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Faults Time in seconds

TS 0.390315
PS 0.687290

PS+TS 0.466055
TS+CS 0.489567

TS+CS+PS 0.484502

Table 2: Sensor faults (false alarms)

Faults Time in seconds

PS1 1.223147
PS1+PS2 0.967154

PS1+PS2+PS3 0.842267
PS1+PS2+PS3+PS4 0.767575

Table 3: Sensor Faults (silent alarms)

from the pump such that the sensors did not indicate a drop in pressure when they were supposed to (missing alarm).
The results are shown in Table 3. With the �rst three sensor failures, the diagnoser returned correct diagnostic results
{ failure of pump and failures in the three sensors which did not detect a drop in pressure. When the fourth sensor
was failed, the diagnoser returns the following result { the pressure sensor and 
ow meter in the pump assembly
which are reading low values are faulty, the pump is all right and none of the four pressure sensors mentioned above
are faulty. This is a case when the diagnoser gets misled by sensor failures but it requires four sensor failures to
cause the diagnoser to go astray. As long as there is su�cient evidence for diagnoser to work with, it returns the
correct results. Note that as the number of missing alarms increases, the diagnosis time goes down. This is because
the diagnosis is event driven and is triggered every time that an alarm rings. Thus with a smaller number of ringing
alarms, the diagnosis gets triggered less number of time and takes less cumulative time for diagnosis. The second
example is that of a Thermal Control System (TCS) whose schematic is shown in �gure 5. This system has the
simple task of maintaining the temperature of water within certain limits. There are two tanks in the system, only
one of which is on-line at a time. The water is pumped through a heater and then a heat exchanger. By controlling
the amount of heating in the heater and cooling in the heat exchanger, the temperature of the water is maintained.
The three way valves before and after the tanks are used to put a tank on-line or o�-line.

We built the models for TCS and conducted tests with the actual hardware. The run-time system consisted of
the diagnostic system running on a SPARC 1 workstation, talking to a data acquisition unit over a serial line. The
data acquisition unit collected the signals provided by the sensors in the system and sent them over to the diagnostic
system. The alarm generator part of the diagnostic system read these signals and rang and/or shut o� alarm(s).
The diagnoser then updated the fault status of the components in the system and displayed the results. We tested
leaks in the tanks, fan failure, pump failure etc. and an assortment of sensor failures. The diagnoser returned correct
results in case of component failures. Sensor failures were also diagnosed properly. In fact, even when all the three
pressure transducers were failed, the diagnoser deduced the sensor failures correctly since none of the 
ow meters
indicated any abnormal values.

8. CONCLUSION

In this paper we have presented a model-based diagnostic system which diagnoses the faults in the system
correctly if the number of observation errors is not too large. Furthermore, the diagnostic algorithms used in the
system are of polynomial complexity and hence the system can deliver real-time performance. The use of explicit
fault models cuts down the search space and the number of hypotheses that need to be generated and validated. The
use of spatial and temporal constraints (structural redundancy) in the model makes the detection of inconsistent
observations computationally feasible and hence we can hypothesize about sensor failures without having to consider
every possible combination of sensor and component failure(s).
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Faults Time in seconds

TNK 0.450163
HTR 0.874088
PMP 1.004877

TNK+HTR 1.451494
TNK+PMP 1.365014
HTR+PMP 1.249900

TNK+HTR+PMP 1.572464
HTR+PMP+WQM 1.652971

TNK+HTR+PMP+DST 2.148210
TNK+HTR+PMP+WQM 2.106865

Table 1: Single and multiple component faults

of sterilization, bacteria removal and some other processing. The PCWQM senses the amount of contaminants in
the water and controls the 3 Way Switch to either send it back to the puri�cation circuit or to the Processed Water
Storage tank. We built the models for the HWP and tested the diagnostic system using these models. For testing
purposes, we've developed a Fault Pattern Simulator (FPS). One can specify the components and/or sensors to fail
and FPS generates the alarm pattern in real-time, using the failure propagation information in the models.

The results from simulations using HWP models are shown in Tables 1, 2 and 3. The abbreviations used are: (1)
TNK is the tank in the Unprocessed Water Storage that supplies the water to the puri�cation circuit, (2) HTR is the
heater in the sterilization assembly, (3) PMP is the pump assembly, (4) WQM is the water quality monitor (PCWQM),
(5) DST is the distribution assembly which supplies the clean water to user points, (6) TS is the temperature sensor
in the heater, (7) PS is the pressure sensor in the pump assembly, (8) CS is the pressure sensor in the pressurization
assembly, (9) PS1 is the pressure sensor after the 3-way valve, (10) PS2 is the pressure sensor after PCWQM, (11)
PS3 is the pressure sensor after the UF/RO �lter assembly, and (12) PS4 is the pressure sensor in the Sterilization
assembly. The fault column shows the fault(s) that were simulated. Multiple faults are indicated by +, e.g., TNK+HTR
means that a leak in the tank and a fault in the heater (fail high) were the two faults simulated.

The time column shows the time spent on diagnosing the faults. Note that the diagnosis system consists of an
ILC and a number of instances of functionality diagnosers (FD), as discussed before. Also, the diagnostic system
is implemented using the Multigraph model of parallel, distributed computation.19 The ILC and all the FDs are
implemented as actors which exchange information, commands and results by using message passing. Thus, time
shown in this column includes the time spent in ILC, in the various FDs and in the message passing.

Table 1 shows the results of single and multiple fault scenario simulations. Table 2 shows the results with single
and combinations of sensor failures. The sensor failures in this experiment gave rise to false alarms. They were all
diagnosed as sensor failures since the evidence against an actual fault and for a false alarm was quite strong. In the
next experiment, we failed the component pump and also failed one, two, three and four pressure sensors downstream



non-ringing alarms and checking the propagation times from each ringing alarm to these non-ringing alarms to �nd
the earliest expected alarm time.

6.4. Complexity analysis

There are m fNodes and n dNodes. The total number of nodes in the graph is (m + n). Some of the above
algorithms use DFS. The order of DFS in our case is O((m + n)2) since the graph is represented using adjacency
matrix. The alarm sets P , S etc. are maintained as arrays and the operation of adding or deleting the alarms
is O(n) since the maximum number of alarms is n. Many of the loops iterate on the number of hypotheses nh.
Theoretically, the number of hypotheses can be O(mn), however, for any reasonable model and alarm pattern, the
number of hypotheses will be O(m).

Updating Hypotheses : The �rst step in the algorithm involves, given an alarm, checking if an fNode is ancestor
of the alarm. If it is an ancestor, we then check if the alarm is a primary alarm of the fNode. This takes O(1)
time since the information is maintained in matrices. Next, if the alarm is a primary alarm of the fNode, we check
whether some other alarms, which were marked as primary, have become secondary alarms of the fNode because of
the new alarm. This takes O(n) time since there are at most n alarms. Since we do the above for every fNode and
there are m fNodes, this takes O(mn) time.

The next step, recomputing the estimated time of occurrence of failure modes, involves going through the list of
all the hypotheses that an fNode may have. Since an fNode can be incident upon at most n dNodes, there can be
at most n such hypotheses. For each hypothesis, the new alarm is added to either P or SP set. Thus this step takes
O(n2) time for each failure modes giving O(mn2) time overall.

Next we search through the graph (using DFS) and mark the alarms for inclusion into P , SP etc. for a hypothesis,
which takes O(n2) time. This is repeated for each hypothesis, hence this step takes O(nh:n

2). The overall complexity
for updating hypothesis then is O(nh:n

2) since nh can theoretically be greater than m.

Finding Missing Alarms : Since the DFS is performed for all the alarms and all the hypotheses, the complexity

of this step is O(nh:n:(m+ n)2).

Locating the fault sources : The sorting the hypotheses according to their rank takes O(nh lognh) time. Next we
examine the hypotheses until all the alarms are explained. The number of hypotheses examined is always less than
or equal to the number of ringing alarms. This is because each hypothesis that we look at will explain at least one
alarm. If, however, the next hypothesis does not explain any alarm, i.e., its rank is less than 1, we will not examine
any more hypotheses, instead we will label the remaining unexplained alarms as false alarms. And since the number
of ringing alarms can not be more than the number of alarms, we will examine at most n hypotheses. Examining
each hypothesis involves going through its alarm sets, which is O(n). Thus, examining the hypotheses takes O(n2)
time. Thus, locating the fault sources takes O(nhlognh + n2).

Determining the next alarm : The complexity of this algorithm is O(n2) since there are at most n alarms and for

each ringing alarm we examine, in the worst case, all the other alarms exactly once.

From the complexity of the steps described above, the complexity of the whole algorithm is O(nhlognh + n2 +
nh:n:(m+n)2+n2). In the worst case, with nh = m:n, the complexity reduces to O(m:n4). In the more common case,
nh will be O(m) and then the complexity reduces to O(m:n3). Since the step for �nding missing alarms dominates
the other two in terms of complexity, the time taken when the other two events, alarm becoming silent and timeout,
come in, is still O(m:n3).

7. TESTS AND DISCUSSION

In this section some examples of multiple faults, sensor faults and combinations thereof are given and the robust-
ness of the diagnostic system is examined. At �rst we'll discuss the results obtained by testing using simulation of
faults. Then the test with an actual system is described.

The �rst example is in the context of the models for Hygiene Water Processor for the Space Station Freedom.
Figure 4 shows a schematic of the HWP system. The tanks in the Unprocessed Water Storage (1) collect the water
from user points, (2) store it, and (3) supply it to the purifying circuit. The tanks in the Processed Water Storage
(1) collect water after puri�cation, (2) store it and (3) supply it to user points. The puri�cation circuit itself consists



1. ai might not have any ancestor alarm that is ringing (it is a primary alarm).

2. ai might have one or more ancestor ringing alarm(s) (it is a secondry alarm)

3. ai might or might not be a descendant of one or more hypotheses already in the hypotheses table (if it is a
descendant of an already existing hypothesis we add it to one of the alarm sets).

4. ai might or might not be a descendant of one or more hypotheses that are not already in the table (if it is not
a descendant of an already existing hypothesis we add a new hypothesis).

5. ai might be an ancestor of some other ringing or silent alarms (in which case these alarms may need to be
moved to S, SS or MS sets).

If there is a hypothesis h for which ai is a primary alarm, we have to recompute the estimated time of occurrence
of f(h) and check if this new alarm is a spurious primary or a normal primary. Note that one f may have more than
one hypotheses in the table. This will happen if two or more primary alarms of the failure mode con
ict with each
other temporally. In such cases we will divide the primary alarms into subgroups such that the alarms in one group
all agree with each other temporally. Then we will have as many number of entries in the hypotheses table for this
failure mode as there are groups. These entries will have the corresponding primary alarms in set P and all other
primary alarms in set SP. For example, let there be a failure mode f1, with primary alarms a1; a2, and a3. Out of
these primary alarms, let a1 and a2 agree with each other temporally, but not with a3. In this case we will have two
entries in the hypotheses table, h1 and h2, with

f(h1) = f(h2) = f1; P (h1) = fa1; a2g; SP (h1) = fa3g; P (h2) = fa3g; SP (h2) = fa1; a2g

and the secondary alarms will be descendants of the corresponding primary alarms. Thus, we check to see if ai is
consistent with h or not and adds ai to P (h) or SP (h). If it can not �nd any hypothesis for f(h) which is consistent
with ai, it adds a new hypothesis for f(h).

6.3.3. Finding the missing alarms

For each hypothesis h, there might be some alarms that should be ringing, given the estimate of time of occurrence
of f(h) and the present time, but are not ringing. The (primary or secondary) missing alarms of a hypothesis h are
identi�ed by performing a depth �rst search (DFS) of TFPG starting from f(h) 8 h 2 H.

6.3.4. Locating the fault sources

Next we identify the faulty components and sensors by trying to explain the alarm pattern in terms of faults in
components and/or sensors. Now, we can try to take combinations of various faults that explain the alarm pattern
and choose the combination that gives us the minimum number of components+sensors faults. But this will result
in exponential number of combinations. So, we use the following heuristic : examine hypotheses in decreasing order
of their rank stop once we reach a hypothesis whose rank is less than a particular threshold.

When we examine a hypothesis, we will accept the hypothesis only if it consistently explains a previously unex-
plained alarm. If we accept a hypothesis, it will explain the alarms that are in P (h) and S(h). But then we have to
also believe that the missing alarm(s) in MP (h) and MS(h) are a result of failure of the sensor(s) associated with
these missing alarms. Also, since we are using threshold for degree of con�dence, there might be some ringing alarms
that are not explained by any hypothesis whose degree of con�dence is higher than the threshold. These unexplained
ringing alarms will be treated as false alarms and as a consequence of sensor failure.

The rank of a hypothesis is given by the number of alarms consistent with the hypothesis minus the number of
inconsistent alarms. Thus, the higher the rank of a hypothesis, the more con�dence we have in the hypothesis. Also,
rank(h) will be 1 or greater only if there are more alarms supporting it than opposing it. Thus we choose rank = 0
as our threshold for examining and/or accepting a hypothesis.

6.3.5. Determining the next alarm

When there are some alarms ringing, we need to predict the next alarm that should ring and the latest time by
which it should ring. This will help us in determining the silent and false alarms. This is done by examining all the



of failure mode f . The rank of a hypothesis is a number which gives an the measure of plausibility in the hypothesis.
The higher the rank, the more likely we are to believe in the hypothesis. P;MP; SP; S;MS and SS are all sets of
alarms. When a hypothesis is �rst created, its rank is set to 0. Whenever an alarm is added to the P or the S set
of the hypothesis, its rank is incremented by one. Whenever an alarm is added to any of the other sets, the rank
is decremented by one. (Remark : This way of computing the measure of plausibility has been choosen because it
works well with the fault models used. However, it can be changed if required by the system characteristics. For
example, we can include the a priori probabilities of component failures, or the probabilities of sensor failures in the
measure.)

Notation : f(hi) means the failure mode of hypothesis hi. rank(hi) means the rank of hypothesis hi. time(h)
means the estimated time of occurrence of f . P (hi); SP (hi) etc. will mean the corresponding alarm sets of hypothesis
hi. We will say that an alarm ai supports hypothesis h if ai is a descendant of f(h) and the time of ringing of ai and
time(h) satisfy temporal constraints.

The P;MP; SP; S;MS and SS are de�ned as follows

� P is the set of primary alarms which are reachable from f(hi) and also provide support for hi. Note that there
may be some primary alarms that f(hi) reaches but does not get any support for. Such cases are discussed
later.

� MP is the set of missing primary alarms for hi. Missing primary alarms are those primary alarms of f(hi)
that are silent but should have been ringing, given the estimated time of occurrence of the failure mode.

� SP is the set of spurious primary alarms for hi. These are the primary alarms that are either not reachable
from f(hi) or, if reachable, do not support hi.

� S is the set of secondary alarms for hi that are reachable from, and are temporally consistent with, the alarms
in set P .

� MS is the set of missing secondary alarms for hi. These are the secondary alarms that should have been
ringing, given the time stamp of alarms in set P .

� SS is the set of spurious secondary alarms. These are the secondary alarms that are either not reachable from
hi or, if reachable, are not temporally consistent with the alarms in set P .

6.3. Diagnostic reasoning

Whenever an event comes in, the hypotheses table will be updated and the fault source components and/or the
faulty sensors are located. This involves four steps

1. Updating the hypotheses.

2. Finding the missing alarms.

3. Locating the fault sources.

4. Determining the next alarm to ring.

These steps are described in the next subsections. These four steps are explained for an alarm ringing event, i.e.,
when a new alarm starts ringing. For the other events, i.e., alarm becoming silent and timeout, only the last three
of the above steps are performed.

6.3.1. Updating the hypotheses

When an event comes in (i.e., when an alarm starts ringing), we have to update the hypotheses in the table
(recompute the estimated time of occurrence of the f represented by the hypotheses, add the alarm to one of the
alarm sets described above and perhaps move other alarms from one set to another), maybe add new hypotheses and
compute the rank of the hypotheses again. For this, we might make a few observations about the new alarm ai :
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failure propagation, it can be used to predict future failures based on the current fault state. The function of the
Predictor is to derive deadlines for the future incoming alarms. The event comparator compares the incoming alarms
and the predicted deadlines, and drives the Update module. The Update module processes the received event (alarm
or passed deadline) and creates a new update of the fault state. The output is a ranked list of hypotheses which
is generated by the Evaluator module. Ranking occurs according to the plausibility of the individual hypotheses.
The Results module then selects the hypotheses that explain the current observations, identi�es the fault source
functionality and sends the results to ILC.

6. DIAGNOSTIC ALGORITHMS AND DATA STRUCTURES

6.1. Data structures related to TFPG

The TFPG of a system is a directed graph in which the nodes may represent either a failure mode (fNode) or
a discrepancy (dNode). Let the set of failure modes in a TFPG be denoted by F and the set of discrepancies be
denoted by D. Let there be m failure modes f1; :::; fm and n discrepancies d1; :::; dn. Each edge ei;j in the graph is
weighted with Tmin and Tmax as de�ned previously.

A dNode may have an alarm associated with it. The occurrence of the discrepancy represented by node i is
indicated by ringing of an alarm notated as ai. The maximum number of alarms in a graph is n. An alarm may
have a sensor associated with it. Sensor fault detection proceeds by identifying the wrong alarm(s) (false or missing)
and locating the sensor associated with the alarm(s). In the following discussion, an fNode may be referred to as
fi, a dNode as di or ai. We will use a (m + n) � (m + n) matrix, Reach, to represent the reachability in TFPG.

Reachi;j = 1 if there exists at least one path from node i to node j else it is 0. Note that, since TFPG is a directed
graph, Reachi;j = 1 does not imply Reachj;i = 1

An alarm ai is an ancestor of alarm aj if Reachi;j = 1 and it is a descendant of aj if Reachj;i = 1. Note that it is
possible for ai to be both ancestor and descendant of aj (in case of loops). Also, we say that ai and aj are consistent
with each other if Reachi;j = 1 or Reachj;i = 1 and the times when the alarms ring satisfy the temporal constraints.

6.2. Structure of hypotheses table

A hypothesis h represents exactly one failure mode of one component in the TFPG under consideration. A
component may have more than one failure modes which may have occurred. In that case, each of the failure modes
will have a distinct hypothesis representing it in the hypotheses table. It is also possible that one failure mode may
have more than one entry in the hypotheses table, as is explained later.

The hypotheses table is a set H of hypotheses fhig. Each hypothesis is an n-tuple

hi = < f; time; rank; P;MP; SP; S;MS; SS >

where f is the failure mode of a component for which this entry stands and time is the estimated time of occurrence
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the alarm. The alarms associated with DY 1, DY 2, DY 3, DY 4 and DY 5 are ringing (indicated by up arrow), while
the alarm assigned to DY 8 is silent. The simplest explanation for the alarms at DY 1, DY 2, DY 4 and DY 5 is that
FM1 is a fault source (parsimony). Possible explanation for alarmDY 3 is that FM2 is also a fault source. However,
if FM2 is a fault source, the alarm at DY 8 should also ring (structural redundancy), therefore this hypothesis implies
that the sensor at DY 8 must be faulty as well. An alternative explanation is that the sensor associated with DY 3
is faulty and is giving rise to a spurious alarm. This hypothesis is more plausible than the previous one, since it
explains the alarm scenario with 2 fault sources (FM1 and the sensor associated with DY 3) instead of 3 (FM1,
FM2 and the sensor associated with DY 8) (parsimony). A number of other explanations can be found for the alarm
pattern, that are all less plausible than the previous one.

Clearly, structural redundancy means the use of the interdependence among the alarms in the reasoning algorithm.
The actual reasoning method is considerably more complex than the illustrative example due to the temporal aspect
of the TFPG.

5. THE REASONING METHOD

Since a system is modeled hierarchically and since each functionality in the system has its own TFPG, the TFPGs
are also linked up hierarchically. Thus the diagnostic algorithm has to 1) diagnose faults in the context of individual
functionalities and 2) combine the results from di�erent functionalities and guide the search through the hierarchy.

The diagnostic reasoning is divided into two modules { Functionality Diagnoser (FD) and Inter-Level Coordinator
(ILC). The ILC receives the external events, provides an interface to the user and controls the diagnostic search. The

FD operates on the TFPGs of individual functionalities and generates local results. These local results and some
control information is passed on to the ILC. The ILC looks at the local results and decides which functionality to
diagnose next, registers timeout requests and coordinates the diagnostic search.

5.1. Functionality diagnoser

The Functionality Diagnoser is triggered by one of these events { (1) an alarm ringing, (2) an alarm becoming
silent after ringing for a while, or (3) a timeout occurring, i.e., a predicted alarm did not ring. The ILC receives the
events from the external world and passes them on to the FD. It also tells FD which functionality to operate on.
The FD locates the failure mode(s) and/or sensor faults that have occurred. It also identi�es next alarm that should
ring and then passes on all this information to the ILC.

The basic structure of the reasoning algorithm of FD applies the predictor{corrector principle well known in
recursive estimation, system identi�cation algorithms, such as Kalman �ltering or observers. The conceptual block
diagram of the reasoning method is shown in Figure 3.

The reasoning algorithm uses two basic data structures, the fault state and the TFPG. The fault state includes
the actual list of fault hypotheses and the corresponding evidences. Because the TFPG expresses the dynamics of
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mapping between sensors and the alarms they generate.

The edges in the graph represent the propagations of failures and capture the interactions between di�erent
failures. Thus, an edge between two nodes means that the failure represented by the source node will propagate and
cause the failure represented by the destination node. Each edge is labeled with a time interval [Tmin; Tmax], which
gives the minimum and maximum time that the source failure can take to propagate to the destination.

4. DIAGNOSTIC STRATEGY

The diagnostic system operates on the models discussed in the previous section and locates faults. The input to
the diagnostic system are events that arrive asynchronously and are interpreted in the context of the fault models.
The system (1) receives events, (2) generates hypotheses, and (3) selects some hypothesis(es) according to how
consistently they explain the observations. For this it uses the principles of parsimony and structural redundancy.

4.1. Parsimony

A particular hypothesis is said to be consistent with the received events (observations) if the spatial and temporal
constraints imposed by the propagation models are satis�ed. If observation errors are possible, not all of the received
events have to comply with the spatial and temporal constraints. Consequently, the number of hypotheses that are
plausible under the given set of observed events will become larger.

The principle of parsimony suggests that the simplest explanation is the best. If a hypothesis can explain con-
sistently all of the observed events, it should be considered more plausible than another one, which additionally
requires the assumption of a sensor fault as well. Application of the principle of parsimony means that the di�erent
hypotheses are ranked according to some measure of their plausibility.

4.2. Structural redundancy

As we have discussed before, the physical interactions in dynamic systems impose spatial and temporal constraints
on the observed events. This means that a fault in one part of the system may propagate to another part after some
time. The timed failure propagation model captures these interrelationships and provides an explicit representation
of the propagation paths. Consequently, in those parts of the system where failure propagation occurs, a single fault
cause results in multiple manifestations. Obviously, these manifestations are not independent of each other, they
provide a redundant observation of the fault cause. Because the failure propagation models primarily show structural
relationships in the systems, we call this redundancy structural redundancy.

Due to the structural redundancy, events can con�rm or contradict other events in a propagationmodel, therefore a
concept similar to that of the analytical redundancy approach can be developed. The idea is illustrated in a simpli�ed
TFPG shown in Figure 2. The graph includes only failure propagations. For the sake of simplicity, all of the monitored
discrepancies are associated with a unique sensor, whose output signal is used by a monitoring algorithms to generate



2. PREVIOUS WORK

The problem of observation errors in complex automated systems has been extensively investigated. There has
been considerable research, particularly in the �eld of chemical process engineering, to use quantitative methods to
detect and diagnose faults in a system. The two most common techniques used for fault diagnosis are �ltering and
parameter estimation.20{24 Some quantitative methods have been developed to handle sensor failures as well, using
the set of constraints among the observable physical variables in the system. The basic idea in this approach is
the use of analytical redundancy1 for detecting sensor failures. If the model of the plant (or a part of the plant) is
known, than by observing any of the observable physical variables, the actual state of the plant can be calculated,
which in turn can be used to derive the expected value of the other, related physical variables. Then, by comparing
the computed values to the actual values read by the sensors, the health of a sensor can be determined.2 The main
drawback of these methods is that they are useful only for smaller, stable subsystems.

Researchers have addressed the problem of sensor failures using the association-based (rule-based or knowledge-
based expert systems) techniques. Fox et al.9 describe a sensor-based system, called PDS, in which the level of
con�dence in a sensor is by performing a \meta-diagnosis" of sensors before the actual diagnosis. But this results
in just an additional rule base for sensor failures. Another association-based diagnostic system is described by
Chandrasekaran et al.10 The system diagnoses faults by pattern matching on failure manifestations to determine the
likelihood of the faults. For handling sensor failures, the system uses pattern matching on diagnostic expectations,
i.e., the expected values of sensors, given a fault. Thus it has to store a large number of patterns that will correspond
to the di�erent component fault(s) and sensor failure(s) combinations. This has been one of the biggest stumbling
blocks for association-based diagnostic systems. Using \pre-compiled" knowledge about the failures in the system
and their symptoms makes diagnosis of observation errors computationally prohibitive.

Model-based systems o�er a way out of the problem of having to pre-compile and store such large number of
associations. The presence of the model makes the detection of inconsistent observations feasible, hence, conceivably,
observation errors can be diagnosed by using a suitable algorithm.

There are primarily two kinds of models that have traditionally been used for diagnosis { functional models and
fault models. Functional models describe the \correct" behavior of the system, i.e., how the system is supposed
to behave when no faults are present. Diagnostic algorithms using functional models, such as the one developed
by Scarl,11 su�er from two basic problems (1) function inverses may not be available (the mapping from inputs to
outputs may not be invertible), and (2) the mapping between inputs and outputs may be too complex to uniquely
determine faults.

Fault models, on the other hand, describe system behavior in the presence of faults. Fault models have been used
for diagnosis in work done by many researchers.12{15 Padalkar et al.17 have further developed the work presented
in15 and integrated the diagnosis with a process control system .18 The research presented in this paper uses similar
fault models.

3. FAULT MODELS

In our previous work on the diagnosability of large-scale, dynamical systems, we introduced a hierarchical multiple-
aspect modeling paradigm,18 which captures the system dynamics in terms of a timed fault propagation model

(TFPG).16 In this section the diagnosis related concepts are brie
y summarized.

The faults in a system and their interactions are modeled by using a labeled digraph to represent the dynamics
of the system under fault conditions. For the sake of brevity, we will not present here the de�nitions and concepts
involved in TFPG; instead we illustrate the concepts with the example shown in Figure 1. The square boxes in
the �gure represent the failure modes, e.g., valve stuck open, of components in the system. The circles represent
the anomalies in the system behavior, called discrepancies, e.g., loss of flow. The dotted circles represent those
discrepancies that have alarms associated with them. These are called monitored discrepancies, which means that
the occurrence of these discrepancies can be observed and will be indicated by \ringing" of the associated alarm. The
empty circles represent discrepancies that do not have alarms associated with them and are called non-monitored

discrepancies. The ellipses represent the sensors in the system. Sensors measure the values of physical variables.
The signals provided by these sensors are used to decide if a discrepancy exists and to generate (ring) the associated
alarm. The dotted lines between the sensors and monitored discrepancies represent the (possibly many-to-many)
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ABSTRACT

The complexity of diagnosis tasks in large-scale, heterogeneous dynamic systems has turned the attention in this
area toward model-based methods. Most model-based diagnostic systems try to �nd a set of failed components
that can explain observed discrepancies in system behavior consistently with constraints represented by the models.
Observations are usually sensor-based and discrepancies are detected by fault detection algorithms that compare
expected and observed system behavior. We have developed and �eld tested a real-time robust diagnostic system,
which uses hierarchical, multiple-aspect models of plants. The models include the functional structure, timed failure
propagation graphs, physical component structure and component failure modes. The diagnostic reasoning applies
structural and temporal constraints for the generation and validation of fault hypotheses using the \predictor-
corrector" principle. The diagnosis is generated in real-time amid an evolving alarm scenario, and uses progressive
deepening control strategy. The robust diagnostic system has been tested and demonstrated using ECLSS models
obtained from the Boeing Company.

1. INTRODUCTION

The continued operation and safety of a large scale heterogeneous dynamical system depends upon speedy and
correct diagnosis of faults. In these systems, the sensory input signals provide information to diagnostic programs.
When the information provided by the signals indicates incorrect system behavior, the diagnostic program should
explain the incorrect behavior by identifying the component(s) in the system that have failed. In other words, the
diagnostic program explains the observed system behavior in terms of a hypothesis about the state of the components
in the system.

Since the diagnoser has to locate the fault(s) by interpreting the observations (information provided by sensor
signals), the correctness and completeness of diagnostic results depend upon the reliability of observations. By
correctness of the results we mean that only those components that are actually faulty are identi�ed as faulty and
no healthy component is part of the diagnostic result. Completeness of results means that all the components that
are faulty are indicted. In the real world, the observations can be erroneous because (1) sensors can fail and thus
provide the diagnostic system with wrong data values, (2) even if the sensors work correctly, the signals read by them
could be interpreted wrongly (in model-based systems, this would be a modeling error), and, (3) in case of a major
fault, the assumptions about the system can become invalid (in model-based systems this means a loss of model
validity). Such erroneous observations can lead the diagnoser astray. Thus, the results returned by the diagnoser
may be incomplete and/or incorrect. This leads to a need for a diagnostic system that can handle observation errors.

This paper describes a robust diagnostic reasoning method that is able to diagnose faults properly in the presence
of observation errors and degrades gracefully as the number of observation errors increases. The diagnoser uses the
structural and temporal constraints imposed by system dynamics on the fault propagations to reason about the
faults. The computational complexity of the reasoning method is polynomial, hence it can generate the diagnosis in
real-time.


