the user to

save or load a study and to change the study directory.

Clicking on the Save button will make DTOOL write the information about

the current study in a �le whose name is the name of the study (�rst eight

125

Performing Analyses

The buttons in the top part of the analysis panel allow user to perform analy-

sis on the functionality chosen for study. At the top of the panel, just below the

Analysis Panel label, is a row of �ve buttons whose functions are as follows:

� Evaluate : When the user clicks on this button, DTOOL evaluates the diag-

nosability scores for the failure modes, discrepancies and sensor states in the

functionality being operated on (individual or
at hierarchy).

� Statistical Analysis : This button toggles the statistical analysis switch.

When the button is drawn in grey with white text, statistical analysis is o�.

When the button is drawn in white with grey text, statistical analysis is on.

This controls whether evaluation and advice done with statistical analysis or

not.

� Advise : This button is used to ask DTOOL to generate advice for the criteria

selected for advice as described in a previous section.

� Results : Clicking on this button will pop up the FPG panel and then the user

can view the results of evaluation and advice. This is discussed in more detail

later.

� Change Alarm Allocation : Clicking on this button will pop up the FPG

panel and the user can change the alarm allocation. Discussed in more detail

later.

� Generate reports : Clicking on the Report button will pop up a menu from

which the user can select the appropriate option to generate format 1 or format

2 report on disk or to view it on the screen. When the user asks the report to

be displayed on the screen, a scrollable text window pops up and the user can

124

suggestion than when advice for this and another criteria is asked for.

The advice selection is made by clicking on any of the Detectability,

Distinguishability and Predictability buttons in the row of buttons titled

Select Advice, at the top of the lower part of the analysis panel. Clicking on these

buttons toggles the state for the advice corresponding to that criteria { from generate

advice to do not generate advice and vice versa. The state is shown by coloring the

button di�erently. White text on gray means that no advice will be generated to

satisfy that criteria. Gray text on white means advice will be generated.

Current Parameters of a Study

The parameters of the study currently open are displayed in the middle part of

the analysis panel. The information displayed is the following (from the top line to

the bottom):

� Name of the study.

� The name of the selected individual functionality, if any.

� Whether there is a current selection for
at hierarchy functionality.

� Whether DTOOL is operating on individual functionality,
at hierarchy or noth-

ing. When the user wants to operate on individual functionality but has not

selected the individual functionality, or when the user wants to operate on
at

hierarchy but has not speci�ed the
at hierarchy, DTOOL is \operating on

nothing". Note that if DTOOL is \Operating on nothing", then trying to select

parameters for advice or to change alarm allocation etc. will result in an error

message from DTOOL.

� The directory where study �les will be retrieved from and stored.

123

hierarchy will be lost. It will just remain hidden until the user selects to operate on

the
at hierarchy.

The selection is done by clicking on either the Flattened Hierarchy or the

Individual Functionality button. DTOOL will change its state accordingly.

Selecting parameters for advice: The user can set the parameters to ask

for alarm allocation suggestion for satisfying detectability, distinguishability or pre-

dictability criteria. The matrix of buttons titled Parameters for Advice in the

bottom center part of the panel are used to specify these parameters. Each of the

row of buttons can be used to select the time, probabilities and failure modes or

discrepancies/sensor states for the above three criteria.

The top row is used to specify the parameters for detectability advice. The user

can specify the time limit for detectability by clicking on the Time = hh:mm:ss but-

ton. This button displays the present selection for the time. When the user clicks

on this button, another panel will be popped up which will allow the user to set the

hour, minute and second values by clicking on up and/or down arrows. When the

user clicks on the Probability = x.xxx button, DTOOL prompts the user to type

in the desired probability. This probability value is then used for statistical analysis.

To select the failure modes of interest, the user should click on the Failure Modes

button. The FPG panel will be popped up and the user can select the failure modes.

This is described in a later section.

Similarly, the user can select the time, probability and failure modes and discrep-

ancies/sensor states parameters for distinguishability and predictability advices.

Selecting advice: Even if the user selects the parameters for the three types of

advice, it doesn't mean that DTOOL will generate alarm allocation advice for those

criteria. The DTOOL needs to be told explicitly the criteria for which the user wants

advice. This is because asking for advice for one criteria may generate a di�erent

122

Selecting Parameters for a Study

Selecting individual functionality: The functionality to operate upon can be

selected by clicking on the Select Functionality button in the lower right corner

of the analysis panel. When the user clicks on this panel, the hierarchy panel will be

displayed and DTOOL will prompt the user to select a functionality.

Selecting
at hierarchy: The column of buttons titled Flat Hierarchy at the

lower left corner of the analysis panel allows the user to manipulate the
at hierarchy.

By clicking on the Specify button, the user can select the part of the hierarchy that

he wants to
atten. The hierarchy panel will be popped up and the user will be

prompted to select the root and leaf of the subtree of interest.

By clicking on the Select All button the user can ask DTOOL to
atten the

whole hierarchy. By clicking on the Reset button the user can ask DTOOL to discard

any previous selection for
at hierarchy. The Show button will pop up the hierarchy

panel so that the user can see the part of the hierarchy that has been
attened.

When a part of the hierarchy is chosen for
attening, DTOOL creates a pseudo-

functionality for that subtree. This functionality is referred to as the
at hierarchy

functionality.

Switching between individual and
at hierarchy functionalities: The

column of buttons titled Choose Between just above the Select Functionality

button allows the user to switch between an individual functionality and the
at

hierarchy functionality.

In any study, one may specify an individual functionality and a
at hierarchy

functionality to analyze. But only one of these may be operated on at one time. Thus,

the analysis will be performed for and the results will be shown for the functionality

that is currently selected. This does not mean tha when one operates on, say, an

individual functionality, the information about any previous analysis done on the
at

121

Figure 30. Analysis Panel

asks for a service, some other panel may be popped up. When the user has �nished

using that service, that panel is popped down and the user interface goes back to the

analysis panel. In the subsequent sections, we'll discuss these panels and the services

they provide.

Analysis Panel

Figure 30 shows the analysis panel of DTOOL. The analysis panel provides access

to the evaluation and advice services, to study management etc. The top part of

panel has buttons to ask for advice, to change alarm allocation, to generate report

etc. The center part shows some of the current parameters of a study. The bottom

part allows the user to select the parameters for a study.

120

[criticality :

NONE !! (assigned) NONE !! (inherited)]

Alarms generated :

- NONE

|

|--> Inlet Temp. ORU::Temp. Low

(secondary effect)

[criticality :

NONE !! (assigned) NONE !! (inherited)]

Alarms generated :

- NONE

After this comes a trace of the multiple fault analysis that user may ask for

(discussed in a later section).

User Interface

A graphical user interface (USINT) has been implemented for DTOOL. The

USINT, described below, has been implemented using the Simple User Interface

Toolkit (SUIT) and runs under X windows. USINT consists of a number of \panels"

which provide di�erent services. At the top of the screen is the title

Diagnosability Analysis Tool. At the bottom are two buttons { Done and Abort

that can be used to quit DTOOL by clicking on any one of them. Just above these

buttons is a text window (yellow background) which is used to display messages and

prompts to the user. Usually it just contains the string \-- * --". Between the title

and the text window, the various panels used by DTOOL are displayed.

When DTOOL comes up, the panel shown is the \analysis" panel. As the user

119

- ITS1 Over StPt

- ITS2 Over StPt

- PI Nominal

- OTS1 High

- OTS2 High

Next is a list of discrepancies with their predictability and list of sensor states

reached. Following that is a list of sensor states with their predictability and a list of

failures that reach them.

The second report format consists of a list of failure modes with their assigned and

inherited criticality and a trace of the failure propagations. Following is an example

of one such trace :

19. TCCV/TCCV ORU::Fails To Open Heat Exchanger Path

[criticality : NONE !! (assigned) NONE !! (inherited)]

FAILURE PROPAGATION (reachability analysis):

|

|--> TCCV::Fails To Connect

(primary effect)

[criticality :

NONE !! (assigned) NONE !! (inherited)]

Alarms generated :

- NONE

|

|--> Outlet Temp. ORU::Temp. Low

(secondary effect)

118

(AND

|OTS1 High|

|OTS2 High|

|PI Nominal|

|ITS1 Over StPt|

|ITS2 Over StPt|)

DISCREPANCY |TCCV::Fails To Connect| propagates to

DISCREPANCY |Outlet Temp. ORU::Temp. Low|

SENSOR STATES impacted by this discrepancy :

(AND

|OTS1 Low|

|OTS2 Low|)

DISCREPANCY |Outlet Temp. ORU::Temp. Low| propagates to

DISCREPANCY |Inlet Temp. ORU::Temp. Low|

SENSOR STATES impacted by this discrepancy :

(AND

|ITS1 Low|

|ITS2 Low|)

-- SENSOR STATES reached :

- ITS1 Low

- ITS2 Low

- OTS1 Low

- OTS2 Low

117

DTOOL Reports

Reports are a way to present the result of analyses in a textual form. Even though

DTOOL provides a graphical user interface and shows the result in a graphical form,

navigating through all the graphics can be quite tedious, particularly when analyzing

large systems. Reports provide the results of analyses in formats that are as concise

or detailed as the user wants and can be tailored to suit the user's needs. The reports

can be saved in a disk �le and printed out. Currently, DTOOL generates reports in

two formats.

In the �rst format report, The failure modes are �rst listed according to whether

they are detectable or not and according to whether they are distinguishable or not.

Next, all the failure modes are listed along with there detectability, distinguishability,

list of sensor states reached and a trace of the failure propagation. Following is an

example of one such trace :

19. TCCV/TCCV ORU::Fails To Open Heat Exchanger Path

-- Detectability = <0.000000,0.000000>

-- Distinguishable

-- Propagations of this failure mode :

FAILURE MODE

|TCCV/TCCV ORU::Fails To Open Heat Exchanger Path|

propagates to

DISCREPANCY |TCCV::Fails To Connect|

SENSOR STATES impacted by this discrepancy :

116

concept that DTOOL uses to organize these analyses is called a \Study". A study

captures the following pieces of information:

� The name of the study.

� The functionality being analyzed (the functionality could be an individual func-

tionality or
at hierarchy).

� For the above two functionalities

{ Current alarm and sensor state allocation.

{ The diagnosability scores with the current alarm and sensor state alloca-

tion.

{ Alarm and sensor state allocation suggestions with information about

which alarm/sensor state is needed to satisfy which criteria.

The information contained in a study can be stored on disk in the study directory

(which is speci�ed in the con�guration �le and can also be changed when DTOOL is

running). The name of the �le in which a study is stored is derived from the name

of the study (up to �rst eight characters), with an extension of .sdy.

When DTOOL comes up, it looks for a �le named initial.sdy in the study

directory and loads that study if it �nds the �le. If the �le does not exist, it opens a

study with the name initial, which is \empty", in the sense that it contains none

of the above information except the name of study. Also, whenever the user creates a

new study, the study is initially empty. The user must then select the functionalities,

alarm allocations etc.

DTOOL provides such facilities as creating, saving, loading, copying the studies.

This is described in a later section.

115

SYSTEM
MODELS

INTERPRETER USER INTERFACE

EVALUATOR ADVISER

TEST TREE
GENERATOR

STUDY
MANAGER

REPORT
GENERATOR

Figure 29. Diagnosability Analysis Tool

� Test Tree Generator : This component constructs a test tree which can be

used for sequential diagnosis.

� Study Manager : The study manager allows user to perform many di�erent

diagnosability studies and save and retrieve them from the disk.

� Report Generator : This component gernerates reports about the diagnos-

ability of the system in textual form.

� User Interface (USINT) : USINT provides a graphical interface to the above

analysis services.

Study Management

DTOOL allows the user to experiment with the system, to change alarm and

sensor state allocations and see how the diagnosability of the system changes. It

also allows the user to ask for advice to satisfy a variety of diagnosability criteria.

All these analyses can become very unmanageable unless they are organized. The

114

APPENDIX C

DIAGNOSABILITY ANALYSIS TOOL

A Diagnosability Analysis Tool (DTOOL) is described. DTOOL provides a graph-

ical user interface to the analyses discussed in chapter IV. DTOOL operates on the

fault models of a system and presents the results of analyses graphically and in the

form of text reports. Using the DTOOL, a design engineer can answer a number of

diagnosis related questions (including the following) :

� How will a failure in a speci�c component manifest itself?

� How long will it take to detect a fault in a speci�c component?

� Can a component failure be predicted?

� Does adequate sensor coverage exist to isolate faults to the components ?

A block diagram of DTOOL is shown in Figure 29. The di�erent components of

DTOOL perform the following tasks :

� Interpreter : The interpreter takes the models in the model database, inter-

prets them and converts them into data structures used by the other components

of DTOOL.

� Evaluator : This component analyzes the system and computes the diagnos-

ability metrics with a prede�ned sensor allocation.

� Adviser : The adviser generates suggestions about alarm and sensor allocation

that can meet the diagnosability criteria speci�ed by the designer.

113

i. Set Tj;i = 1 if A�

j+n;l = 1 and Amin
j+n;l � t̂ else set Tj;i = 0.

3. Find the minimumcover for the discrepancies inD1 by using the Quine-McClusky [16]

algorithm on T . The alarm allocation suggestion is to put an alarm on the dis-

crepancies that form the cover.

Algorithm to Compute Ap;t

The algorithm for computing Ap;t uses a (m + n + o) � (m + n + o) matrix, T ,

which contains the values for propagation times. Ti;j is the time a failure will take to

propagate from vertex i to vertex j in G0. The matrix T is similar to Amin and Amax

matrices. The algorithm is :

1. Initialize Ap;t
i;j = 0; 1 � i � n; 1 � j � m+ o

2. Do NUM SAMPLES times :

(a) Generate a random propagation time for each edge in G0, using the time

interval and the probability distribution on the edge.

(b) Compute values for T , by applying the shortest path algorithm on G0 using

the random propagation times generated above as the weights.

(c) For 1 � i � n; 1 � j � m+ o; if Ti;n+j � t; A
p;t
i;j = A

p;t
i;j + 1.

3. For 1 � i � n; 1 � j � m+ o; A
p;t
i;j = A

p;t
i;j=NUM SAMPLES.

4. For 1 � i � n; 1 � j � m+ o; if A
p;t
i;j � p; A

p;t
i;j = 1 else A

p;t
i;j = 0.

112

following condition { an alarm is allocated to a discrepancy only if it makes a

new failure mode distinguishable.

Algorithm for BreakIntoClusters(T)

1. Find the largest edge ê 2 T .

2. Remove ê, thus creating two trees T1 and T2 corresponding to two failure mode

clusters C1 and C2.

3. For all d 2 NSDC1 ;C2;t̂
c increment P (d) by 1.

4. BreakIntoClusters(T1).

5. BreakIntoClusters(T2).

Algorithm For Predictability Advice

For predictability of discrepancies in the system, the advisory task is :

� Given a partial alarm allocation, a speci�ed set of discrepancies D1 � D, and a

time interval of length t̂, determine the optimal allocation of new alarms such

that tmin � t̂ 8 d 2 D1.

The algorithm is based on �nding minimum covering for a bipartite graph :

1. Form a (m + o) � k table T , where k = jD1j. Let the discrepancies in the set

D1 be d̂1; d̂2; :::; d̂k.

2. For i = 1 to k do

(a) l = Node(d̂i).

(b) For j = 1 to m+ o do

111

NSDf̂i;f̂j;t̂, is a set of all discrepancies reachable by either f̂i or f̂j but not by both,

in time t̂. Consider a discrepancy d 2 D0; Node(d) = k. Then d 2 NSDf̂i ;f̂i;t̂ i�

A�

ni;k = 0 and A�

nj;k = 1 and Amax
nj;k � t̂

or

A�

ni;k = 1 and A�

nj;k = 0 and Amax
nj;k � t̂.

The distance function between f̂i and f̂j is de�ned as

(f̂i; f̂j; t̂) =
1

jNSDf̂i;f̂j;t̂j
(4)

The distance function de�ned above gives the weights used on the edges in Ĝ.

During the divisive clustering, many clusters will be generated, each containing

some failure modes. Consider two clusters Ci and Cj . Then the non-shared discrep-

ancy set for the two clusters is de�ned as

NSDCi ;Cj;t̂
c =

\

f̂k2Ci;f̂l2Cj

NSDf̂k ;f̂l;t̂ (5)

The algorithm assigns points to the discrepancies in order to rank them according

to their importance. These points are denoted by P (d). The algorithm to �nd an

alarm allocation for distinguishability is :

1. Create Ĝ as de�ned above.

2. Find the minimal spanning tree T for the graph Ĝ.

3. BreakIntoClusters(T). The algorithm for BreakIntoClusters is described

below. It also allocates points to the discrepancies in the failure propagation

graph.

4. Sort the discrepancies by the points given to them in non-increasing order.

Then, one by one, allocate alarms for the discrepancies in this list in their non-

decreasing order of points until the distinguishability criteria is met, with the

110

3. Find the minimum cover for the failure modes in F1 by using the Quine-

McClusky [16] algorithm on T . The alarm allocation suggestion is to put an

alarm on the discrepancies that form the cover.

Algorithm For Distinguishability Advice

For distinguishability of failure modes in the system, the advisory task is :

� Given a partial alarm allocation and a set of failure modes F1 � F , and a time

interval of length t̂, determine the optimal allocation of new alarms such that

all f 2 F1 are distinguishable in time t̂.

The algorithm for advising alarm allocation for distinguishability is based on hier-

archical clustering. It uses the minimal spanning tree method for divisive clustering [3]

of failure modes. The motivation for using hierarchical clustering comes from the fact

that it captures the topology of the FPM in the division of failures into clusters and

sub-clusters. For distinguishability advice, the failure modes are divided into clusters

that share the least number of discrepancies. This gives an approximate idea of how

\far" the failure modes are from each other. Examination of discrepancies reached

by these clusters gives an idea of the relative importance of the discrepancies for

distinguishing the failure modes.

The algorithm begins with building a complete graph, Ĝ = (V;E). The vertices

in V represent the failure modes f 2 F1, i.e., vertex vi represents f̂i 2 F1. The edge

set E includes edges from every vertex to every other vertex, i.e., ei;j =< vi; vj >2

E 8 1 � i � k; 1 � j � k; k = jF1j. Each edge ei;j in Ĝ is weighted with the

\distance" between failure modes f̂i and f̂j .

For de�ning the distance between failure modes, consider two failure modes f̂i; f̂j 2

F1. Let Node(f̂i) = ni and Node(f̂j) = nj. The non-shared discrepancy set,

109

i. Let i = Node(f̂) and < terl; tlat > be the detectability of f̂ .

ii. If terl < Amin
i;j and tlat < Amin

i;j then

� if Amin
i;j � terl > tmax then tmax = Amin

i;j � terl.

� if Amin
i;j � tlat > tmin then tmin = Amin

i;j � tlat.

(d) The �nal values of tmin and tmax give the predictability of d.

Advice Algorithms

Algorithm For Detectability Advice

For detectability of failure modes in the system, the advisory task is :

� Given a partial alarm allocation, a speci�ed set of failure modes F1 � F , and a

time interval of length t̂, determine the optimal allocation of new alarms such

that tlat(f) � t̂ 8 f 2 F1.

The algorithm for generating detectability advice is based on �nding minimum

covering for a bipartite graph :

1. Form a (m+ o) � k table T , where k = jF1j. Let the failure modes in the set

F1 be f̂1; f̂2; :::; f̂k.

2. For i = 1 to k do

(a) l = Node(f̂i).

(b) For j = 1 to (m+ o) do

i. Set Tj;i = 1 if A�

l;j+n = 1 and Amax
l;j+n � t̂ else set Tj;i = 0.

108

Algorithm For Evaluating Distinguishability

The following algorithm for evaluating distinguishability is similar to the covering

analysis presented in [8].

1. Form a n� (m+ o) matrix
 such that for 1 � i � n; 1 � j � m+ o;
i;j = 1

i�

� dj is monitored and

� A�

i;j+n = 1 and

� Amax
i;j+n � t̂.

2. Compute � =

T .

3. For i = 1 to n, do

(a) If �i;i = 0; DIST (f; t) = FALSE, else

i. DIST (f; t) = TRUE.

ii. For j = 1 to n, do

A. if j 6= i, then if �i;i = �i;j ^ �j;j = �j;i; DIST (f; t) = FALSE.

Algorithm For Evaluating Predictability

The algorithm to �nd the predictability of discrepancies is :

1. For all d 2 D0 do

(a) j = Node(d); tmin = tmax = 0.

(b) Find the set F1 � Fof failure modes that reach d, i.e.,

F1 =
n
f̂ j A�

Node(f̂);j
= 1

o
.

(c) For all f̂ 2 F1,

107

APPENDIX B

DIAGNOSABILITY ALGORITHMS

Evaluation Algorithms

Algorithm For Evaluating Detectability

The algorithm to assess the detectability of failure modes is:

1. For all f 2 F do

(a) i = Node(f); list = EMPTY ;

(b) For all d 2 D0, do

i. j = Node(d)

ii. if m
� j�n then if A

�

i;j = 1 then add j to list and associate Amin
i;j and Amax

i;j

as keys for this item.

(c) If list = EMPTY , f is not detectable.

(d) If list 6= EMPTY then

i. f is detectable.

ii. sort list on key Amin
i;j in increasing order. The �rst item on the list

gives the earliest possible time of detection.

iii. sort list on key Amax
i;j in increasing order. The �rst item on the list

gives the latest possible time of detection.

106

(a) for all s such that < s; â > 2 SA add hs =< s; â; false > to r.

Algorithm for FindNextAlarm

1. nextAlarmTime=1, nextAlarm = NULL.

2. for all ringing alarms a do

(a) Let t be the time when a started to ring.

(b) for all alarms â that are descendants of a

i. Set time = t+Amax
Node(d(a));Node(d(â)).

ii. if time > CURRENT TIME, then if time < nextAlarmTime,

set nextAlarmTime= time and nextAlarm = â.

3. if nextAlarmTime 6= 1, return ev =< â; nextAlarmTime;Ringing > else

return NULL.

105

not have yet expired. The procedure IsOnlyPath() then checks whether the path to

go from f to a ringing descendant of f must go through node â. If so, then â should

have rung and is a missing alarm of hf .

It may seem unusual that the only path to a ringing descendant is through â and

yet the time for â has not expired. Such a seemingly inconsistent situation arises

because the time for failures to propagate is modeled as an interval instead of a single

value.

Algorithm for LocateFSC

1. Set r = �.

2. sort the hypotheses hf 2 r̂ in decreasing order of rank.

3. Set alarmsToExplain = number of events ev 2 EV such that type(ev) =

Ringing.

4. while (alarmsToExplain > 0) and (rank(hf) > 1) (where hf is the next unex-

amined hypothesis in the sorted list).

(a) Add hf to r.

(b) for all â such that â 2 P (hf) or â 2 S(hf)

i. mark ev 2 EV as explained, where ev =< â; t;Ringing >.

ii. alarmsToExplain = alarmsToExplain� 1.

(c) for all â such that â 2 MP (hf) or â 2MS(hf)

i. for all s such that < s; â > 2 SA add hs =< s; â;missing > to r.

(d) mark f as a fault source.

5. if alarmsToExplain > 0, for all ringing alarms â that are not explained,

104

Let Node(f) = i and Node(d(a)) = j. Then the algorithm for Recompute-

Time() is :

1. Let erl = t�Amax
i;j , lat = t�Amin

i;j and consistent = FALSE.

2. for all ĥf 2 r̂ such that ĥf and hf stand for the same f , if a is consistent with

ĥf do :

(a) Set consistent = TRUE.

(b) if erl > terl(ĥ
f) set terl(ĥ

f) = erl.

(c) if lat < tlat(ĥ
f) set tlat(ĥ

f) = lat.

(d) Add a to P (ĥf).

else Add a to SP (ĥf).

3. if consistent = FALSE, add a new hypothesis hfnew to r̂ with P (hfnew) = fag,

setting terl(h
f
new) = t�Amax

Node(f);Node(d(a)) and tlat(h
f
new) = t�Amin

Node(f);Node(d(a)).

Algorithm for FindMissingAlarms

1. for all hf 2 r̂ do:

(a) for all â such that hf is ancestor of â and â is not ringing

i. if ShouldHaveRung(â) or IsOnlyPath(hf ; â)

then â is a missing alarm of hf .

ii. if â is a missing alarm of hf then if it is a primary alarm of hf , add it

to MP (hf) else add it to MS(hf).

The procedure ShouldHaveRung() returns a true value if the alarm â should be

ringing, given terl(h
f), tlat(h

f) and the present time. However, the time for â may

103

TABLE 4 Primary Alarm Sets

Hypothesis Failure Mode P SP

h
f
1 f1 fa1; a2g fa3g

h
f
2 f1 fa3g fa1; a2g

(c) if a is not a descendant of an alarm â 2 P (hf) then if a is a descendant of

â 2 SP (hf) then put a in SS(hf).

(d) if a is a primary alarm (of some failure mode(s)) but not a primary alarm

or a secondary alarm of f , put a in SP (hf).

Algorithm for RecomputeTime()

Whenever a hypothesis hf gets a new primary alarm a, its terl(h
f) and tlat(h

f)

needs to be recomputed. Note that one failure mode may have more than one hy-

potheses in r̂. This will happen if two or more primary alarms of the failure mode

con
ict temporally with each other. In such cases, the primary alarms are divided

into subgroups such that the alarms in one group are temporally consistent with each

other. Then, there will be as many number of entries in r̂ for this failure mode as

there are groups. These entries will have the consistent primary alarms in set P and

all other primary alarms in set SP .

For example, let there be a failure mode f1, with primary alarms a1; a2, and a3.

Out of these primary alarms, let a1 and a2 be temporally consistent with each other,

but not with a3. In this case, there will be two entries in r̂, hf1 and hf2, with primary

alarm sets shown in Table 4.

102

APPENDIX A

DIAGNOSTIC ALGORITHMS

Algorithm for UpdateHypotheses

1. Find all the f such that a is a primary alarm of f and hf 62 r̂ and add hf to r̂,

setting terl(h
f) = t�Amax

Node(f);Node(d(a)) and tlat(h
f) = t�Amin

Node(f);Node(d(a)).

2. for all hf 2 r̂ do :

(a) if a is a primary alarm of hf then RecomputeT ime(hf). The algorithm for

RecomputeT ime is explained later.

3. for all hf 2 r̂ do :

(a) if a is a primary alarm of hf then

i. for all â 2 P (hf) do : if â is a descendant of a then

A. Remove â from P (hf).

B. if â is consistent with a, put â in S(hf),

C. else put it in SS(hf).

ii. for all â 2 SP (hf) do : if â is a descendant of a then

A. Remove â from SP (hf).

B. if â is consistent with a, put â in S(hf),

C. else put it in SS(hf).

iii. for all â 2 MP (hf) do : if â is a descendant of a, remove â from

MP (hf) and put it in MS(hf).

(b) if a is a descendant of an alarm â 2 P (hf) then if a is consistent with â,

put a in S(hf) else put it in SS(hf).

101

be di�erent. FM1 will cause DY 1, then DY 2, then DY 3 and then DY 4, while

FM2 will cause DY 3, then DY 4, then DY 1 and then DY 2. Since the diagnoser

looks at the sequence also, the failure modes are actually distinguishable. Thus, the

distinguishability analysis algorithm should be modi�ed accordingly.

100

WATER INLET

WATER OUTLET

TANK

Inpu t F low
Rate High

Level High

Input F low
Rate High

Level High
Out put F low
Rate High

(a)

(b)

(c)

Figure 27. A Simple System

Failure Sequence and Distinguishability

The distinguishability analysis considers the set of discrepancies that are reached

after a certain time has passed. If the FPG has loops, the analysis may �nd that

faults are not distinguishable. As an example, consider the FPG shown in Figure 28.

In this case, both FM1 and FM2 will cause all four discrepancies after enough time

has passed, and thus, the analysis will say that they are not distinguishable. This

is because it does not consider the fact that the sequence of the discrepancies will

FM1

FM2

DY1 DY2

DY3DY4

Figure 28. FPG with a Loop

99

Next, the diagnoser has to get more evidence to con�rm or contradict these hy-

potheses. At this point a decision has to be made as to which sensor value to read.

Obviously, the choice will be guided by the cost of the test as well as how useful the

sensor is for con�rming/contradicting the current hypotheses. At this point distin-

guishability analysis and test sequencing can be used to determine the sensor and

make a request to the monitoring sub-system. This is a dynamic process in which

the requests have to be determined by current set of hypotheses which can change as

the fault scenario evolves.

Boolean Relationships Between Propagations

The FPM described in this thesis allows only AND and OR nodes in the failure

propagation graphs. However, in many situations, it does not su�ce.

As an example, consider the simple system shown in Figure 27a. The input to

the tank is a stream of water which is let out of the tank through another pipe. If a

fault occurs which causes the input
ow rate to increase, the tank level will increase

if the output
ow rate remains the same. This situation can be modeled with the

FPG shown in Figure 27b. However, if the output
ow rate goes high (because of a

leak, perhaps), the level will not rise. Thus, the fact that the level will rise only if

the output
ow rate is not high should also be modeled.

The FPM should be modi�ed which allows one to express the conditions on which

a failure propagation depends. The failures incident on any given failure can have

an arbitrary conjunctive/disjunctive relationship between them. Using this method,

the above example can be remodeled as shown in Figure 27c. What the failure

propagation now expresses is the fact the tank level will rise if the input
ow rate

increases and the output
ow rate is not high.

98

PLANT
MODELS

PLANT

SENSORS

MONITORING
SUBSYSTEM

DETECTABILITY AND
PREDICTABILTY

ANALYSIS

DISTINGUISHABILITY
AND TEST TREE

ANALYSIS

DIAGNOSTIC
SUBSYSTEM

HYPOTHESIS

Design Time
Sensor

Allocation

Requests

Alarms

Figure 26. Diagnosis with Distinguishability/Test Sequence Analysis

Test Sequencing and Diagnosis

Test sequencing analysis needs to be enhanced by considering repair actions, repair

cost, probability of spurious tests, test setup cost and time.

Another interesting direction for research is that of combining diagnosis with

the distinguishability and test sequence analysis. In most real systems, there is a

subset of sensors that are on-line. This subset may not always remain the same {

di�erent sensor values may be needed at di�erent times depending on the diagnostic

requirement.

Diagnosing a system, where not all sensors provide data all the time, requires

generation of requests for some sensor values. This problem combines on-line diagnosis

with test sequencing. The idea is illustrated in Figure 26. When there is an indication

of a fault (some fault(s) have been detected by the on-line sensors), the diagnoser

hypothesizes about the faults. The set of initial on-line sensors can be determined by

using the detectability analysis to ensure that every fault is detectable.

97

functionalities.

� DTOOL was developed to provide the design engineer with an easy to use

tool to analyze the diagnosability. The notable features of DTOOL are :

{ A graphical user interface.

{ Study management.

{ Report generation.

{ Visual parameter selection and result presentation for evaluation, ad-

vice and for changing alarm and sensor state allocation.

{ Consistency checking of models.

Future Work

Probabilities

The statistical diagnosability analysis can be enhanced by addressing the following

issues :

� Failure rates of components.

� Sensor reliability.

� Non-independent propagation of faults.

Sensor states are currently speci�ed by dividing the continuous range of values

read by a sensor into discrete ranges which have sharp boundaries. In real systems,

because of sensor drifts, noise and inexact analysis, such sharp boundaries may not

be practical. Thus, sensor states should be de�ned as a probability distribution over

these ranges. This will add another aspect to sensor reliability. It will require changes

in diagnosability analysis as well as the robust diagnostic algorithms.

96

� It is robust against a large number of sensor failures and degrades gracefully

as the number of sensor failures increase.

� It is event-driven and uses incremental non-monotonic reasoning.

� It predicts future events and uses the predictor-corrector principle to revise

its hypotheses.

� The algorithm is of polynomial complexity and hence, is scalable.

The feasibility of this approach has been demonstrated by modeling many dif-

ferent engineering systems and testing it using simulation. It has also been

tested against system actually in operation and has worked well.

3. Diagnosability : Diagnosability analysis algorithms and a Diagnosability Anal-

ysis Tool were developed which allow a design engineer to assess the diagnos-

ability characteristics of the system, to experiment with di�erent sensor assign-

ments and to ask for suggested sensor coverage in order to ensure certain level

of diagnosability. The steps involved in developing this tool were :

� Diagnosability characteristics were identi�ed by analyzing the diagnostic

process. Three main diagnostic concepts were identi�ed { fault detection,

isolation and prediction.

� Metrics were de�ned to quantify the above three diagnosability character-

istics. The metrics are { detectability, distinguishability and predictability.

The three metrics also capture the dynamics of the system.

� The tasks of diagnosability analysis were de�ned. They are { evaluation,

advice and test tree generation.

� Algorithms were developed to perform the above tasks. These algorithms

are capable of operating on a single functionality or on a hierarchy of

95

CHAPTER V

CONCLUSION

In this thesis we have addressed some issues related to sensor-based diagnosis of

dynamical systems. Speci�cally, the objectives that were achieved are :

1. Fault Modeling : Paradigms were developed to model the faults in a sys-

tem using multiple aspect hierarchical modeling. The primary aspects are the

physical components and the functionalities. A failure propagation model was

developed to describe component faults, discrepancies, sensors and their inter-

actions. The fault models capture the structure and dynamics of the system

using parameterized failure propagation graphs. The role of sensors is modeled

with alarm allocation, sensor allocation, sensor states and logic operators.

2. Robust Diagnostics : A diagnostic algorithm was developed that is robust

against observation errors. The notable features of the algorithm are :

� It operates on a hierarchy of functionalities and restricts the diagnostic

search to the those parts of the hierarchy where the fault has occurred.

� It identi�es loss of model validity in case of large faults and restricts its

search to those parts of the hierarchy where the model of the system seems

to be valid.

� It diagnoses single and multiple faults in components as well as sensors.

� It uses the principle of structural redundancy to identify false and missing

alarms and from there, the sensors responsible for it.

94

Diagnosability Analysis Tool

We have developed a Diagnosability Analysis Tool which provides a graphical the

user interface to the analyses discussed in this chapter. This tool is described in

Appendix C.

93

The individual clusters at the leaves of the local test trees might contain more

than one failure. The failures contained in such clusters are isolated by replacing the

cluster at the leaf of a local tree by the local tree rooted at the node corresponding

to this cluster in the cluster hierarchy. For example, OR node N2 is replaced by N9,

N4 is replaced by N6 and so on. This gives the �nal test tree for the above example

which is shown in Figure 25b.

The local test tree construction is done by recursively dividing the the sub-clusters

into two groups until we are left with individual clusters at the leaves. At each

step in the process of generating the test tree, there might be more than on way to

divide the clusters into two groups. For example, consider the cluster C0. There are

many possible ways of dividing the clusters into two groups, e.g., f(C1; C3) ; (C2)g or

f(C1; C2) ; (C3)g etc.

The selection of groups is done by the following method { (1) rank the available

tests, (2) pick a the highest ranked test and (3) put the subclusters that are implicated

by the test into one group and the rest into the other group. An available test is a

test that can be reached by the failures in some of the clusters but not by failures

in the other clusters and hence can be used to distinguish one set of clusters from

another. The available tests are ranked according to the following criteria :

� If the cost of a test is high, it should have lower rank.

� If a test will split the clusters down the middle, i.e., it will divide the clusters

into two equal sized groups, the test should have a high rank. The more lopsided

the division that a test will result in, the lesser its rank should be. This heuristic

is used to increase the likelihood of construction of a balanced test tree.

92

f1 f2 f3 f4 f5 f6

f1 f3 f4 f2 f6 f5

f1 f3 f4 f2 f6

f1 f3

C0

C1 C2 C3

C4 C5

C6 C7

C8 C9

(f1, f3, f4) ,(f2, f6) ,(f5)

(f1,f3,f4) (f2,f6), (f5)

(f2, f6)

N4

(f5)

N5

t4

t2

N1

N3
N2

(f2) ,(f6)

(f2)
N7

(f6)
N8

t3
N6

(f1,f3), (f4)

(f1, f3)

N10

(f4)

N11

t1
N9

(f1) ,(f3)

(f1)
N13

(f3)
N14

t5
N12

(a)

f1 ,f2,f3,f4,f5,f6

f1,f3, f4 f2, f6,f5

f2,f6

f2f6

t3

f5

t4

t2

f1,f3

f1f3

t5

f4

t1

(b)

Figure 25. Generating Test Tree

Local Test Trees

The re�nement of the tree is performed starting at the top node and then going

down the cluster hierarchy. At each node in the hierarchy, local test trees to isolate

the subclusters from each other are constructed. As an example, consider the cluster

hierarchy in �gure 24d which is also shown in Figure 25a. The clusters in the hierarchy

are marked C0; C1; : : :, with cluster C0 being the top cluster. The failures that are

in a cluster are shown inside the box for that cluster. For node C0, a local test tree

is constructed that distinguishes between C1; C2 and C3. Similarly, local test trees

are constructed for all cluster nodes (except leaf nodes). These local test trees are

shown in Figure 25a with the dotted lines indicating the cluster node that they are

associated with.

91

The above method is generalized by constructing a complete graph Gf whose

nodes represent the failures in the system and the weighted edges between the nodes

represent the \distance" between the failures. The distance,
ij, between two failures

fi and fj is de�ned as

ij =
nX

k=1

Rik:Rjk (2)

Thus
ij is the number of tests reached by both fi and fj .

Next, edges from Gf removed in the increasing order of their weights. First all

the edges with weight 0 are removed, next all the edges with weight 1 are removed

and so on until no edges are left. At the beginning, Gf is a complete graph and all

the failures are in one cluster which will be at the top of the cluster hierarchy. As

edges ar removed, at some point Gf will be broken up into two or more disconnected

components. The sets of failures corresponding to the nodes in these components will

form the subclusters of the top cluster. Since removing more edges will break these

components into further disconnected components, the subclusters will be broken

down into further subclusters as we continue removing edges from Gf until we are

left with single failures forming the clusters at the leaves of the cluster hierarchy.

The above discussion of clustering ignored the probabilities of failures which can

be incorporated by modifying the distance measure such that it now becomes

ij = [(1 �max [p(fi); p(fj)])� 10ns]
nX

k=1

Rik:Rjk (3)

where ns is the number of signi�cant digits in the probability values of failures. The

rest of the algorithm remains the same. Modifying the distance measure in this way

has the e�ect of making the failures with higher probabilities move to near the top

of the hierarchical cluster tree. This will result in a test sequence that will tend to

test for higher probability failures earlier in the sequence, thus reducing the expected

cost of testing.

90

f1 f2 f3 f4 f5 f6

f1 f3 f4 f2 f6 f5

f1 f3 f4 f2 f6

f1 f3

C0

C1 C2 C3

C4 C5

C6 C7

C8 C9

f 1 f 3 f 4 f 2 f 6 f 5
3 2 1 2 1

1

12

1

1

f 1 f 3 f 4 f 2 f 6 f 5
3 2 2

2

f 1 f 3 f 4 f 2 f 6 f 5
3

(a)

(b)

(c)

(d)

Figure 24. Hierarchical Clustering

The clustering method works by dividing the group of failures into sub-groups

that have \weak interactions". The strength of interactions between failures is given

by the number of tests they share. For example, Figure 24a shows the failures of

the system shown in Figure 23. The lines between failures show the \interaction"

(whether they share tests or not) between them. The numbers on the lines show the

\strength" (number of shared tests) of their interactions. If the lines with strength 1

are removed, the failures will be divided into the three groups shown in Figure 24b.

Next, removing lines with strength 2 will further sub-divide the failure into the groups

shown in Figure 24c. This process can be continued until all the groups have a single

failure. This breakdown of failures into groups and sub-groups gives the hierarchical

clustering which is shown in Figure 24d.

89

2. t1 will fail and clear f4.

3. t5 will pass and clear f1. Therefore the fault must be f3.

If the assumption that the diagnosis is triggered by the detection of a fault is dropped,

the the test tree can be modi�ed to detect a fault as shown in Figure 23c. In this

case, the test sequence �rst determines whether the system is fault free (represented

by f0 in the �gure) or whether a fault exists. If a fault exists, it proceeds with the

diagnosis.

The problem of constructing the optimal test tree is known to be NP-complete.

The test tree construction algorithm presented here addresses this problem by (1)

using hierarchical clustering to derive an \approximate" test tree and (2) re�ning the

approximate test tree.

Hierarchical Clustering

At each AND node in the test tree, the group of failures is divided into two sub-

groups by the test. There will be di�erent costs associated with di�erent combinations

of sub-groups. Which means that the expected cost of testing will depend upon what

the division of failures into groups and sub-groups is. Minimizing the cost by trying

every possible hierarchical decomposition is computationally prohibitive; instead some

heuristic method should be used for generating the hierarchy.

The algorithm described here uses hierarchical clustering to derive an approximate

test tree. The motivation for using hierarchical clustering comes from the fact that

it captures the topology of the FPG in the division of failures into clusters and sub-

clusters. It divides failures into clusters that share the least number of tests. Thus,

at any level, the failures are grouped in such a way that they can be distinguished

from each other more \easily" than if there was a di�erent grouping.

88

f1 ,f2, f3, f4 ,f5, f6

f1, f3 ,f4 f2,f6, f5

f2,f6

f2f6

t3

f5

t4

t2

f1, f3

f1f3

t5

f4

t1

f0,f1, f2 ,f3, f4, f5 ,f6

f1,f3,f4

f1,f3

f1f3

t5

f4

t1

f0,f1, f3 ,f4 f2,f6, f5

f2, f6

f2f6

t3

f5f0

t4

t6 t2

F1

F3

F4

F2

F6

F5

t2

t3

t4

t5

t6

t1

(a)

(b) (c)

Figure 23. Test Sequencing

87

� c = [c1; c2; : : : cm+o] is the vector of test costs.

� R, a n�m+ o binary matrix, is the reachability matrix such that Ri;j = 1

if and only if test tj detects failure fi, else it is 0. R can be obtained from DY P

quite easily. Ri;j = 1 i� A�

i;j+n = 1.

The problem then is to devise a test algorithm (the binary AND/OR search tree)

that is able to isolate the failures in F using the tests in T such that the expected

cost of testing is minimized, where the expected cost J is given by :

J = pTAc =
m+oX
i=1

nX
j=1

aij p(fi) cj (1)

where A = (aij) is an n�m + o binary matrix such that aij = 1 if test tj is used in

the path leading to the isolation of failure fi, else it is 0.

Consider the FPG shown in Figure 23a. Figure 23b shows a test tree for the

system. The convention is to branch left if the test passes (the corresponding dis-

crepancy is not observed) and to branch right if the test fails. The test tree shown

assumes that the diagnosis is triggered when some fault has been detected.

If f2 is the fault that has occurred, the diagnosis will proceed in the following

manner :

1. Check test t4. Since f2 has occurred, t4 will fail, and f1; f3; f4 will be cleared.

2. Check test t2. t2 also will fail and f5 will be cleared.

3. Next, t3 will fail and f2 will be returned as the faulty component.

If fault f3 occurs, these will be the steps :

1. t4 will pass, clearing f2; f5; f6. However, since it is known that some fault is

present, it must be one of f1; f3; f4.

86

� does not specify a sequence of testing which minimizes the average expected

cost of testing.

We have developed a method for generating a test tree from FPM which is de-

scribed in the next section. The description will use terms commonly used in the

literature on test sequencing problem. The correspondence between those terms and

FPM is :

� The failure modes are referred to as \failures" in the literature. Associated with

each failure is a probability of occurrence.

� A \test" is equivalent to a request for the status of a discrepancy. Associated

with each test is the cost of performing the test. The failures in the system are

\detected" by these tests. In terms of FPM, this means that the failures can

propagate to discrepancies which can be monitored. The detection of a failure

is done by generating a request for the statii of alarms associated with some or

all of these discrepancies.

Test Tree Construction

The test sequencing problem involves constructing a binary AND/OR decision tree

in which the OR nodes represent the ambiguity sets and the AND nodes represent

the test to perform [22]. The test sequencing problem can be de�ned as a �ve-tuple

< F; p; T; c;R > where

� F = ff1; f2; : : : fng is the set of n failures in the system.

� p = [p(f1); p(f2); : : : p(fn)]
T is the a priori probability vector of the failures.

� T = [t1; t2; : : : tm+o]
T is the set of m+ o available tests.

85

� There is no cost involved in generating the alarms.

� The failure rates of components are same, i.e., all the failure modes can occur

with equal probability.

However, this is not the case in many engineering systems. The sensors in the

system do not necessarily provide signal values on-line. What this means is that the

alarms are not always on-line. Thus, a monitored discrepancy can go unobserved

unless the observation is speci�cally requested. Further, usually there are some costs

involved in reading the sensor value, in which case the cost should be taken into

account before generating the request for the status of an alarm.

The cost consideration and the fact that the probabilities of failure modes occur-

ring are di�erent, give rise to the problem of test sequencing [23]. The goal in test

sequencing is to generate a sequence of requests for status of alarms which can be

used to distinguish the failure modes, while keeping the average expected cost to a

minimum.

There are some similarities and di�erences between the analysis for distinguisha-

bility advice and test sequencing. The result of both the analyses is a set of alarms

that can be used to distinguish the failure modes, and these alarms should be incorpo-

rated in the system at design time to ensure distinguishability. The crucial di�erence

is that distinguishability advice is generated for alarms that are on-line while test

sequencing speci�es the sequence of alarm requests to be generated without assuming

that any of the alarms are on-line.

The set of alarm requests generated by the test sequence can always be considered

as distinguishability advice. The reverse, however, is not true, since distinguishability

advice :

� does not take into account alarm costs and failure probabilities.

84

� Predictability : A discrepancy d;Node(d) = j is predictable time t in advance

with probability p if 9 a failure mode f;Node(f) = i such that A�

i;j = 1 and f

is detectable in time Amin
i;j � t with probability p. Thus, this algorithm requires

�nding the statistical detectability of all the failure modes that reach d.

Advice

The algorithms for generating advice remain essentially the same as in case of

non-statistical analyses, with some minor modi�cations which are listed below :

� Detectability : In the prime implicant table method, modify the step 2.b.i for

constructing the implicant table T , to { Set Tj;i = 1 if A
p;t

l;j = 1.

� Distinguishability : The non-shared discrepancy set is rede�ned as

d 2 NSDf̂i;f̂j;t;p i�

A
p;t
ni;k�n = 1 and A

p;t
nj;k�n = 0

or

Ap;t
ni;k�n = 0 and Ap;t

nj;k�n = 1.

The distance function and NSD
Ci;Cj ;t
c remain the same.

� Predictability : The construction of the implicant table is now de�ned by Tj;i =

1 i� A
p;t
j;l = 1

Distinguishability and Test Sequencing

The distinguishability advice analysis described above made a few assumptions,

which are :

� The alarms in the system are all on-line (BITs).

83

The following analysis assumes that all the failure propagations are independent

of each other. The statistical detectability and distinguishability analyses use matrix

Ap;t, a n�(m+o) matrix. Ap;t
i;j�n = 1 i� f can propagate to d in time t with probability

p, else it is 0, where i = Node(f) and j = Node(d). The values in Ap;t are computed

by running a given number of simulations, generating a random number for each of

the propagation times and �nding the average number of times that the failure modes

propagate to discrepancies in time t.

The algorithm for computing Ap;t is given in Appendix B. The statistical pre-

dictability advice analysis also uses a Ap;t which is computed in the same manner

except that the comparison in step 2c. of the algorithm is modi�ed to Ti;n+j � t.

Statistical Analyses Algorithms

Evaluation

The evaluation algorithms are modi�ed for statistical analysis in the following

manner :

� Detectability : A failure mode f;Node(f) = i is detectable in time t with

probability p if there exists a monitored discrepancy d;Node(d) = j such that

Ap;t
i;j�n = 1. If there are more monitored discrepancies which f reaches in time

t with probability p, the probability of detection of f increases. However, this

analysis only checks if any such discrepancy exists since that is enough to �nd

whether f is detectable in time t with probability p.

� Distinguishability : The distinguishability analysis is done the same way as in

the case of non-statistical analysis. Only the de�nition of
 changes.
i;j = 1

i� dj is monitored and A
p;t
i;j = 1.

82

Using the above probabilities, additional analyses can be performed :

1. Detectability :

(a) Evaluation { For all failure modes f 2 F , determine if f is detectable in

time t with probability p.

(b) Advice { Given a partial alarm allocation, a speci�ed set of failure modes

F1 � F , a time interval of length t̂ and a probability value p, determine

the optimal allocation for new alarms such that every f 2 F1 is detectable

in time t̂ with probability p.

2. Distinguishability :

(a) Evaluation { For a given time t and probability p, for all failure modes

f 2 F , determine if f is distinguishable in time t with probability p.

(b) Advice { Given a partial alarm allocation and a set of failure modes F1 �

F , a time interval of length t̂ and a probability value p, determine the

optimal allocation for new alarms such that all f 2 F1 are distinguishable

in time t̂ with probability p.

3. Predictability :

(a) Evaluation { For all discrepancies d 2 D0, determine if d can be predicted

time t in advance with probability p.

(b) Advice { Given a partial alarm allocation, a speci�ed set of discrepancies

D1 � D, a time interval of length t̂ and a probability value p, determine

the optimal allocation for new alarms such that every d 2 D1 is predictable

time t̂ in advance with probability p.

81

Statistical Analysis

The analyses described above can be enhanced by adding a statistical component

to them. The motivation comes from the fact that the above analyses are performed

by considering only the worst case times for failure propagation, and ignoring the fact

that there usually is a �nite interval of time for propagation of failures.

For example, consider a failure mode f̂ and a discrepancy d̂, such that Amin
i;j = t1

and Amax
i;j = t2, where i = Node(f̂); j = Node(d̂); t1 < t2. The detectability analysis

described above will �nd that f̂ is not detectable in time t; t1 < t < t2. This is

because the detectability evaluation algorithm looks at the maximum time that f̂ can

take to propagate to d̂, and the maximum time, t2, is greater than t. However, the

algorithm will �nd f̂ always detectable in time t2.

In the actual system, the propagations will take place somewhere within the prop-

agation interval. As a consequence, f̂ may occasionally propagate to d̂ in time t. That

is, f̂ may be detectable in time t with a probability less than 1. The statistical analysis

considers these probabilities when computing detectability etc.

For the statistical analysis, the propagation intervals on the edges in FPM are

treated as probability distributions, representing the probability of propagation of

failure over that time interval. This probability distribution can be uniform, gaussian

or any other distribution. Then the probability of a propagation occurring at or

before a certain time within that interval is computed. From this, the probabilities

that a particular failure mode will propagate to the discrepancies within a given time

period are computed.

80

2. Distinguishability : For a given time t, for all failure modes f 2 F , determine

the distinguishability of f , i.e., �nd if DIS(f; t) is true or false.

3. Predictability : For all discrepancies d 2 D0, �nd PRED(d), i.e., compute

tmin and tmax for d.

The algorithms for the above evaluation tasks are given in Appendix B.

Advice

The advisory analysis is used to generate suggestions for alarm allocation by speci-

fying the diagnosability criteria that is required to be met. The diagnosability criteria

consists of sets of failure modes and discrepancies and their desired detectability, dis-

tinguishability and predictability. Thus, advice generation task is an inverse of eval-

uation task. While in evaluation, the metrics for diagnosability are computed given

an alarm allocation, in advice the desired metrics are speci�ed and the algorithms try

to �nd an optimal alarm allocation to ensure the metrics.

1. Detectability : Given a partial alarm allocation, a speci�ed set of failure

modes F1 � F , and a time interval of length t̂, determine the optimal allocation

for new alarms such that tlat(f) � t̂ 8 f 2 F1.

2. Distinguishability : Given a partial alarm allocation and a set of failure modes

F1 � F , and a time interval of length t̂, determine the optimal allocation for

new alarms such that all f 2 F1 are distinguishable in time t̂.

3. Predictability : Given a partial alarm allocation, a speci�ed set of discrepan-

cies D1 � D, and a time interval of length t̂, determine the optimal allocation

for new alarms such that tmin � t̂ 8 d 2 D1.

The algorithms are described in Appendix B.

79

Diagnosability Analyses

In the following discussion, a partial alarm allocation denotes a subset of alarms

that are already part of the system design because of, for example, control require-

ments. The diagnosability analysis may suggest allocation of additional alarms or

the removal of some of these alarms. A partial alarm allocation includes the scenario

when there are alarms on all the discrepancies, or no alarms on any discrepancy.

There are three types of diagnosability analyses that can be performed :

1. Evaluation : This analysis involves computing the detectability and distin-

guishability of failure modes and predictability of discrepancies in the system,

given a partial alarm allocation.

2. Advice : This analysis generates suggestions for alarm allocation for attaining a

desired detectability and distinguishability of the failure modes and predictabil-

ity of the discrepancies.

3. Test tree generation : This analysis generates a test tree for isolating faults in

the system.

The analyses and algorithms used are described in the following sections.

Evaluation

Evaluation of a system's diagnosability means the computation of the values for

the metrics de�ned above for each failure mode and discrepancy in the system, given

a particular alarm allocation. The evaluation tasks are the following :

1. Detectability : For all failure modes f 2 F , determine DET (f), i.e., compute

terl and tlat for f .

78

the node number of v(f) in G0, which will be between 1 and n. Similarly, Node(d)

represents the node number of v(d) in G0, which will be between n+1 and n+m+ o.

Data structures derived from G0

The following is the list of additional de�nitions derived from G0 for the purpose

of diagnosability analysis :

1. A is the (n+m+ o) � (n +m+ o) adjacency matrix for G0 where Ai;j = 1 i�

< vi; vj > 2 E else Ai;j = 0.

2. A� is the (n+m+ o) � (n +m+ o) matrix representing the transitive closure

of G0.

3. Amin is a (n+m+o)�(n+m+o) matrix whose elements represent the minimum

time needed for one failure to propagate to another. Amin
i;j = t̂ means that the

failure at vertex vi takes at least time t̂ to propagate to the failure at vertex vj.

If A�

i;j = 0 then Amin
i;j = 1. Amin is obtained by �nding the all pairs shortest

paths between the vertices in G0, using tmin as the cost on the edges.

4. Amax is a (n+m+o)�(n+m+o) matrix whose elements represent the maximum

time needed for one failure to propagate to another. Amax
i;j = t̂ means that the

failure at vertex vi takes at most time t̂ to propagate to the failure at vertex vj.

If A�

i;j = 0 then Amax
i;j = 1. Amax is obtained by �nding the all pairs shortest

paths between the vertices in G0, using tmax as the cost on the edges.

77

discrepancies in the FPM, where D = fd1 : : : dmg represents the actual discrepancies

and Dss = fdm+1 : : : dm+og represents the sensor states in FPM that were mapped

to discrepancies. m
�
is a vector of length m+ o, representing the monitored status of

discrepancies. m
� i = 1 if

� 1 � i � m and 9a 2 A such that < a; di >2M , OR

� m < i � m+ o and e
�i�m

= 1.

otherwise m
� i = 0. In the following discussion, then, an alarm may mean an actual

alarm for monitoring a discrepancy or the BIT and enabled status of a sensor state.

Similarly, \alarm allocation" will be used to denote the association of alarms to actual

discrepancies as well as the subset of sensor states that are BIT and enabled.

The diagnosability problem is de�ned by :

DY P =< F;D0;m
�
; G0 >

where F , D0 and m
�
are as de�ned previously. G0 = (V;E) is a directed graph derived

from the modi�ed FPG described in the previous section. The vertex set V has

n+m+ o vertices, representing n failure modes, m discrepancies and o sensor states.

Without loss of generality, we will assume that the vertices representing failure modes

are numbered 1 to n, the vertices representing discrepancies are numbered n + 1 to

n+m+o. An edge ei;j =< vi; vj > 2 E i� the failure represented by vi propagates and

causes the failure represented by vj. Each edge in E is weighted by two parameters :

1. tmin, which is the minimum time for propagation of failure along the edge, and

2. tmax, which is the maximum time for propagation of failure along the edge.

Notation : A vertex in G0 which represents a failure mode f will be denoted by

v(f) and a vertex representing discrepancy d will denoted by v(d). Node(f) represents

76

c1; c2 and c3 can be computed. The worst case minimum time, t̂min, for propagation

to any sensor state is given by the largest of the minimum time for propagation to

the the three groups. Similarly, the worst case maximum time t̂max is given by the

largest maximum time for propagation to the the three groups.

E�ectively, the tmin and tmax on all the edges from d to ss1; : : : ss8 can be replaced

by t̂min and t̂max respectively, eliminating the LOP. The modi�ed FPG is shown in

Figure 22b.

Note that the above modi�cation needs to be done only for discrepancies with

LOPs whose expression contains a disjunction. There is no need to do the above for

discrepancies with LOPs which have only one product term and no disjunction since

there is no uncertainty about propagation of the failure to sensor states. The failure

will propagate to all the sensor states in this case. The same holds for discrepancies

that do not have explicit LOPs associated with them.

Diagnosability Problem

Let SS = fss1; ss2; : : : ssog be the set of o sensor states in the system. Let e
�
be a

vector of length o representing the enabled/disabled status of sensor states. If sensor

state ssi is BIT and enabled, e
�i

= 1 else e
�i

= 0. e
�i

= 0 could mean that ss is a

manual sensor state or a disabled BIT.

As noted in Chapter II, sensor states are equivalent to primitive discrepancies.

The diagnosability analysis algorithms treat sensor states as discrepancies. Thus, an

enabled BIT sensor state is the same as a discrepancy monitored by an alarm. A

manual or a disabled BIT is the same as a discrepancy that does not have an alarm

monitoring it.

Using the above correspondence between discrepancies and sensor states, we ex-

tend the set of discrepancies. D0 = D [Dss = fd1; d2; : : : dm+og is a set of m + o

75

SS1

SS2

SS3

SS4

SS5

SS6

SS7

SS8

[2,10]

[5,9]

[4,12]

[3,11]

[6,8]

[4,7]

[2,5]

[3,9]

df

SS1

SS2

SS3

SS4

SS5

SS6

SS7

SS8

df

[6,12]

[6,12]

[6,12]

[6,12]

[6,12]

[6,12]

[6,12]

[6,12]

(a)

(b)

LOP

Figure 22. LOP Handling Example

known, they can not be used by the analyses since in the real system, ss1 may never

become active. However, since the analysis algorithms work with only the worst

case minimum and maximum times for propagation, the problem can be solved by

modifying the FPG in the following manner.

Let the product terms in the example above be represented by c1; c2 and c3, where

c1 = ss1:ss2:ss3, c2 = ss4:ss5 and c3 = ss6:ss7:ss8. We will denote the minimum

and maximum times for propagation form d to the sensor states by < tmin;1; tmax;1 >

: : : < tmin;8; tmax;8 >. Consider the case when d causes the sensor states in the group

c1, i.e., ss1; ss2 and ss3. Then, the earliest time when it can be concluded that d has

occurred is when d has caused all the sensor states in c1. This time is given by the

largest of the tmin for the sensor states. Reasoning along the same lines, the latest

time is given by the largest of the tmax for the sensor states.

In this manner, the \minimum" and \maximum" time for propagation to groups

74

� What are the values of < terl; tlat > for an f 2 F (How long will it take to

detect a fault in a speci�c component?)

� Is tmin > 0 for d 2 D ? (Can a particular catastrophic failure be predicted?)

� Is DIS(f;1) = TRUE 8 f 2 F ? (Does adequate sensor coverage exist to

isolate all the faults ?)

� What sensor assignment is needed such that tlat 6=1 8 f 2 F ? (What sensor

assignment is needed to detect every fault ?)

Handling LOPs

The diagnosability analysis algorithms described below compute the worst case

minimum and maximum time that a given failure takes to propagate to a discrepancy

or a sensor state. This is done by enumerating all the paths in FPG from the vertex

representing the failure to the vertices representing discrepancies (or sensor states)

and looking at the tmin and tmax along the edges in the path (using the all-pairs

shortest path algorithm).

The propagations to sensor states, however, need to be handled in a di�erent

manner due to LOPs associated with the discrepancies. Consider the example shown

in Figure 22a where a failure mode f propagates to a discrepancy d which can cause

sensor states ss1; : : : ; ss8. The time intervals for d to cause the sensor states are also

shown in the �gure. Let the expression for the LOP associated with d be

ss1:ss2:ss3 + ss4:ss5 + ss6:ss7:ss8

The disjunction in the expression means that the failure may or may not cause some

of the sensor states that make up the literals of the LOP. Thus, even though the

minimum and maximum times for failure mode f to propagate to sensor state ss1 is

73

Fault Prediction { It is always true that not the faults but their consequences that

are of concern. Fault propagation is the mechanism which may trigger a discrepancy

in the system behavior with critical consequences. A task related to diagnosis is the

timely prediction of critical failures that can take place. This task becomes essential

in order to predict potentially catastrophic failures and take preventive measures.

Based on the diagnostic concepts described above, the diagnosability metrics are :

Detectability of a failure mode f 2 F , denoted by DET (f), is the pair < terl; tlat >,

terl � tlat, where terl is the minimumtime that will pass before f can be included

in the ambiguity set after its occurrence, and tlat is the maximum time that will

pass before its inclusion in the ambiguity set. If terl = tlat = 1, then f is not

detectable.

Distinguishability of a failure mode f 2 F in time t, denoted by DIS(f; t), is true if

the ambiguity set contains only f when time t has passed after the occurrence

of f , else it is false. Note that even if f is not distinguishable in time t, it

might be distinguishable in time t1 > t because at time t1 there might be more

evidence (observed discrepancies) available for the diagnosis.

Predictability of a discrepancy d 2 D, denoted by PRED(d), is the pair< tmin; tmax >,

tmin � tmax, where tmin is the shortest available time period between a forewarn-

ing and the actual occurrence of d, and tmax is the longest available time period

between a forewarning and the actual occurrence of d. If tmin = tmax = 0, d is

not predictable at all.

These three metrics can be used to characterize the diagnosability of the system.

For example, the four questions listed in the previous section can be paraphrased in

terms of these metrics as :

72

Diagnosability Metrics

Diagnosability analysis and sensor placement require the de�nition of metrics

which can be used to measure the diagnosability characteristics. Here we de�ne the

metrics for diagnosability. The rationale for these de�nitions comes from the funda-

mental concepts of diagnosis and are independent of the actual reasoning method.

Fault Detection { Presence of a fault is detected by observation of one or more

discrepancies. Because of the complex relationship between faults and discrepancies,

more than on fault may be suspected when a discrepancy is observed. The set of all

these possible faults has been called by many di�erent names { the hypotheses set,

the suspect set, the candidate set, the ambiguity set, etc. This set represents the

ambiguity in the diagnostic results at any given time.

Because of the dynamics of the system, some time may pass before a fault causes

the observed discrepancy(ies). The fault is said to be detected at the time it is �rst

included in the ambiguity set. The fault may propagate to more discrepancies, but

the evidence provided by these additional discrepancies will not go towards detecting

the fault. The evidence will, instead, be used to diagnose the fault.

Fault Isolation { Once a fault has been detected, it needs to be isolated from other

possible faults. A diagnoser does this by examining the elements of ambiguity set and

by using some reasoning technique to prune the set down to the actual fault. During

the process of diagnosis, more evidence may come in, causing the ambiguity set to

shrink or grow. The goal is that at the end of diagnosis, the ambiguity set should

contain only the fault that actually occurred, i.e., there should be no ambiguity in

the diagnosis. In case of multiple faults, the set should contain all the faults that

actually occurred and only the faults that actually occurred. The time needed for the

resolution of ambiguity between faults may vary depending on the dynamics of the

system and sensor coverage which determines the available evidence at a given time.

71

Hierarchical Fault Models

The diagnosability analysis algorithms operate on FPMs of a system. As noted in

Chapter II, a system is modeled by breaking it down hierarchically into subsystems.

The hierarchy thus generated consists of many functionalities and sub-functionalities.

All the functionalities have their own FPMs, which also interact with each other.

Thus, all the FPMs in the hierarchy are linked together. In fact, the whole hierarchy

can be \
attened" into one FPM which contains all the failures and their propagations

in the system.

The diagnosability analysis can be performed on the
at FPM or on FPMs of

individual functionalities. When operating on the
at FPM, all the failure modes,

discrepancies and sensor states can be considered at once. But the
at graph may

become too big and unmanageable. On the other hand, analysis of individual FPMs

is manageable. But in this case, combining the results of individual analyses requires

some extra work. For example, there might be a sensor that can be used to gen-

erate alarms in di�erent parts of the hierarchy. Thus, committing to an alarm in a

functionality might e�ect the decision in other functionalities.

Thus, we provide the choice of analyzing individual FPMs or a
at FPM. Further,

the design engineer is allowed to
atten any subtree of the functional hierarchy tree

and analyze the
attened FPM for just the subtree. This way one can choose to

analyze a whole sub-system. One may also
atten the whole hierarchy, thereby per-

forming a complete fault analysis. The analysis algorithms remain una�ected whether

the FPM belongs to an individual functionality or it has been obtained by
attening

a part or whole of hierarchy.

70

CHAPTER IV

DIAGNOSABILITY ANALYSES

In this chapter, the di�erent types of analyses that assist the design engineer in

assessing and enhancing the diagnosability of a system are described. The design

engineer is interested in two basic enquiries :

1. Is the system adequately covered by sensors such that the fault status of the

system can be maintained correctly at all times ? If not, where does it fall

short ?

2. What are the di�erent possible sensor assignments that will preserve the diag-

nosability of the system and also save on the costs of sensors and tests ?

The same questions can be asked in a more speci�c manner, for example :

� How long will it take to detect a fault in a speci�c component?

� Can a particular catastrophic failure be predicted?

� Does adequate sensor coverage exist to isolate faults to the components ?

� What sensor assignment is needed to detect every fault ?

We have de�ned metrics to quantitatively characterize the diagnosability of a

system. The diagnosability of a system can be evaluated in terms of these metrics and

the metrics can be used to specify some diagnosability criteria to ask for suggestions

about sensor assignment. The metrics and the analyses are described in the upcoming

sections.

69

Figure 21. Failure Propagations in Functionality Fan Group ORU

68

THC System Cabin

Inlet Temp. ORU

Controller

Heat Exchanger

TCCV

Liquid Sensor ORU

Water Separator

Outlet Temp. ORU

Electricity

Fan Group ORU

Figure 20. Functional Hierarchy of THC

67

S
L
U
R
P
E
R

HUMIDITY
CONTROL

HX
PI

TCCV
ORU

T

T

INLET
TEMP
ORU

N

P

FAN GROUP ORU

T T

OUTLET
TEMP.
ORU

N
LS

P

LS
LIQUID

SENSOR
ORU

Ai r R eturn D uct

Bypass Leg

Wat e r

Ai r Supply Duct

To Air
S u p p l y
D u c t

ELECTRICAL
INTERFACE

BOX

Figure 19. Schematic of THC

states in its fault models.

This system was the Temperature and Humidity Control system (THC) for cabins

in Space Station Freedom. For testing the system, an interface through which signal

values for the various sensors could be fed, was developed. The monitoring subsystem

converted these signal values into sensor states and passed the SSEs to the diagnostic

system. The schematic of THC is shown in Figure 19. Figure 20 shows the functional

hierarchy of THC. Figure 21 shows the fault model of the Fan Group ORU complete

with sensor states.

66

Water System Circulation Reservoir Collection Sw.

Supply Sw.

Storage #1

Storage #2

Pumping

Temp. Control Heating

Heat Exchanging

Figure 17. Functional Hierarchy of Thermal Control System

Figure 18. Failure Propagations in Functionality Reservoir

65

3- WAY
VALVE

3- WAY
VALVE

FLOW METER

THERMOCOUPLE

PRESSURE
TRANSDUCER

PRESSURE

TRANSDUCER

HEAT
EXCHANGER

FAN

HEATER
PUMP

TANK1

TANK2

CS

S S

TC1

TC2

TC4

F S 1

F S 2

F S 3

PT 2

P T1

LS1

LS2

P T3

THERMOCOUPLE

Figure 16. Schematic of Thermal Control System

64

TABLE 3 Silent Alarm Sensor Failures

Faults Time in seconds

PS1 1.223147

PS1+PS2 0.967154

PS1+PS2+PS3 0.842267
PS1+PS2+PS3+PS4 0.767575

is shown in Figure 16, the functional hierarchy is shown in Figure 17 and the FPM

of one of the functionalities is shown in Figure 18. This system has the simple task

of maintaining the temperature of water within certain limits. There are two tanks

in the system, only one of which is on-line at a time. The water is pumped through a

heater and then a heat exchanger. By controlling the amount of heating in the heater

and cooling in the heat exchanger, the temperature of the water is maintained. The

three way valves before and after the tanks are used to put a tank on-line or o�-line.

For TCS, the tests were conducted with the actual hardware. The run-time sys-

tem consisted of the diagnostic system running on a workstation, talking to a data

acquisition unit over a serial line. The data acquisition unit collected the signals

provided by the sensors in the system and sent them over to the diagnostic system.

The alarm generator part of the diagnostic system read these signals and rang and/or

shut o� alarm(s). The diagnoser then updated the fault status of the components in

the system and displayed the results. We tested leaks in the tanks, fan failure, pump

failure etc. and an assortment of sensor failures. The diagnoser returned correct

results in case of component failures. Sensor failures were also diagnosed properly. In

fact, even when all the three pressure transducers were failed, the diagnoser deduced

the sensor failures correctly since none of the
ow meters indicated any abnormal

values.

The above two examples were of systems which were modeled without using the

concept of sensor states and LOPs. The next example described here used sensor

63

TABLE 2 False Alarm Sensor Failures

Faults Time in seconds

TS 0.390315

PS 0.687290

PS+TS 0.466055
TS+CS 0.489567

TS+CS+PS 0.484502

shows the results with single and combinations of sensor failures. The sensor failures

in this experiment gave rise to false alarms. They were all diagnosed as sensor failures

since the evidence against an actual fault and for a false alarm was quite strong. In

the next experiment, the pump was failed and also one, two, three and four pressure

sensors downstream from the pump were failed successively such that the sensors

did not indicate a drop in pressure when they were supposed to (missing alarm).

The results are shown in Table 3. With the �rst three sensor failures, the diagnoser

returned correct diagnostic results { failure of pump and failures in the three sensors

which did not detect a drop in pressure. When the fourth sensor was failed, the

diagnoser returns the following result { the pressure sensor and
ow meter in the

pump assembly which are reading low values are faulty, the pump is all right and

none of the four pressure sensors mentioned above are faulty. This is a case when the

diagnoser gets misled by sensor failures but it requires four sensor failures to cause

the diagnoser to go astray. As long as there is su�cient evidence for diagnoser to

work with, it returns the correct results. Note that as the number of missing alarms

increases, the diagnosis time goes down. This is because the diagnosis is event driven

and is triggered every time that an alarm rings. Thus with a smaller number of ringing

alarms, the diagnosis gets triggered less number of times and takes less cumulative

time for diagnosis.

The second example is that of a Thermal Control System (TCS) whose schematic

62

TABLE 1 Single and Multiple Failures

Faults Time in seconds

TNK 0.450163

HTR 0.874088
PMP 1.004877

TNK+HTR 1.451494
TNK+PMP 1.365014

HTR+PMP 1.249900

TNK+HTR+PMP 1.572464
HTR+PMP+WQM 1.652971

TNK+HTR+PMP+DST 2.148210

TNK+HTR+PMP+WQM 2.106865

(PCWQM), (5) DST is the distribution assembly which supplies the clean water to

user points, (6) TS is the temperature sensor in the heater, (7) PS is the pressure sen-

sor in the pump assembly, (8) CS is the pressure sensor in the pressurization assembly,

(9) PS1 is the pressure sensor after the 3-way valve, (10) PS2 is the pressure sensor

after PCWQM, (11) PS3 is the pressure sensor after the UF/RO �lter assembly, and

(12) PS4 is the pressure sensor in the Sterilization assembly. The fault column shows

the fault(s) that were simulated. Multiple faults are indicated by +, e.g., TNK+HTR

means that a leak in the tank and a fault in the heater (fail high) were the two faults

simulated.

The time column shows the time spent on diagnosing the faults. Note that the

diagnosis system consists of an ILC and a number of instances of functionality di-

agnosers (FD), as discussed before. The diagnostic system is implemented using the

communicating actors model of parallel, distributed computation [10]. The ILC and

all the FDs are implemented as actors which exchange information, commands and

results by using message passing. Thus, time shown in this column includes the time

spent in ILC, in the various FDs and in the message passing.

Table 1 shows the results of single and multiple fault scenario simulations. Table 2

61

Figure 15. Failure Propagations in Functionality Processing

60

Figure 14. Failure Propagations in Functionality HWProcessing

59

HWProcessing Processing Pumping

Sterilization Heater

Regen. Heatex

Particulate Filter

Filtering

PCWQM

Switching

Unprocessed Water Storage

Hygiene Water Storage

Collection

Collection

Feeding

Feeding

Storage

Storage
Distribution

Pressurization Waste Water Pressurization

Product Water Pressurization

Figure 13. Functional Hierarchy of Hygiene Water Processor

58

TANK PRESSURIZATION ORU

UNPROCESSED WATER
STORAGE ORU

PUMP
PACKAGE

ORU

STERILIZATION
LOOP ORU

PROCESSED
WATER

STORAGE ORU

PROCESING
ASSEMBLY

PCWQM
THREE

WAY
VALVE

WATER FROM
USER POINTS WATER TO

USER POINTS

Figure 12. Schematic of Hygiene Water Processor

the diagnostic system using these models. The functional hierarchy for the HWP is

shown in Figure 13. The FPM of HWProcessing, which is the top functionality is

shown in Figure 14 and the FPM for functionality Processing is shown in Figure 15.

For testing purposes, a Fault Pattern Simulator (FPS) was used. The FPS pro-

vides a graphical interface to the user. The user can select the failure mode(s) of

component(s) to fail and also the relative times of failures. The FPS then gener-

ates the alarms in real-time, using the failure propagation information in the models.

These alarms are passed to the ILC, as and when they are supposed to ring, which

diagnoses the fault(s) using the information provided by the unfolding alarm scenario.

For testing sensor failure scenarios, the user can specify the sensors to fail. Then,

FPS will generate a false alarm or will not ring an alarm when it is supposed to.

The results from simulations using HWP models are shown in Tables 1, 2 and 3.

The abbreviations used are: (1) TNK is the tank in the Unprocessed Water Storage

that supplies the water to the puri�cation circuit, (2) HTR is the heater in the steril-

ization assembly, (3) PMP is the pump assembly, (4) WQM is the water quality monitor

57

The Hierarchy Navigator then looks at FuncSet and schedules the FD on one or

more functionalities. The criteria for selecting a functionality is that (1) there

should be a new event (ringing or shuto� alarm, timeout) since the last time

FD was run on the functionality and (2) No ancestor of the functionality in the

hierarchy should be in FuncSet. This way a top-down search in the hierarchy is

performed, re�ning the diagnostic results with more details as the search goes

down the hierarchy.

Tests and Discussion

In this section some examples of component faults, sensor faults and their com-

binations are given and the robustness of the diagnostic system is examined. First,

the results obtained by testing using simulation of faults are discussed. Then the test

with an actual system is described.

These tests show the capability of the algorithm to diagnose single and multiple

faults in components and sensors accurately, failing only when the number of sensor

faults becomes large.

The �rst example is in the context of the models for Hygiene Water Processor

for the Space Station Freedom. Figure 12 shows a simpli�ed schematic of the HWP

system. The tanks in the Unprocessed Water Storage (1) collect the water from user

points, (2) store it, and (3) supply it to the purifying circuit. The tanks in the Hygiene

Water Storage (1) collect water after puri�cation, (2) store it and (3) supply it to

user points. The puri�cation circuit itself consists of sterilization, bacteria removal

and some other processing. The PCWQM senses the amount of contaminants in the

water and controls the 3 Way Switch to either send it back to the puri�cation circuit

or to the Hygiene Water Storage tank. The models for the HWP were built and tested

56

3. Timeout occurs.

Upon being triggered, ILC goes through the following steps :

1. If the trigger is an alarm ringing/shuto�, then add to FuncSet all the function-

alities that have the alarm as part of their FPM and add the alarm to the event

list of the functionalities. This step is performed by the Monitoring Interface.

2. If the trigger was a timeout, add to FuncSet the functionality which was waiting

on the timeout and add the timeout to the event list of the functionality. This

step is performed by the Timeout Manager.

3. If the trigger was diagnostic result from FD,

(a) If the result contains a next expected event, set a timeout for the func-

tionality that the result is from. This step is performed by the Timeout

Manager.

(b) Examine the fault hypotheses.

i. Are there any sub-functionalities of the current functionality that need

to be diagnosed ? This involves identi�cation of the sub-functionalities

that use one of the components that are being indicated faulty and

the sub-functionalities that have alarms ringing in them. If such a

sub-functionality exists, it is added to FuncSet.

ii. If the number of failures indicated by the results is beyond a preset

limit, conclude that the models in the subtree rooted at the function-

ality are no longer valid, mark all the functionalities in the tree as

invalid and remove them from FuncSet, if any were in the set.

This step is performed by the Hypotheses Manager. The User Interface

displays the current fault status of the system.

55

Hierarchy
Navigator

Timeout
Manager

Hypothesis
Manager

Monitoring
Interface

User
Interface

Hierarchical
Fault Models

Functionality
Diagnoser

Expected
Event

Events

Fault
HypothesesResults

Alarms

Figure 11. Block Diagram of the Inter-Level Coordinator

3. Once the SSE has been mapped to alarm event(s), execute the FD on the alarm

event(s). The FD algorithm remains the same except for some minor changes

which check for alarm events that were mapped from SSEs.

Inter-Level Coordinator

Figure 11 shows the block diagram of ILC. The Monitoring Interface receives

alarm ringing and alarm shuto� events from the monitoring sub-system. The User

interface collates the diagnostic results and displays them to the user.

The ILC maintains FuncSet, a set of functionalities that might need diagnosing.

It adds and/or deletes functionalities from this set depending upon the fault scenario.

The ILC gets triggered whenever :

1. Monitoring Interface receives an alarm ringing or shuto� event.

2. Diagnostic results from FD comes in.

54

Handling Sensor States

The foregoing discussion of diagnostic algorithms assumed that the FPM consisted

of only failure modes and discrepancies. In this section we describe how sensor states

e�ect the algorithms and what changes are needed to incorporate sensor states in the

algorithm.

To handle sensor states, the algorithm is modi�ed in the following manner :

1. De�ne a new event type, called the sensor state event (SSE), denoted evss. The

SSE is a triple < ss; t; c > where ss is the sensor state with which the event is

associated, t is the time of occurrence of the event and c is the description that

characterizes the event. c can be one of the following :

(a) Active { signi�es that sensor state ss became active at time t.

(b) Inactive { signi�es that sensor state ss, which had been active for a while,

became inactive at time t (for whatever reason, perhaps because the fault

was repaired).

(c) T imeout { signi�es that sensor state ss which was expected to become

active at or before time t did not do so.

2. When a SSE comes in, it gets mapped to an alarm event. The mapping of a

SSE to an alarm event is done in the following manner :

(a) If there is propagation edge from a failure mode to the sensor state, treat

this sensor state as a monitored discrepancy, and add a corresponding

alarm event to EV .

(b) If there is a propagation from a discrepancy to this sensor state, check if

the expression in the LOP associated with the discrepancy evaluates to

true. If so, add a corresponding alarm event to EV .

53

of the sets. And, since these two steps are repeated for all the alarms and all the

hypotheses, the algorithm FindMissingAlarms is O(nhf :m:(n+m)2).

Analysis of LocateFSC

The second step takes O(nhf lognhf) time. The loop in step 4 is executed at most

alarmsToExplain times, even though there might be many more hypotheses. This is

because each hypothesis that is examined will explain at least one alarm. If, however,

the next hypothesis does not explain any alarm, i.e., its rank is less than 1, the loop

is exited. Thus, no more than alarmsToExplain hypotheses are examined. And since

alarmsToExplain can not be more than the number of alarms, the loop in step 4 will

be executed at most m times. The sub-steps of step 4 are O(m). Thus, step 4 is

O(m2).

Step 5 is O(m) since we just go through the list of alarms once. Thus, the

complexity of LocateFSC is O(nhf lognhf + m2).

Analysis of FindNextAlarm

The complexity of this algorithm is O(m2) since there are at most m alarms and

for each ringing alarm we examine, in the worst case, all the other alarms exactly

once.

Complexity of the Diagnostic Algorithm

From the complexity of the three steps described above, the complexity of the

whole algorithm is O(nhf :m
2 + n:nhf + nhf :m:(n+m)2 + nhf lognhf +m2 +m2). In

the worst case, with nhf = n:m, the complexity reduces to O(n:m4 + n3m2 + n2m3).

In the more common case, nhf will be O(n) and then the complexity reduces to

O(n:m3 + n3m+ n2m2).

52

Analysis of UpdateHypotheses

The �rst step in the algorithm checks if the alarm is a primary alarm of any failure

mode. This takes O(1) time since the information is maintained in matrices. If the

new alarm is a primary alarm of a failure mode and the failure mode does not have

any corresponding hypothesis in r̂, a hypothesis is added to r̂. This checking and

adding takes O(nhf) time. Since the above is repeated for every failure mode, the

�rst step is O(n:nhf).

The algorithm for RecomputeTime() is O(m2), as is explained later. Thus the

second step takes O(nhf :m
2) time.

Steps 3(a), 3(b); 3(c) and 3(d) are O(m2). Thus, step 3 takes O(nhf :m
2) time.

Thus, the complexity of UpdateHypotheses is O(nhf :m
2 + n:nhf).

Analysis of RecomputeTime()

This algorithm involves going through the list of all the hypotheses that a failure

mode may have. Since a failure mode can be incident upon at most m discrepancies,

there can be at most m such hypotheses. The loop in step 2 is executed O(m) times

because with every failure mode, we maintain a list of pointers to the entries ĥf 2 r̂

such that ĥf and hf stand for same f , and there can be at most m such entries.

For each such hypothesis, the new alarm is added to either P or SP set. Thus

RecomputeTime() takes O(m2) time.

Analysis of FindMissingAlarms

The procedure ShouldHaveRung takes O(1) time since all it does is one mathe-

matical calculation and one comparison. The procedure IsOnlyPath, however, takes

O((n+m)2) time since it makes a DFS of the graph. Thus, step 3:a:i in the algorithm

is O((n + m)2). Step 3:a:ii is only O(m) since all it does is add the alarm to one

51

these hypotheses.

The algorithm is given in Appendix A.

Procedure FindNextAlarm

This step �nds the next alarm that should ring, given the hypotheses under con-

sideration, and the latest time by which it should ring. The algorithm is given in

Appendix A. The time computed by the algorithm is used to set the next timeout.

It might happen that there are no more alarms that are expect to ring, or that the

current time is such that timeouts for all the alarms have occurred. In such a case,

no timeout is set.

Complexity Analysis

There are n failure modes and m discrepancies. The total number of nodes in G

is (n+m). Some of the above algorithms use Depth First Search (DFS) on G. The

order of DFS is O((n + m)2) since the graph is represented using adjacency matrix

A.

Many of the loops iterate on the number of hypotheses nhf . The worst case

number of hypotheses can be O(nm). But this will be the case when every failure

mode can cause every discrepancy and all the discrepancies have alarms associated

with them and every alarm is ringing and none of the alarms agree with each other

temporally. To begin with, no reasonable fault model will have all the failure modes

causing all the discrepancies. Secondly, in case of a valid fault scenario, most of the

alarms will agree with each other. Usually, the number of discrepancies that a failure

mode can cause will be O(1), not O(m), and the number of hypotheses will be O(n).

The alarm sets P , S etc. are maintained as arrays and the operation of adding or

deleting the alarms is O(m) since the maximum number of alarms is m.

50

� The alarms in the MP and MS sets of a failure mode hypothesis will require

inclusion of sensor fault hypothesis(es).

� A sensor fault hypothesis can reduce the number of failure mode hypotheses

(and also, perhaps, other sensor fault hypotheses) needed.

� On the other hand, a sensor fault hypothesis may reduce the con�dence in

some failure mode hypothesis(es), forcing the selection of some other failure

mode hypothesis(es).

Another factor which e�ects the selection of hypotheses is the diagnostic bias to-

wards component fault or sensor fault. If sensors are more likely to fail than compo-

nents, the hypothesis selection heuristic can be modi�ed to be biased towards sensor

faults, i.e., it will try to explain the events with more sensor fault hypotheses than

failure mode hypotheses. With a bias toward component faults, it will try to explain

events with failure mode hypotheses.

This bias can also be included in the ranking of hypotheses. As explained earlier,

the evidence from alarms can be weighed with the level of belief in sensors. If sensor

failure probabilities are high, the level of support provided by alarms in the P and S

sets gets reduced and the level of negation provided by alarms in MP , SP , MS and

SS gets increased, thereby reducing the belief in the failure mode hypothesis.

Thus we see that depending on the requirements and the information available,

various ranking and hypothesis selection methods can be used. For the simple ranking

method described previously, a selection method with neutral bias is : for inclusion

in r, consider only those failure mode hypotheses that have a rank higher than 0

(since only the hypotheses with rank 1 or higher have more evidence supporting it

than negating it). The sensor fault hypotheses are selected according to the missing

alarms of these hypotheses and any alarms that are not in the P or S sets of any of

49

can be caused by a component fault or a sensor fault. An alarm shuto� or timeout

could be caused either by sensor fault or by the fact that no fault exists. Thus, an

event ev =< a; t; c > is said to be explained by diagnosis r 2 2H if

1. c = Ringing and

� 9hf 2 r such that a 2 P (hf) _ a 2 S(hf) (ev is caused by component

fault), OR

� 9hs 2 r such that a = a(hs) ^ type(hs) = false (ev is caused by sensor

fault).

OR

2. c = Shutoff or c = T imeout and

� :9hf 2 r (there is no component fault), OR

� 9hf 2 r such that a 2 MP (hf) _ a 2 MS(hf) and 9hs 2 r such that

a = a(hs)^ type(hs) = missing (there is at least one component fault and

ev is a missing alarm caused by sensor fault).

How can the hypotheses be chosen for inclusion in r such that all the events are

explained and r is minimal ? Trying all combinations of component and sensor fault

is computationally prohibitive. The hypotheses have to be added to r incrementally,

choosing at each step a hypothesis that will require the least number of additional

hypotheses to explain the events. The selection of a hypothesis can in
uence other

selections in following ways :

� A failure mode hypothesis can explain the ringing alarms which are in its P

and S sets, thus reducing the number of other failure mode and sensor fault

hypotheses needed to explain the alarms.

48

2. might have one or more ancestor ringing alarm(s).

3. might or might not be a descendant of one or more hypotheses already in r̂.

4. might or might not be a descendant of one or more hypotheses that are not in r̂.

5. might be an ancestor of some other ringing or silent alarms.

When the event comes in, its e�ect of r̂ might be :

� recompute terl and tlat for some (possibly all) the hypotheses hf 2 r̂.

� add new hypotheses to r̂.

� update the P , S, SP andSS sets of hf 2 r̂.

The algorithm for updating r̂ in Appendix A.

Procedure FindMissingAlarms

For each hypothesis hf , there might be some alarms that should be ringing, given

terl(h
f), tlat(h

f) and the present time, but are not ringing. Such alarms are called

the (primary or secondary) missing alarms of hypothesis hf . To be able to compute

the rank of hypothesis hf , the missing alarms of hf need to be identi�ed. Note

that this and the following two steps are performed when type(ev) = Shutoff or

type(ev) = T imeout in addition to when type(ev) = Ringing. This is because a silent

alarm (Shutoff or T imeout) is expected to be a missing alarm of some hypothesis(es).

The algorithm is given in Appendix A.

Procedure LocateFSC

The diagnoser next explains the current set of events by selecting component

and/or sensor fault hypothesis(es) that comprise diagnosis r 2 2H . A ringing alarm

47

1. Updating the hypotheses. This involves adding/removing hypotheses from r̂

and adding/removing alarms from the P , SP , S and SS sets of hf 2 r̂ (proce-

dure UpdateHypotheses).

2. Finding the missing alarms of hf 2 r̂ and add these to MP or MS (proce-

dure FindMissingAlarms). The Update module shown in Figure 10 acts as the

corrector by performing this and the �rst step.

3. Locate fault sources, i.e., identify the hf and hs to include in r (procedure

LocateFSC). This step is performed by the Evaluator module shown in Figure 10.

4. Given the current set of hypotheses in r̂, determine the next alarm event

ev =< a; t; ringing >, where a 2 A is the the next alarm that should ring at

or before time t (procedure FindNextAlarm). This expected event is passed on

to the ILC along with the diagnostic results r. The ILC is then responsible to

generate a corresponding timeout event < a; t; timeout > and invoke the FD if

the alarm does not start ringing by time t. The Predictor shown in Figure 10.

These steps are described in the following sections. Step 1, 2, and 4 use the

principle of structural redundancy, while step 3 uses the principle of parsimony. These

four steps are explained for an alarm ringing event, i.e., ev =< a; t; ringing >. For

the other events, i.e., alarm becoming silent and timeout, the step UpdateHypotheses

is not performed. Only the last three of the above steps are performed.

Procedure UpdateHypotheses

Let the event be ev =< a; t;Ringing > where a is the alarm which starts ringing.

The new alarm a

1. might not have any ancestor alarm that is ringing.

46

s(hs) is used to denote the sensor for which hs stands, a(hs) for the alarm which is

incorrect and type(hs) for the type of misbehavior. Note that, since SA is a many-

to-many mapping, there might be more that one hs for one sensor (if it causes more

than one alarm to be incorrect) and there could be more than one hs for one alarm.

Since SA, the mapping from sensors to alarms, does not contain enough information,

if an inconsistent alarm is generated by more than one sensor, all the sensors will be

implicated. Having more than one hs for one sensor does not cause any problems

since they implicate only one actual sensor and provide stronger evidence in favor of

the sensor fault.

The sensor fault hypothesis represents a hypothesis about observation error. As

noted earlier, observation errors can be caused by an actual fault in a sensor or by

modeling errors. Because of lack of information in SA, it is di�cult to distinguish

between sensor fault and modeling error with con�dence; all that can be said is that

the sensor, in some way, is responsible for the observation error. However, if only

one of the many alarms generated by a sensor is inconsistent, it is possible to deduce

modeling error.

FD Algorithms

The FD is invoked with a diagnostic problem DP and returns the diagnostic

result r and the predicted next event ev. The FD maintains a possible hypotheses set

r̂ � Hf (possibly �) for the FPM of a functionality, adding or removing hypothesis

from it as needed. To generate the diagnosis r, it begin with r = �, selects some of

the hypotheses in r̂ and adds them to r. It might also select some hypotheses from

Hs to include in r.

Whenever an event comes in, FD goes through the following four steps :

45

in set P .

� MS � A is the set of missing secondary alarms for hf . These are the secondary

alarms of f that are silent but should have been ringing given tlat(h
f) and Amax.

� SS � A is the set of spurious secondary alarms. These are the ringing secondary

alarms of f that are that are not consistent with the alarms in set P .

P (hf); SP (hf) etc. are used to denote the corresponding alarm sets of hypothesis hf .

The alarm sets de�ned above contain the evidences that con�rm or contradict a

hypothesis and can thus be used for ranking the hypotheses. A simple way to do

this is { When hypothesis hf is �rst created, set its rank to 0. Whenever an alarm is

added to the P or the S set of the hypothesis, increment its rank by one. Whenever an

alarm is added to any of the other sets, the decrement the rank by one. This method

of ranking gives equal weight to all the alarms. To incorporate the sensor reliability,

the contributions from alarms can be weighted with the reliability data. To account

for component failure rates, the �nal sum can be weighted with the corresponding

failure rates. There can conceivably be more complex ranking methods.

Sensor Fault Hypotheses

A sensor fault hypothesis hs is the 3-tuple < s; a; type > where s is the sensor

which is faulty, a is the alarm that is behaving incorrectly because of the fault in s,

and type characterizes the misbehavior. type can be

1. false { meaning that the fault in sensor s is causing alarm a to ring when it

should be silent.

2. missing { meaning that a is silent when it should be ringing.

44

terl(h
f) denotes the estimated earliest time of occurrence of f , tlat(h

f) denotes the

estimated latest time of occurrence of f and rank(hf) denotes the rank of hf .

Let there be a hypothesis hf for failure mode f such that Node(f) = i and an

alarm a such that Node(d(a)) = j. Let the time of ringing of the alarm be t. Then

alarm a is said to support hypothesis hf if

(A�

i;j = 1)

and
h�
terl(h

f) � (t�Amin
i;j) � tlat(h

f)
�
_
�
terl(h

f) � (t�Amax
i;j) � tlat(h

f)
�i

The �rst condition, A�

i;j = 1, checks whether a is reachable from f or not. If it

is reachable, alarm a is said to be a descendant of hypothesis hf and hf is said to

be ancestor of a. The second condition compares the time of ringing of a against the

current estimated time interval for f which had been computed from earlier events.

If hf is ancestor of a, the estimated time of occurrence of f may be changed after

this comparison according to the time of the new alarm.

P;MP;SP; S;MS and SS are all sets of alarms de�ned as :

� P � A is the set of ringing primary alarms of f which support hf . Note that

there may be some primary alarms of f which do not support hf . Such cases

are discussed later.

� MP � A is the set of missing primary alarms of f . Missing primary alarms are

those primary alarms of f that are silent but should have been ringing, given

tlat(h
f) and Amax.

� SP � A is the set of spurious primary alarms for hf . These are the ringing

primary alarms of f that do not support hf .

� S � A is the set of secondary alarms of f that are consistent with the alarms

43

The alarm a(dm) is called a primary alarm of f .

If A�

i;k = 1 but dm is not a primary discrepancy of f , then it is called a

secondary discrepancy of f . The alarm a(dm) is then a secondary alarm of f .

2. Let there be two ringing alarms a1 and a2 such that Node(d(a1)) = i and

Node(d(a2)) = j. Let the times when the alarms started ringing be t1 and t2

respectively. Then alarm a2 is said to be temporally consistent with alarm a1

if A�

i;j = 1^Amin
i;j � (t2� t1) � Amax

i;j . Also, if A�

i;j = 1, a1 is said to be ancestor

of a2 and a2, descendant of a1. If A
�

i;j = 0, temporal consistency is irrelevant.

3. An alarm a is called a ringing alarm if event < a; t;Ringing > 2 EV . An alarm

a is called a silent alarm if event < a; t;Ringing > 62 EV or < a; t; Shutoff >

2 EV . If there are two events ev1 =< a; t1; Ringing > and

ev2 =< a; t2; Shutoff >, ev1; ev2 2 EV , then if t1 < t2, alarm a is silent else

it is ringing. Obviously, if < a; t; T imeout > 2 EV , a is silent.

The Hypotheses

Failure Mode Hypothesis

A failure mode hypothesis hf is the n-tuple

hf = < f; terl; tlat; rank; P;MP; SP; S;MS; SS >

where f is the failure mode of a component for which this hypothesis stands and

terl and tlat give the estimated earliest and latest time of occurrence of failure mode

f . The rank of a hypothesis is a number which gives the measure of belief in the

hypothesis. The higher the rank, the more likely we are to believe in the hypothesis.

42

3. Amin is a (n + m) � (n + m) matrix whose elements represent the minimum

time needed for one failure to propagate to another. Amin
i;j = t̂ means that the

failure at vertex vi takes at least time t̂ to propagate to the failure at vertex vj.

If A�

i;j = 0 then Amin
i;j = 1. Amin is obtained by �nding the all pairs shortest

paths [25] between the vertices in G, using tmin as the cost on the edges.

4. Amax is a (n + m) � (n + m) matrix whose elements represent the maximum

time needed for one failure to propagate to another. Amax
i;j = t̂ means that the

failure at vertex vi takes at most time t̂ to propagate to the failure at vertex vj.

If A�

i;j = 0 then Amax
i;j = 1. Amax is obtained by �nding the all pairs shortest

paths between the vertices in G, using tmax as the cost on the edges.

Some De�nitions

1. Let there be a failure mode f such that Node(f) = i and a monitored discrep-

ancy dm such that Node(dm) = k. Then dm is called a primary discrepancy of

failure mode f if A�

i;k = 1 and

(a) :9 d̂; Node(d̂) = j such that d̂ is monitored and A�

i;j = 1^A�

j;k = 1. That

is, no path in G from v(f) to v(dm) goes through a vertex v(d̂) such that

d̂ is monitored, OR

(b) 9 d̂ such that d̂ is monitored and A�

i;j = 1^A�

j;k = 1^Amax
i;k � Amax

i;j . That

is, if there does exist a path which goes through (possibly more than one)

monitored discrepancy vertex v(d̂), dm is still a primary discrepancy if the

maximum time for f to propagate to dm (given by Amax) is less than the

maximum time for propagation to d̂. This can happen if there are more

than one path from v(f) to v(dm).

41

1. Ringing { signi�es that alarm a started ringing at time t.

2. Shutoff { signi�es that alarm a, which had been ringing for a while,

became quite at time t (for whatever reason, perhaps because the fault

was repaired).

3. T imeout { signi�es that alarm a which was expected to ring at or before

time t did not ring.

The diagnostic task, then, is to �nd a r 2 2H which explains the current events in

the set EV and also to predict the next expected event ev =< a; t; ringing >, where

a 2 A is the alarm expected to ring at or before time t. Note that, depending on the

fault scenario, there might not be any such expected alarm.

Notation : A vertex in G which represents a failure mode f is denoted by v(f)

and a vertex representing discrepancy d is denoted by v(d). If < a; d > 2 M , then

alarm a is also referred to as a(d), and d(a) stands for the discrepancy to which alarm

a is assigned. Thus, v(d(a)) is the vertex in G representing the discrepancy which is

monitored by alarm a. Node(f) represents the node number of v(f) in G, which is

between 1 and n. Similarly,Node(d) represents the node number of v(d) in G, which

is between n + 1 and n+m.

Data structures derived from G

The following is the list of data structures derived from G :

1. A is the (n+m)�(n+m) adjacency matrix forG whereAi;j = 1 i�< vi; vj > 2 E

else Ai;j = 0.

2. A� is the (n + m) � (n + m) matrix representing the transitive closure of G,

such that A�

i;j = 1 i� there is a path from vi to vj else it is 0.

40

� A = fa1; a2; : : : aog is a set of o � m alarms which are used to monitor some

(perhaps all) of the discrepancies.

� S = fs1; s2; : : : spg is a set of p sensors.

� M : A ! D is a mapping which describes the monitoring used in the system,

where < ai; dj > 2 M represents the fact that alarm ai is assigned to discrep-

ancy dj. Note that M is a one-to-one mapping. Discrepancy dj is monitored

means that there is an alarm ai 2 A such that < ai; dj > 2 M .

� SA : S ! A is a mapping that describes the associations between sensors and

alarms, < si; aj > 2 SA represents the fact that sensor si contributes to the

computation of alarm aj. SA can be a many-to-many mapping.

� G = (V;E) is a directed graph derived from the FPM described in Chapter

II. The vertex set V has n + m vertices, representing n failure modes and

m discrepancies. Without loss of generality, we will assume that the vertices

representing failure modes are numbered 1 to n and the vertices representing

discrepancies are numbered n + 1 to n +m. An edge ei;j =< vi; vj > 2 E i�

the failure represented by vi propagates and causes the failure represented by

vj. Each edge in E is weighted by two parameters :

1. tmin, which is the minimum time for propagation of failure along the edge,

and

2. tmax, which is the maximum time for propagation of failure along the edge.

� EV is a set of events. An event, denoted ev, is a 3-tuple < a; t; c > where a 2 A

is the alarm with which the event is associated, t is the time of occurrence of

the event and c is the description that characterizes the event. c can be one of

the following :

39

of the fault state. The output is a ranked list of hypotheses which is generated by

the Evaluator module. Ranking occurs according to the plausibility of the individual

hypotheses. The Results module then selects the hypotheses that explain the current

observations, identi�es the fault source functionality and sends the results to ILC.

The Diagnostic Problem

The diagnoser characterizes the fault status of a system by hypothesizing about

faults in components or sensors. hf denotes a hypothesis about a failure in a compo-

nent, i.e., a hypothesis about the occurrence of failure mode f . The hypothesis for a

fault in a sensor is denoted by hs.

Let Hf be the set of all possible hypotheses about the failure modes in the system

and Hs be the set of all possible hypotheses about the sensor failures and let H =

Hf [Hs represent all possible failure hypotheses. A diagnostic result r is a set

consisting of failure mode and sensor hypotheses which is a subset of the hypotheses

set H, i.e., r � H. Then, the set of all possible diagnoses is 2H , the superset of H.

The goal of the diagnoser is to select one minimal diagnosis r 2 2H , possibly �, which

gives the current fault status. A minimal diagnosis is the smallest set of hypothesis

that explain all the events such that removing any hypothesis will leave one or more

events unexplained.

The diagnostic problem DP is de�ned by the n-tuple

DP =< F;D;A; S;M;SA;G;EV >

where

� F = ff1; f2; : : : fng is a set of n failure modes in the FPM.

� D = fd1; d2; : : : dmg is a set of m discrepancies in the FPM.

38

UPDATE

PREDICTOR

EVALUATORFAULT
STATE

FAILURE
PROPAGATION

GRAPH

ALARMS

PREDICTIONS

RANKED

HYPOTHESES

Figure 10. Conceptual structure of the robust reasoning method

Functionality Diagnoser

The Functionality Diagnoser is triggered by one of these events { (1) an alarm

ringing, (2) an alarm becoming silent after ringing for a while, or (3) a timeout

occurring, i.e., a predicted alarm did not ring.

The structure of the reasoning algorithm of FD uses the predictor{corrector prin-

ciple. The conceptual block diagram of the reasoning method is shown in Figure

10.

The reasoning algorithm uses two basic data structures, the system fault status

and the FPM. The system fault status consists of the current set of fault hypotheses

and the corresponding evidence. Because the failure propagation graph expresses

the dynamics of failure propagation, it can be used to predict future failures based

on the current fault state. The function of the Predictor is to derive deadlines for

the future incoming alarms. The event comparator compares the incoming alarms

and the predicted deadlines, and drives the Update module. The Update module

processes the received event (alarm or passed deadline) and creates a new update

37

FM1

FM2

DY1

DY2

DY3

DY4

DY5

DY6

DY7

DY8

Figure 9. Use of structural redundancy for sensor fault detection

that FM2 is also a fault source. However, if FM2 is a fault source, the alarm at DY 8

should also ring (structural redundancy), therefore this hypothesis implies that the

sensor at DY 8 must be faulty as well. An alternative explanation is that the sensor

associated with DY 3 is faulty and is giving rise to a spurious alarm. This hypothesis

is more plausible than the previous one, since it explains the alarm scenario with 2

fault sources (FM1 and the sensor associated with DY 3) instead of 3 (FM1, FM2

and the sensor associated with DY 8) (parsimony). A number of other explanations

can be found for the alarm pattern that are all less plausible than the previous ones.

Thus, structural redundancy means the use of the interdependence among the

alarms in the reasoning algorithm. The actual reasoning method is considerably

more complex than the illustrative example due to the temporal aspect of FPM.

36

the actual state of the system. Of course, in any realistic case, most of the observed

events are directly related to underlying faults, therefore diagnosis is possible.

The principle of parsimony suggests that the simplest explanation is the best. If a

hypothesis can explain consistently all of the observed events, it should be considered

more plausible than another one, which additionally requires the assumption of a

sensor fault as well. Application of the principle of parsimony means that the set of

plausible hypotheses should be minimal.

Structural redundancy

As we have discussed before, the physical interactions in dynamic systems impose

spatial and temporal constraints on the observed events. In those parts of the system

where failure propagation occurs, a single fault results in multiple manifestations.

Obviously, these manifestations are not independent of each other. They provide a

redundant observation of the fault. Because the failure propagation models primarily

represent structural relationships in the systems, we call this redundancy structural

redundancy.

Due to the structural redundancy, events can con�rm or contradict other events in

a propagation model, therefore, a concept similar to that of the analytical redundancy

approach can be developed. The idea is illustrated with the simple FPM shown in

Figure 9. The graph shown here includes only failure propagations. For the sake

of simplicity, all of the monitored discrepancies are associated with a unique sensor,

whose output signal is used by a monitoring algorithm to generate the alarm.

In the particular fault scenario in Figure 9, the alarms associated with DY 1, DY 2,

DY 3, DY 4 and DY 5 are ringing (indicated by up arrow), while the alarm assigned to

DY 8 is silent. The simplest explanation for the alarms at DY 1, DY 2, DY 4 and DY 5

is that FM1 is a fault source (parsimony). Possible explanation for alarm DY 3 is

35

PLANT

SENSORS

MONITORING
SUBSYSTEM

INTER-LEVEL
COORDINATOR

USER
INTERFACE

FUNCTIONALITY
DIAGNOSER FPMs

Signals

Alarms Results

EventsLocal Results

Figure 8. Block Diagram of the Diagnostic System

The ILC looks at the local results and decides which functionality to diagnose next,

registers timeout requests and in general, coordinates the diagnosis.

Diagnostic Strategy of FD

The FD (1) receives events, (2) generates hypotheses, and (3) selects some hy-

pothesis(es) according to how consistently they explain the observations. For this it

uses the principles of parsimony and structural redundancy.

Parsimony

A particular hypothesis is said to be consistent with the received events (observa-

tions) if the spatial and temporal constraints imposed by the propagation models are

satis�ed.

If observation errors are possible, not all of the received events have to comply with

the spatial and temporal constraints. Consequently, the number of hypotheses that

are plausible under the given set of observed events will become larger. In the extreme

case when the sensors and/or fault detection algorithms are completely unreliable, any

fault hypotheses is plausible, since the observations do not carry information about

34

The Diagnostic System

The diagnostic system gets triggered whenever an event arrives. An event can

be { (1) an alarm ringing, (2) an alarm becoming silent and (3) a timeout on an

alarm. These events are de�ned more precisely in later sections. The diagnoser then

has to interpret the event in the context of FPM and identify the fault(s) that caused

the event. Since the system is modeled as a hierarchy of separate functionalities, each

with its own FPM, the arrival of an event gives rise to the following questions :

� Which functionality's FPM should the diagnoser operate on to identify faults ?

That is, which are the functionalities which have an alarm as part of the fault

model with which the event is associated ?

� Once the results from that functionality are returned, which other functionalities

need to be examined ?

� How are the results from di�erent functionalities combined ?

� How is the search in the hierarchy guided ?

This gives rise to two separate tasks { guiding search and performing diagnosis on

FPMs. Thus, the diagnostic reasoning is divided into two modules { Functionality

Diagnoser (FD) and Inter-Level Coordinator (ILC). Figure 8 shows the block diagram

of the diagnostic system. The ILC receives the external events, provides an interface

to the user and controls the diagnostic search. When an event comes in, it invokes

the FD to perform diagnosis on the FPM of some functionality(ies) and waits for

the results from FD. The FD operates on the FPMs of individual functionalities and

generates local results. These local results consist of a list of component and/or sensor

fault(s) and the next expected alarm event. The results are passed on to the ILC.

33

The following discussion only describes the core diagnostic routines for the sake

of concise presentation. The algorithm that was developed and tested has some other

features which will be discussed only brie
y. These are :

� Probability : The failure rates of components and the uncertainty in sensor sig-

nals does not form part of the discussion. However, in the sections on hypothesis

ranking and selection, we brie
y discuss how they are incorporated.

� System State : Any real system has many operational states, e.g., Shutdown,

Standby etc. The relevant failures and their interactions di�er from state to

state. The FPM described in last chapter includes the state dependencies of

failures and failure propagations. For diagnosis, e�ectively, the FPG changes

with state. This change is handled by the overall diagnostic system. Here we

only describe diagnosis when the system is in any one state.

� Generalized Graphs : The algorithm described here operates on a simple FPG

which does not have AND nodes. To include the AND nodes in diagnosis, the

reachability analysis is modi�ed.

� Sensor States : We assume that there are no sensor states in the system, i.e.,

the fault models consist of only failure modes and discrepancies (monitored

with an alarm or non-monitored) and interactions between them. Thus, the

nodes in the FPG only consist of failure modes or discrepancies. At the end of

this chapter, we brie
y describe how the sensor states are incorporated in the

reasoning.

32

CHAPTER III

ROBUST DIAGNOSTICS

In this chapter we describe a robust diagnostic system which provides reliable

diagnosis in the presence of observation errors. The diagnostic system operates on

hierarchical fault models of a system, described in the previous chapter. The input

to the diagnostic system are events that arrive asynchronously. The diagnoser inter-

prets the incoming events in the context of FPM and generates hypotheses about the

fault(s) in component(s) and/or sensor(s).

The goal of this work was to develop a diagnostic system which :

� Diagnoses multiple faults, and thus, there should not be any underlying as-

sumption of single or multiple points of failures.

� Identi�es observation errors.

� Is robust against a large number of sensor failures and degrades gracefully as

the number of sensor failures increase.

� Is event-driven and uses incremental non-monotonic reasoning.

� Predicts future events and uses the predictor-corrector principle to revise its

hypotheses.

� Restricts the diagnostic search to the relevant parts of the functional hierarchy.

� Identi�es loss of model validity in case of large faults and restricts its search to

those parts of the hierarchy where the model of the system seems to be valid.

� Uses algorithms of polynomial complexity.

31

graph G = (V;E). The vertex set V has n +m + o vertices, representing n failure

modes, m discrepancies and o sensor states. An edge ei;j =< vi; vj > 2 E i� the

failure represented by vi propagates and causes the failure represented by vj. Each

edge in E is weighted by two parameters :

1. tmin, which is the minimum time for propagation of failure along the edge, and

2. tmax, which is the maximum time for propagation of failure along the edge.

Thus, the edges in E represent the causal interactions and the dynamics of the inter-

actions between failures.

30

FM1

FM2

FM3

FM4 DY1

DY2

DY3

DY4

DY5

DY6
DY7

DY8

DY9 DY10

SS6

SS5

SS4

SS3

SS2

SS1

DY11

DY12

[T m i n ,T m a x]

Figure 7. Failure Propagation Graph

means that the LOP is associated with that discrepancy. The ellipses represent

the sensors and the dotted lines between the sensors and monitored discrepancies

represent the sensor allocation. The association between sensors and sensor states is

not shown because such information is implicit in the sensor states.

Failure Propagation Graph

From the entities in FPM and their interactions, we can derive a directed graph

which represents the propagation of failures in the system. The vertices of such a

graph consist of failure modes, discrepancies and sensor states. The edges in the

graph represent the propagation of the failures and correspond directly to the arrows

as shown in Figure 6. The graph is called a Failure Propagation Graph (FPG). An

example of the FPG obtained from the model shown in Figure 6 is shown in Figure 7.

Let us assume that there are n failure modes, m discrepancies and o sensor states

in the system. The diagnostic and diagnosability algorithms operate on a directed

29

FM1

FM2

FM3

FM4 DY1

DY2

DY3

DY4

DY5

DY6
DY7

DY8

DY9 DY10

SS6

SS5

SS4

SS3

SS2

SS1

DY11

DY12

S3

S2 S1

[T m i n , T m a x]

LOP1

Figure 6. Failure Propagation Model

can be modeled as failure propagations even though, strictly speaking, sensor states

are not failures. But it allows us to integrate the causality into fault models more

coherently. Also, the sensor delays and polling rates for sensors can be incorporated in

the propagation interval. The combined fault model with failure modes, discrepancies,

alarms, sensor states etc. is called the Failure Propagation Model (FPM).

The pictorial representation used for failure propagations can now be extended to

include alarms and sensor states as shown in Figure 6. As before, the square boxes

represent the failure modes of components and the circles represent the discrepancies.

The dotted circles are discrepancies that are monitored with an alarm. The empty

circles are discrepancies that don't have any alarm explicitly associated them, but they

may still be monitored through sensor states, e.g., DY12. The diamonds represent the

sensor states. Sensor states that are BIT and enabled are represented by a dotted

diamond, while the manual and disabled BIT sensor states are shown with the empty

diamond. The dashed boxes represent the LOPs. A line from a LOP to a discrepancy

28

disjunction or an arbitrary sum-of-products expression with the sensor states as liter-

als. If there is no modeled LOP associated with a discrepancy, a default conjunction

LOP is associated with it, which means that the discrepancy will cause all the sensor

states. If the sensors are in states such that the LOP associated with a particular

discrepancy evaluates to a true value, it can be inferred that the discrepancy exists.

Thus, the monitoring mechanism for a discrepancy can be modeled by specifying

the alarm on that discrepancy or by listing the sensor states that the discrepancy

impacts along with the associated LOP. The alarm representation does not give any

information about how an alarm is generated from the sensors, while sensor state

representation does.

A sensor state can have the following attributes :

� Built In Test (BIT)/Manual : A BIT sensor is part of the system and provides

data without operator intervention as opposed to manual sensors. Correspond-

ingly, the sensor states can be BIT or manual.

� Enabled/Disabled : Even if a sensor is a BIT, it may not always be turned

on (to save power, for example). If the BIT is turned on and is providing

signal readings, we say that the sensor is enabled, otherwise it is disabled. We

associate the same attribute with corresponding sensor states.

Finally, sensor state allocation represents the set of sensor states that are BIT and

enabled. This is similar to alarm allocation and gives the sensor states that are

\on-line".

Failure Propagation Model

There is another way of looking at sensor states. Sensor states can be considered to

be primitive discrepancies and the causality between discrepancies and sensor states

27

discrepancies. These evidences are called alarms, which have been de�ned in Chapter

I. Sensor allocation describes which sensors are used for which alarms.

However, this representation is not comprehensive, in that, it does not allow one

to describe exactly how the sensor values relate to the alarms and discrepancies.

This relationship is modeled by using sensor states. A sensor in the system typically

provides continuous valued readings over a wide range. The continuous range of

sensor values can be divided into a set of ranges which are called sensor states. When

a sensor value is within one of these sub-ranges, the sensor is said to be in the state

corresponding to that sub-range, or, that the particular sensor state has \occurred".

For example, a temperature sensor might have a continuous range from 20oC to

90oC. Typically, the sensor states for this sensor might be Temp-Zero, Temp-Low,

Temp-Nominal, Temp-High and Temp-Full, representing ranges 20oC�25oC, 26oC�

40oC, 41oC � 70oC, 71oC � 85oC and 86oC � 90oC.

There is no prescription as to the number and kinds of states that a sensor can

be in. There can be as many sensor states as are required to model the monitoring

scheme. A sensor can be in only one of these states at any given time. Whenever the

sensor is reading values that correspond to a particular state, the sensor state is said

to be active. Since the sensor can be in only one state at a given time, all the other

sensor states corresponding to the sensor are said to be inactive.

A discrepancy causes one or more sensors to be in particular state(s). Thus there is

a causal relationship which goes from discrepancies to sensor states. During diagnosis,

by examining the combinations of current states of the sensors, it can be ascertained if

a discrepancy exists. The combination is expressed using a Logic Operator (LOP). A

LOP is associated with a discrepancy and represents the logical relationship between

the sensor states caused by the discrepancy. The LOP could be a conjunction, a

26

FM1

FM2

FM3

FM4 DY1

DY2

DY3

DY4

DY5

DY6
DY7

DY8

DY9 DY10

DY11

DY12

DY7

DY8

DY9

DY1 0

DY1

DY2

DY3

DY4

DY5

DY6

DY1 1

DY1 2

T 1 T2 T3 T 4 T 5 T6 T7 T 8 T 9

FM1

FM2

FM3

FM4 DY1

DY2

DY3

DY4

DY5

DY6
DY7

DY8

DY9 DY10

DY11

DY12

DY7

DY8

DY9

DY10

DY1

DY2

DY3

DY4

DY5

DY6

DY11

DY12

T 1 T 2 T3 T4

Figure 5. Propagation of Faults

the faults. An inconsistency in the pattern can be used to detect sensor failures. For

diagnosability studies, it should be possible to determine the relative importance of

a discrepancy for detecting and/or diagnosing a failure mode and the time periods

involved.

Failure Monitoring

The observation of anomalies in system behavior is provided by sensors. This

section discusses their role in diagnostics and how they are modeled.

Sensors measure the values of physical variables and provide signals. These signals

can be used for control or they can be used for monitoring the health of the system.

Following the dichotomy of physical and functional structure, we model sensors as

physical components that monitor the functional failures.

From the diagnostic point of view, sensors provide evidence about the existence of

25

FM1

FM2

FM3

FM4 DY1

DY2

DY3

DY4

DY5

DY6
DY7

DY8

DY9 DY10

DY11

DY12

C1

C2

F1

F2

F3
[Tmin,Tmax]

Figure 4. Pictorial Representation of Failure Propagation

consequent failure.

The interactions between failure modes and discrepancies can be represented pic-

torially, as shown in Figure 4 for a system with two components C1 and C2 and three

functionalities, F1, F2 and F3. The failure modes of C1 are FM1 and FM2 and those

of C2, FM3 and FM4. The discrepancies of F1 are DY1, DY2 and DY3; of F2, DY4, DY5,

DY6 and DY7; of F3, DY8, DY9, DY10, DY11 and DY12. The square boxes represent the

failure modes while the circles represent the discrepancies. The arrows between the

nodes represent failure propagation. All the propagations shown are parameterized

with [tmin; tmax], though it is shown only for the propagation between DY9 and DY10.

Figure 5 shows the propagation of two faults in the system. The �gures at the

top show the discrepancies (dark circles) that will occur at some time as the faults

propagate. The tables show the time line for these discrepancies. The time intervals

shown in the tables are not necessarily equal. They just represent the fact that the

discrepancies will occur at di�erent points in time as the fault propagates. For fault

diagnosis, the spatial and temporal pattern of discrepancies can be used to isolate

24

Failure Propagations

The occurrence of a failure mode causes one or more discrepancies in the system.

These discrepancies usually appear as out of range physical variables. For instance,

an output valve of the pump assembly, when stuck closed, causes the output
ow

rate to drop and the internal pressure to build up. Because the physical variables are

related to each other (through laws of thermodynamics, for example), an out of range

physical variable may cause some more physical variables to go out of limits. For

example, a rise in temperature inside a gas container will cause the internal pressure

to build up. Further, an out of range physical variable can cause a fault in a physical

component, e.g., high pressure may lead to a leak in a pipe.

This phenomenon of causation between failure modes and discrepancies is called

failure propagation. We say that the antecedent failure (failure mode or discrepancy)

propagates to the consequent failure. Following the chain of antecedent and con-

sequent failures, we can enumerate the failure propagation paths starting from any

given failure. The failure propagation paths are the mechanisms by which a fault in

one part of the system can cause failures to occur in a \remote" part.

Due to the dynamics of the system, the failure propagations do not take place

instantaneously; instead they take a �nite amount of time. For example, a heater

broken high will take some �nite amount of time to cause the temperature to rise

beyond acceptable limits. Further, in any real system, the time taken can not be

speci�ed exactly. However, the minimum and maximum time that a propagation

takes can be known fairly accurately, allowing us to use a time interval to express the

uncertainty.

To incorporate the dynamics into fault models, each failure propagation is param-

eterized with a time interval [tmin; tmax], called propagation interval, which gives the

minimum and the maximum time that the antecedent failure can take to cause the

23

Failure
Modes

Discrepancies

Alarms

Sensor
States

Failure
Propagation

Alarm
Allocation

Logic
Operators

Figure 3. Fault Model Aspects

breakdown of the system in this manner can continue down to any level depending

upon the available knowledge and diagnostic requirements.

The hierarchies are linked together at each level, i.e, the relationships between the

functionalities and physical components (including the fault models) are described at

each level. A one-to-one correspondence between the levels in the hierarchies is not

necessary. The linkages between functional and physical models may go from any

level to any level.

Fault Models

There are three aspects to the fault models :

1. Failure modes of physical components.

2. Discrepancies in functionalities.

3. Alarm and sensor states.

Figure 3 shows the relationships between the three aspects. The interactions

between failure modes and discrepancies are captured by failure propagations. The

alarm allocation and Logic Operators (LOPs) describe how the discrepancies are

monitored. These are discussed in the following sections.

22

Behavioral
Models

- ODE
- FSM

- I/O

Behavioral
Models

- State
- Property

Functional Model
Hierarchical representation

of subfunctions and their
interactions.

Physical Model
Hierarchical representation

of subcomponents and
their interactions.

Discrepancies
Alarms

Sensors

Failure modes

Failure

Propagation

Graph

Fault Model

implemented-by
(dynamic, many-to-many)

Other Modeling Aspects

Behavioral
Models

- ODE
- FSM

- I/O

Behavioral
Models

- State
- Property

Functional Model
Hierarchical representation

of subfunctions and their
interactions.

Physical Model
Hierarchical representation

of subcomponents and
their interactions.

Discrepancies

Alarms
Sensors

Failure modes

Failure
Propagation

Graph

Fault Model

implemented-by
(dynamic, many-to-many)

Other Modeling Aspects

Physical
Hierarchy

Functional
Hierarchy

Figure 2. Hierarchical Modeling

is discussed in the later sections.

Hierarchical Models

Hierarchical decomposition, commonly used to deal with complex systems, is also

employed by the modeling paradigm used in this thesis. Not only is a system modeled

by breaking it down into multiple aspects, it is simultaneously decomposed into a hi-

erarchy, as shown in �gure 2. The physical models consist of hierarchy of components.

At each level in the hierarchy, the fault characteristics for the component(s) are also

described. Similarly, the functional models consist of a hierarchy of functionalities

and there are fault models for each functionality in the hierarchy. The hierarchical

21

Behavioral
Models

- ODE

- FSM

- I/O

Behavioral
Models

- State

- Property

Functional Model
Hierarchical representation
of subfunctions and their
interactions.

Physical Model
Hierarchical representation

of subcomponents and

their interactions.

Discrepancies

Alarms

Sensors

Failure modes

Failure

Propagation

Graph

Fault Model

implemented-by

(dynamic, many-to-many)

Other Modeling Aspects

Figure 1. Multiple Aspect Modeling

20

structure. Each of these has \sub-aspects", which will be discussed below.

Physical structure of a system consists of physical components and their assem-

blies. The interesting features (relevant sub-aspect) of components are their failure

modes and properties such as failure rate, whether the component is a sensor, what

kind of tasks the component can be used for, etc. The occurrence of a failure mode is

manifested as some abnormal behavior of the system. Since the abnormal behaviors

relate to the function that a system performs, they are modeled in the context of

functional structure.

Functional structure consists of a set of sub-systems. Each of these sub-systems is

called a functionality and is characterized by the task it performs. The behvioral de-

scription of a functionality can include such aspects as ordinary di�erential equations,

�nite state machines etc. However, from the point of view of diagnosis, the ways in

which a functionality can fail to perform its task is important. A failure of a func-

tionality is represented by a discrepancy (abnormal behavior), which is part of the

failure sub-aspect of the functionality. The observation of discrepancies is provided

by the monitoring scheme used, which is the other sub-aspect related to diagnosis.

The breakdown of a system in terms of its aspects is shown in �gure 1. The map-

ping between the two primary aspects describes the way that physical components are

used to implement the tasks in a functionality. This mapping between the functions

and components is dynamic and many-to-many { one function may use di�erent com-

ponents at di�erent times; one component may be used for di�erent functionalities.

Behavioral models are associated with the physical components and functionalities.

For a component, the behavioral models consist of state and properties like failure

rate etc. For functionalities the behavioral models can consist of Ordinary Di�eren-

tial Equations (ODE), Finite State Machines (FSM) etc. The fault models describe

the relationships and the interactions between the failure-related sub-aspects. This

19

The concept of structure of a system is fairly intuitive. One tries to identify a

suitable breakdown of the system into interacting blocks such that the failures in the

blocks and their interactions can be abstracted. The granularity of the decomposition

can be guided by the amount of knowledge available and by the requirements. For

example, it may su�ce to know that a heat exchanger is faulty. There may be no

need to �nd out exactly which component in the heat exchanger assembly has failed,

perhaps because the repair action involves replacement of the whole heat exchanger.

In this case, the heat exchanger assembly can be considered as a single block.

There are two types of structural descriptions commonly used by researchers in

the �eld :

1. Physical structure, which describes the interconnections of physical components.

2. Functional structure, which describes a system in terms of the tasks that its

parts perform.

Gallanti et al. [14] have described a method to identify deviations in control and

design parameters of a continuous, dynamic system using the system equations. Yu

and Biswas [13] relate the system equations to structure by extendeding the above

methodology to relate the deviant parameters to component faults. The work de-

scribed in [15] models the structure of a system in terms of its physical components

and attaches functional descriptions to each component. Qualitative functional mod-

els of the kind described in [20, 21] etc. also use physical structure. Hamscher [12]

describes a system in terms of its functional as well as physical structure.

In the modeling paradigm used in this research, we model both the physical and

functional structure of a system with a clear distinction between them. This method

of modeling a system from more than one distinct viewpoint is called multiple aspect

modeling. The two primary aspects are the physical structure and the functional

18

of the system. The connectionist models of the kind described in [4] also su�er from

the same drawbacks. Further, the probability values used to describe the likelihood of

one fault causing another do not always re
ect the real-world situation. The reason

is that a good statistical evaluation of this causality is usually not available. The

uncertainty in the time taken for faults to propagate is usually better understood.

However, the above models do not capture this information.

Fault models using diagnostic dictionaries (the kind used in [8, 22] etc.), provide a

simple mapping form faults to e�ects. The e�ects of a fault, once all the propagations

have taken place and the system has settled down, are listed. Thus the temporal

relationships between faults and the dynamics are lost.

The temporal relationships and the dynamics are captured in the fault models

using directed graphs (as in [9, 11]). In this thesis, we use a similar representation

which is described in the upcoming sections.

Multiple Aspect Hierarchical Modeling

For modeling large, complex systems, two techniques have been commonly used :

1. Focus on selected features.

2. Use hierarchical breakdown.

Multiple Aspects

For sensor-based diagnosis, the features that are of interest are :

1. Structure.

2. Behavior under fault conditions.

17

3. Specify the causality between the failure modes and discrepancies.

Functional models (qualitative or analytical) are quite useful in detecting faults.

Given the current inputs to the system, the models can be used to generate the ex-

pected behavior and from there, to detect any discrepancies. Fault diagnosis, however,

proves to be quite di�cult using these models (as also with component connection

models, discussed above). This is primarily because the diagnostic search space can

become combinatorially large when (1) hypothesizing about possible faults and (2)

selecting plausible hypothesis(es) that are responsible for the observed discrepancies.

The problem is further compounded when observation errors need to be diagnosed as

well.

The large diagnostic search spaces when using functional models arise out of the

attempt to reason about abnormal behavior of a system using models that describe

the behavior under normal conditions. Except in some cases, such attempts have

not been successful. To reason about faults, it makes sense to use fault models, even

though they only give an approximation to the actual behavior.

Fault models help in diagnosis by reducing the diagnostic search space. Hypothe-

sis generation is straight-forward { just consider all the failure modes that could have

caused the discrepancies. Diagnosing with a single fault assumption is simple. Diag-

nosing with multiple faults and/or sensor failure assumption can possibly result in a

large number of combinations of faults to be examined. In this case, some reasonable

heuristics can be used which are derived from the fault characteristics.

In this thesis, we use fault models. Many di�erent representations have been used

by researchers to describe the interactions between the failure modes and discrepan-

cies.

Rule-based fault models lack depth and clarity and fail to capture the dynamics

16

like in [7], are not useful for modeling large systems. Fault diagnosis using component

connection models is di�cult. The reasons for this are the same as in the case of the

qualitative functional models, described below.

To address the complexity in most engineering systems, researchers have used

qualitative models. Qualitative models divide the (possibly in�nite) space of all pos-

sible behaviors of a system into a �nite set of ranges. Qualitative functional models

do this by dividing the process variable space into \ranges of interest" and using

qualitative physics to generate the behavior of a system. They have met with varying

degrees of success in analyzing and predicting the behavior.

Faultmodels (fault trees, cause-consequence diagrams, diagnostic dictionaries etc.)

describe system behavior when faults are present. These models use qualitative repre-

sentation of faults, discrepancies and their interactions. This is done in the following

manner :

1. Discretize the failure space of components and specify the failure modes of

components thus discretized. For example, a failure of a heater when it starts

overheating might be represented with just two failure modes, \Broken-high"

and \Broken-high-high", by declaring two cuto� levels for these two failure

modes. De�ning failure modes for components in this manner is a standard

engineering practice and thus, the information about failure modes is readily

available.

2. Discretize the behavioral space of the system into sets of normal and abnor-

mal behaviors. The abnormal behaviors are represented by discrepancies. For

example, corresponding to the failure modes above, we may specify two dis-

crepancies { Temp-High and Temp-Full. The information about discrepancies

is also usually part of the readily available engineering design data.

15

Functional Models vs. Fault models

For diagnosis, two kinds of modeling paradigms have been commonly used to

describe the behavior of engineering systems { (1) functional models and (2) fault

models. Functional models are used to describe the \correct" behavior of a system,

i.e., the behavior when no faults are present. Fault models describe the behavior

when faults are present. In this section, the two paradigms are examined for their

usefulness in diagnosis.

Heterogeneity

Developing a common paradigm for functional models of the di�erent kinds of

sub-systems in a heterogeneous system proves to be quite di�cult. Previous work

on model-based systems has shown that suitable paradigms for di�erent kinds of

systems tend to be quite di�erent. For example, a digital circuit is described by the

connections between modules and the logical relationships between the input(s) and

output(s) of the modules. Such a represention can not be used for, say, chemical

processes, which are usually described by analytical equations.

Fault models o�er a way out, since it is not necessary to model the \correct"

behavior. Instead, only the ways in which these systems can fail and the manifesta-

tions of faults are of interest. This allows the development a general framework for

modeling most engineering systems.

Complexity

The next issue to be addressed is that of complexity of systems. Analytical models

(state-space representation, di�erential equations etc.) prove to be useful for diagnos-

ing faults in small, stable systems but not in large and complex systems. Component

connection models with analytical relations between input and outputs of components

14

� Complexity : The system consists of a large number of components and sub-

systems with complex interactions between them.

� Non-local e�ects of a fault : Because of the interactions between the sub-systems,

a fault in one part of the system can e�ect the functioning of another \remote"

sub-system (propagation of faults).

� Dynamic : Because of the dynamic nature of the processes in the system, the

interactions between sub-systems take a �nite amount of time. This means

that faults will also take a �nite amount of time to e�ect the functioning of

the system. This introduces a temporal relationship between a fault and its

manifestations.

The goal of the work in this thesis was to develop a diagnostic system that localizes

faults spatially as well as temporally. In other words, we would like to know which

component failed and when it failed. Knowing the time of occurrence of a fault can

be very helpful in fault recovery and prevention of catastrophic failures. Also, as is

explained later, temporal reasoning helps in localizing faults spatially. Hence, the

modeling paradigm used should include a description of temporal characteristics of

the system.

Given the above goal and the characteristics of systems to be modeled, there are

two basic questions regarding the choice of models :

1. Functional models or fault models ?

2. What type of (functional or fault) models ?

13

CHAPTER II

MODELING CONCEPTS

In order to diagnose faults in a system and to perform diagnosability studies, we

need a modeling paradigm which allows us to express the system structure, compo-

nents and behavior in the form of comprehensive, well de�ned models. This chapter

describes the modeling paradigm that is used in this research.

Domain Characteristics

The paradigm used for modeling a system has to be guided by the characteristics

of systems to be modeled and by the application. Using the same kind of models for

nuclear plant diagnosis and medical diagnosis is not feasible. This is simply because

the interactions between faults (diseases) and their manifestations (symptoms) have

quite di�erent characteristics in the above two cases. Instead, a modeling paradigm

should be developed which is focused on a class of systems with similar characteristics.

The application addressed in this thesis is that of diagnosis. Thus, system char-

acteristics are examined from diagnostic point of view. The application domain con-

sists of engineering systems like power plants, chemical plants, airplanes, etc. These

systems have some common characteristics that strongly in
uence the selection of

modeling paradigm :

� Heterogeneity : A large engineering system employs many di�erent kind of

sub-systems. For example, there are mechanical systems, chemical processes,

controllers, digital systems, etc.

12

2. Develop algorithms which will operate on the fault models, analyze them and

evaluate the diagnosability of the system using the metrics.

3. Develop algorithms which will generate alarm allocation advice, given the de-

sired values for the diagnosability metrics.

4. Develop a tool which will :

� allow the user to perform diagnosability experiments by changing alarm

allocation and sensor allocation.

� allow the user to specify the desired diagnosability and ask for alarm and

sensor allocation suggestion.

� generate comprehensive reports about the diagnosability of the system.

Thesis Outline

Chapter II discusses the modeling paradigm used in this research. Chapter III

describes the robust diagnostic system, its strategy, structure, algorithms and tests.

Chapter IV discusses the metrics and algorithms developed for diagnosability. Chap-

ter V concludes the dissertation.

11

i.e., when a discrepancy is present). The diagnostic algorithm should be able to

identify such observation errors and incorporate the information into generation

and ranking of fault hypotheses.

2. Because the system under diagnosis is a dynamic system, faults will propagate

through the system over time, giving rise to \event propagations". Hence, the

diagnostic algorithm should handle temporal relationships among events.

3. The event-driven nature of the diagnostic algorithm gives rise to few more re-

quirements :

� The algorithm should use non-monotonic reasoning.

� The algorithm should be capable of incremental diagnosis.

� The algorithm should be able to predict future events.

� The algorithm should revise its hypotheses when a predicted event occurs

(or does not occur).

4. Another requirement of the diagnostic algorithm is that it should be able to

identify loss of model validity and should take it into account when diagnosing.

5. Lastly, the algorithms should be of polynomial complexity in order to ensure

scalability.

Diagnosability Studies

We identify the following objectives for diagnosability studies :

1. De�ne metrics to quantify the ability to detect, diagnose and predict faults in

the system.

10

faulty operation { (1) Discriminability, (2) Accuracy and (3) Time Lag. The metrics,

however, capture the notion of detectability more than that of diagnosability. The

discriminability score together with the time lag score tells us whether a particular

sensor will provide any evidence in case of a fault, and if so, how soon. But it does

not tell us if the evidence can be used e�ectively to diagnose the fault.

Objectives

In the previous section, the problems and issues associated with sensor-based

diagnosis were identi�ed and discussed. In particular, two areas for research have been

identi�ed { robust diagnostics and diagnosability studies. The research described here

deals with these two issues. In this section we will describe the speci�c objectives of

the research.

Modeling

In order to diagnose faults in a system and to perform diagnosability studies, we

need a modeling paradigm which allows us to express the system structure, compo-

nents and behavior in the form of comprehensive, well de�ned models. The models

should describe the faults in the system, their manifestations and the role sensors

play in monitoring and diagnosing the faults.

Robust Diagnostics

A diagnostic algorithm should be developed which is robust against observation

errors. For this, the following requirements are identi�ed :

1. The algorithm should be able to identify erroneous observations. The observa-

tion errors can manifest themselves as false alarms (alarm ringing when there is

no discrepancy present) and/or silent alarm (alarm not ringing when it should,

9

involves developing test vectors that will exercise the circuit in a way to ensure that

the circuit will work properly with all possible inputs.

Tanaka discusses diagnosability and optimal sensor allocation for linear discrete

dynamic systems in [17]. He uses the state-space representation of a system and has

de�ned indices for detectability of a fault and separability of faults. These indices can

be computed from a given sensor allocation and can also be used to determine the

optimal sensor allocation to achieve a certain detectability and separability. However,

this method is good only for small, stable systems whose state-space description is

available.

Scarl proposes a method to minimize sensor costs for device-centered, model-based

systems [18]. A diagnosability criterion, which expresses the permissible ambiguity

in the diagnosis, is de�ned for every component in the system. Then a Minimal

Sensor Set (MSS) for each component set is derived by considering sets of all possible

combinations of sensors, in the increasing order of cardinality of the sets. Once the

MSS for each component are found, a global minimization is performed to come up

with one MSS for the whole system that will keep the cost of sensors minimum. The

drawbacks of this method are that (1) it is dependent on the diagnostic methodology

and (2) it is computationally expensive, making it useless for large systems.

The work done by Chang et al. [8] uses diagnostic dictionaries to model the failures

and computes the t-fault diagnosability (up to t faults can be diagnosed correctly or

not) of the faults in a system. However, they ignore the dynamics of the system and

do not address the issues related to the detection and prediction of faults.

Chien et al. have presented [19] an approach to evaluating sensor placement. They

simulate the system behavior using analytical models to predict the signal values

read by sensors under normal and faulty operation. They have de�ned three metrics

to evaluate a sensor on the basis of its ability to distinguish normal operation and

8

Diagnosis in this system proves to be quite di�cult, particularly in the presence of

sensor failures. This is because the diagnostic algorithm has to search a large space

of possible faults in order to trace the observed malfunctions to their original cause.

The presence of sensor failures makes the search space larger.

Diagnosability

As mentioned in the previous section, diagnosability of a system is a measure

of how e�ectively the faults can be detected and diagnosed. Two factors have a

considerable e�ect on this { (1) the number of sensors and (2) their locations, i.e.,

the physical variables they measure and the signals they provide to the diagnostic

system. The sensor allocation in the system describes the number and location of

sensors. This, in turn determines the alarm allocation, i.e., the discrepancies that can

be observed.

Also, as mentioned previously, the number, weight, cost etc. are important de-

sign concerns. Reducing the number of sensors may result in substantial savings in

weight and cost. Having a large number of sensors, on the other hand, may result

in faster, more accurate fault detection and diagnostics. Thus, we need to arrive at

an optimal sensor allocation which does not sacri�ce diagnosability of the system.

Sensor allocation requires the understanding of the e�ects of sensor placement on

basic characteristics of diagnosability. The ultimate goal is to minimize the sensor

cost while maintaining the required level of diagnosability.

There has been considerable work done on design of digital circuits for testabil-

ity [16]. The domain, however, is quite di�erent from that of dynamic system. Also

the tasks { testing and diagnosing a system { though similar, have important di�er-

ences. Testing of digital circuits, whether a go/no-go testing or diagnostic testing,

is done prior to putting the system in operation. Designing a circuit for testability

7

is known, then under certain conditions, the state of the system can be calculated

from the observed variables, which in turn can be used to derive the expected value

of the other, related physical variables. Then, by comparing the computed values to

the actual values read by the sensors, the health of sensors can be determined. The

collection of papers in [1] addresses issues related to analytical redundancy method

for sensor failure detection. The main drawback of this method is that the analytical

model of the plant has to be available. Additionally, most of the results have been

developed only for linear systems. These limitations make the method useful only for

smaller, stable subsystems.

Qualitative methods have been used for diagnosis of complex systems which can

not be modeled analytically. Association-based systems, a class of qualitative sys-

tems, emulate a human expert diagnosing the fault(s) [2]. Fox et al. [6] address

sensor failures in a rule-based system called PDS by performing a \meta-diagnosis"

of sensors before the actual diagnosis and computing the level of con�dence in the

evidence provided by the sensors. Chandrasekharan et al. describe a system which di-

agnoses faulty sensors by pattern matching on diagnostic expectations. Sensor failure

detection has also been tried with neural networks [5].

The computational complexity of association-based systems, however, makes their

usefulness limited. Such systems typically work with large fault-symptom knowledge

bases. When observation errors need to be diagnosed along with component faults,

there can be a combinatorial explosion in the number of fault-symptoms associations

to be stored in the knowledge base, and this makes the diagnosis computationally

prohibitive.

Scarl describes a methodology to diagnose sensor failures using functional models

of a continuous time systems [7]. A system is represented as a network of component

with functional relationships between the inputs and outputs of each component.

6

Problem Description

Robust Diagnostics

The sensory input signals provide information to diagnostic programs. When the

information provided by the signals indicates incorrect system behavior, the diagnos-

tic program should explain the incorrect behavior by identifying the component(s)

in the system that have failed. In other words, the diagnostic program explains the

observed system behavior in terms of one or more hypotheses about the state of the

components in the system.

Since the diagnoser has to locate the fault(s) by interpreting the observations

(information provided by sensor signals), the validity of diagnostic results depends

upon the reliability of observations. The observations can be erroneous because (1)

sensors can fail and thus provide the diagnostic system with wrong data values, (2)

even if the sensors are working correctly, the signals read by them could be interpreted

wrongly (in model-based systems, this would be a modeling error), and, (3) in case of

a major fault, the assumptions about the systemmay become invalid (in model-based

systems this means a loss of model validity).

One of the approachs to tackle the problem of unreliable sensors has been to

use hardware redundancy. Signals from three or more sensors measuring the same

physical variable are compared for consistency. However, in many systems such as

space vehicles, due to the very high cost, weight and space penalties, the extensive

use of hardware redundancy is prohibitive.

Another approach has been to use analytical redundancy for detecting sensor fail-

ures. Dynamic systems represent a complex set of constraints among the observable

physical variables in the system. This means that there is an inherent redundancy in

the system, which is often called analytical redundancy [1]. If the model of the plant

5

and the diagnostic results can be incorrect and/or incomplete. A robust diagnostic

system should be able to handle observation errors. By a diagnostic system that can

handle observation errors we mean a system that will, ideally, be able to interpret

the (possibly erroneous) observations properly and come up with the correct and

complete diagnostic result. At worst, the diagnostic system should degrade gracefully

as the number of observation errors increases. An important issue of the diagnosis of

large scale systems is that of e�ciency of the diagnostic algorithm. An algorithm of

exponential complexity is not scalable. Thus the diagnostic algorithm should be able

to handle observation errors and also be of polynomial complexity.

Alarm allocation means the assignment of alarms to discrepancies. A given alarm

allocation describes the set of discrepancies which are being observed for occurrence.

A discrepancy that is not being observed for occurrence will not have an alarm as-

signed to it. One alarm is allocated to only one discrepancy. Sensor allocation,

although a similar concept, is more complex than alarm allocation. Sensor allocation

is the assignment of sensors to alarms. What makes it complex is the fact that, be-

cause of inter-relationships between the physical variables in the system, the value

read by one sensor may be used to generate more than one alarm and, also, an alarm

may be generated using values from more than one sensor.

Diagnosability of a system, in its most general sense, means that property of the

system which allows the faults in the system to be detected and diagnosed in a timely

manner. In order to characterize the diagnosability of a system, one needs to develop

some criteria or metrics, which express the property of diagnosability in a reasonable

and coherent manner.

4

term \failure" is used, it should be clear from the context what is meant, otherwise

it will be explicitly stated.

Fault detection means determining that there is something wrong with the system.

Usually, faults are detected by observing the values of physical variables in the system

and then deducing that one or more discrepancies exist, which implies that one or

more faults in some component(s) have occurred. Once a discrepancy is observed, i.e.,

a fault has been detected, it needs to be diagnosed. Fault diagnosis means identifying

the faults, i.e., locating the physical components that are not functioning properly.

The diagnostic result consists of a set of one or more components in the system that

are believed to be faulty.

Correctness of the diagnostic results means that only those components that are

actually faulty are identi�ed as faulty and no healthy component is part of the diag-

nostic result. Completeness of results means that all the components that are faulty

are indicated.

Sensors are those components in the system that are used to measure values of

physical variables like temperature, pressure, etc. The signals generated by these sen-

sors can be used for control and monitoring. The fault detection algorithms can use

these signals to determine whether a discrepancy exists or not. An alarm is an indi-

cation that a discrepancy has occurred. The alarm is said to ring when a discrepancy

is observed. A discrepancy which has an alarm assigned to it is called a monitored

discrepancy, while the ones without alarms are called non-monitored discrepancies.

An alarm may become silent after ringing for a while (the discrepancy may not ex-

ist after a while, possibly because of a repair action). The ringing and silencing of

alarms introduce events that trigger the diagnostics. All the events have a time stamp

associated with them, signifying the time that the status of the discrepancy changed.

As mentioned in the previous section, sensor failures can lead a diagnoser astray

3

example, in a space bound system, the number, weight, size, reliability and cost of

the sensors are important design concerns, and keeping the number of sensors at the

lowest possible level is very important.

What's needed is a tool to analyze the system in terms of its diagnostic character-

istics. Such a tool could be used at design time to determine the relative importance

of sensors from the point of view of diagnostics. It would also help in choosing the

optimal allocation of sensors to insure diagnosability of the system while keeping costs

at a minimum.

Terminology

In this section some of the terms and concepts used in diagnosis and diagnosability

studies are de�ned and discussed brie
y. For a detailed description of modeling

concepts and de�nitions, please refer to Chapter II.

A component is part of the physical hardware assembly of the system. It may

refer to a single component like a pipe or an assembly of components, e.g., a pump

assembly. A failure mode is a failure of a component. A component may have more

than one failure mode, i.e., a component may fail in more than one way. When a

component malfunctions, we say that a failure mode of the component has occurred.

The occurrence of a failure mode is called a fault. A component which exhibits one

or more failure modes is referred to as a faulty component. A component which

is not malfunctioning (none of the failure modes have occurred) is called a healthy

component.

A fault in a component will produce anomalies in system behavior. These anoma-

lies are called discrepancies. A discrepancy may be immediately observable or it may

go unobserved depending upon sensor allocation and fault detection algorithms used.

The generic term for a failure mode, a fault and a discrepancy is failure. When the

2

CHAPTER I

INTRODUCTION

The degree of automation in large, complex systems such as chemical plants,

power generation and aerospace systems has been steadily increasing in the recent

past. Automated diagnosis and control forms a necessary part of these systems.

Accurate and speedy diagnosis of faults is an important factor in maintaining their

health and continued operation and in reducing of repair and recovery time. These

systems employ a large number of sensors to read the values of physical variables. The

signals provided by these sensors constitute the data that the control, monitoring and

diagnostic algorithms use. The important role that these sensors play in the systems

gives rise to some issues regarding their reliability and cost.

The �rst issue is that of reliability of sensors. Since the signals from sensors are

used for control, monitoring and diagnosis, it follows that if a sensor fails and pro-

vides incorrect readings, the system performance will be adversely a�ected. It might

result in an incorrect control action leading to a degradation in system performance.

It might result in incorrect diagnosis, resulting in unnecessary repair and loss of pro-

ductivity while the system is down for repairs. In the worst case, a wrong control

action or wrong diagnosis may result in a complete loss of system. Thus, being able

to identify failures in sensors will result in considerable improvement in safety and

performance.

The second issue is that of sensor allocation for diagnosability. The diagnostic

functions of a system are best performed when they have an ample amount of sensor

readings, which allows them to compute the system state. However, it is not always

possible to put a sensor on every important physical variable in the system. For

1

LIST OF TABLES

Table Page

1. Single and Multiple Failures : 61

2. False Alarm Sensor Failures : 62

3. Silent Alarm Sensor Failures : 63

4. Primary Alarm Sets : 102

ix

24. Hierarchical Clustering : 89

25. Generating Test Tree : 91

26. Diagnosis with Distinguishability/Test Sequence Analysis : : : : : : : : 97

27. A Simple System : 99

28. FPG with a Loop : 99

29. Diagnosability Analysis Tool : 114

30. Analysis Panel : 120

31. Hierarchy Panel : 127

32. FPG Panel : 129

33. Report Panel : 135

viii

LIST OF FIGURES

Figure Page

1. Multiple Aspect Modeling : 20

2. Hierarchical Modeling : 21

3. Fault Model Aspects : 22

4. Pictorial Representation of Failure Propagation : : : : : : : : : : : : : 24

5. Propagation of Faults : 25

6. Failure Propagation Model : 28

7. Failure Propagation Graph : 29

8. Block Diagram of the Diagnostic System : : : : : : : : : : : : : : : : : 34

9. Use of structural redundancy for sensor fault detection : : : : : : : : : 36

10. Conceptual structure of the robust reasoning method : : : : : : : : : : 37

11. Block Diagram of the Inter-Level Coordinator : : : : : : : : : : : : : : 54

12. Schematic of Hygiene Water Processor : : : : : : : : : : : : : : : : : : 57

13. Functional Hierarchy of Hygiene Water Processor : : : : : : : : : : : : 58

14. Failure Propagations in Functionality HWProcessing : : : : : : : : : : 59

15. Failure Propagations in Functionality Processing : : : : : : : : : : : : : 60

16. Schematic of Thermal Control System : : : : : : : : : : : : : : : : : : : 64

17. Functional Hierarchy of Thermal Control System : : : : : : : : : : : : : 65

18. Failure Propagations in Functionality Reservoir : : : : : : : : : : : : : 65

19. Schematic of THC : 66

20. Functional Hierarchy of THC : 67

21. Failure Propagations in Functionality Fan Group ORU : : : : : : : : : 68

22. LOP Handling Example : 74

23. Test Sequencing : 87

vii

A. DIAGNOSTIC ALGORITHMS : 101

Algorithm for UpdateHypotheses : : : : : : : : : : : : : : : : : : : 101
Algorithm for RecomputeTime() : : : : : : : : : : : : : : : : : 102

Algorithm for FindMissingAlarms : : : : : : : : : : : : : : : : : : 103
Algorithm for LocateFSC : 104
Algorithm for FindNextAlarm : 105

B. DIAGNOSABILITY ALGORITHMS : : : : : : : : : : : : : : : : : : 106

Evaluation Algorithms : 106
Algorithm For Evaluating Detectability : : : : : : : : : : : : : 106
Algorithm For Evaluating Distinguishability : : : : : : : : : : 107
Algorithm For Evaluating Predictability : : : : : : : : : : : : 107

Advice Algorithms : 108
Algorithm For Detectability Advice : : : : : : : : : : : : : : : 108
Algorithm For Distinguishability Advice : : : : : : : : : : : : 109
Algorithm For Predictability Advice : : : : : : : : : : : : : : 111

Algorithm to Compute Ap;t : 112

C. DIAGNOSABILITY ANALYSIS TOOL : : : : : : : : : : : : : : : : 113

Study Management : 114
DTOOL Reports : 116
User Interface : 119

Analysis Panel : 120
Selecting Parameters for a Study : : : : : : : : : : : : : : 121
Current Parameters of a Study : : : : : : : : : : : : : : : 123
Performing Analyses : 124
Manipulating Studies : 125

Hierarchy Panel : 127
Selecting Individual Functionality : : : : : : : : : : : : : 128
Flat Hierarchy : 128

FPG Panel : 128
Detectability Advice : 132
Distinguishability Advice : : : : : : : : : : : : : : : : : : 132
Predictability Advice : 132
Changing Alarm and Sensor State Allocation : : : : : : : 133
Viewing Results : 133

Report Panel : 135
Computational Complexity : 135
Miscellaneous : 136

REFERENCES : 138

vi

Some De�nitions : 41
The Hypotheses : 42

Failure Mode Hypothesis : 42
Sensor Fault Hypotheses : 44

FD Algorithms : 45
Procedure UpdateHypotheses : : : : : : : : : : : : : : : : : : : 46
Procedure FindMissingAlarms : : : : : : : : : : : : : : : : : : 47
Procedure LocateFSC : 47
Procedure FindNextAlarm : 50

Complexity Analysis : 50
Analysis of UpdateHypotheses : : : : : : : : : : : : : : : : : : 51
Analysis of RecomputeTime() : : : : : : : : : : : : : : : : : : 51
Analysis of FindMissingAlarms : : : : : : : : : : : : : : : : : 51
Analysis of LocateFSC : 52
Analysis of FindNextAlarm : 52
Complexity of the Diagnostic Algorithm : : : : : : : : : : : : 52

Handling Sensor States : 53
Inter-Level Coordinator : 54
Tests and Discussion : 56

IV. DIAGNOSABILITY ANALYSES : 69

Hierarchical Fault Models : 70
Diagnosability Metrics : 71
Handling LOPs : 73
Diagnosability Problem : 75
Data structures derived from G0 : : : : : : : : : : : : : : : : : : : 77
Diagnosability Analyses : 78
Evaluation : 78
Advice : 79
Statistical Analysis : 80
Statistical Analyses Algorithms : 82

Evaluation : 82
Advice : 83

Distinguishability and Test Sequencing : : : : : : : : : : : : : : : : 83
Test Tree Construction : 85

Hierarchical Clustering : 88
Local Test Trees : 91

Diagnosability Analysis Tool : 93

V. CONCLUSION : 94

Future Work : 96
Probabilities : 96
Test Sequencing and Diagnosis : : : : : : : : : : : : : : : : : 97
Boolean Relationships Between Propagations : : : : : : : : : : 98
Failure Sequence and Distinguishability : : : : : : : : : : : : : 99

Appendices

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS : iii

TABLE OF CONTENTS : iv

LIST OF FIGURES : vii

LIST OF TABLES : ix

Chapter

I. INTRODUCTION : 1

Terminology : 2
Problem Description : 5

Robust Diagnostics : 5
Diagnosability : 7

Objectives : 9
Modeling : 9
Robust Diagnostics : 9
Diagnosability Studies : 10

Thesis Outline : 11

II. MODELING CONCEPTS : 12

Domain Characteristics : 12
Functional Models vs. Fault models : : : : : : : : : : : : : : : : : 14

Heterogeneity : 14
Complexity : 14

Multiple Aspect Hierarchical Modeling : : : : : : : : : : : : : : : : 17
Multiple Aspects : 17
Hierarchical Models : 21

Fault Models : 22
Failure Propagations : 23
Failure Monitoring : 25

Failure Propagation Model : 27
Failure Propagation Graph : 29

III. ROBUST DIAGNOSTICS : 31

The Diagnostic System : 33
Diagnostic Strategy of FD : 34

Parsimony : 34
Structural redundancy : 35

Functionality Diagnoser : 37
The Diagnostic Problem : 38
Data structures derived from G : : : : : : : : : : : : : : : : : : : 40

iv

ACKNOWLEDGEMENTS

Let me begin with an expression of thanks and deep sense of appreciation for all

the help, advice, guidance and support given by my advisor, Dr. Janos Sztipanovits.

His insight, criticism, support and the \can be done" attitude has been of immense

value to me.

Thanks to my sponsor, the Boeing Co., for continued �nancial support. Thanks

are also due to James Ray Carnes, Dr. Byron Purves, Dr. David Throop and Al

Underbrink, Jr., all at Boeing Co., for their critical evaluation of my work, suggestions

for improving it and help in testing the ideas.

Thanks are due to my other committee members, Dr. Gautam Biswas, Dr. Benoit

Dawant and Dr. George E. Cook for their help and support.

Two people that have aided me considerably towards implementing and testing

the ideas in this thesis are Dr. Gabor Karsai and Dr. Csaba Biegl. Without their

work in providing the framework for implementing the ideas and constant help, life

would have been considerably more trying.

Thanks to Dr. Samir Padalkar for his advice and help. He laid the foundation on

which most of the work described in the thesis is built.

I would like to thank Ben Abbott for his friendship and all the help he has given

me over the years { work related and otherwise.

Thanks to my fellow graduate students and other friends, particularly Maggie, for

their help, support and the good times.

Last, but most decidedly not the least, my deep gratitude to my family for their

love and understanding, even though they would prefer that I wasn't halfway across

the world from them.

iii

c
 Copyright by Amit Misra 1995
All Rights Reserved

SENSOR-BASED DIAGNOSIS OF DYNAMICAL SYSTEMS

By

Amit Misra

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial ful�llment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

May, 1994

Nashville, Tennessee

Approved: Date:

