
Institute for Software Integrated Systems
Vanderbilt University

Nashville, Tennessee, 37235

PaNeCS: A Modeling Language for

Passivity-based Design of Networked Control

Systems

Emeka Eyisi, Joseph Porter, Joe Hall, Nicholas

Kottenstette, Xenofon Koutsoukos and Janos

Sztipanovits

TECHNICAL REPORT

ISIS-09-105



Abstract. The rapidly increasing use of distributed architectures in
constructing real-world systems has led to the urgent need for a sound
systematic approach in designing networked control systems. Commu-
nication delays and other uncertainties complicate the development of
these systems. This paper describes a prototype modeling language for
the design of networked control systems using passive techniques to de-
couple the control design from network uncertainties. The modeling lan-
guage includes an integrated analysis tool to check for passivity and
a code generator for simulation in MATLAB/Simulink using the True-
Time platform modeling toolbox. The resulting designs are more robust
to platform effects, without costly design verification.

1 Introduction

The heterogeneous composition of computing, sensing, actuation, and commu-
nication components has enabled a modern grand vision for real-world Cyber
Physical Systems (CPS). Real-world CPSs such as automotive vehicles, building
automation systems, and groups of unmanned air vehicles are monitored and
controlled by networked control systems (NCS). The overall system dynamics
emerges from the interaction of physical dynamics and computational dynamics.
The rapidly increasing use of NCS architectures in constructing these systems
has lead to the urgent need for a sound systematic design. NCS systems fre-
quently operate in safety-critical environments that require verification of the
control design. Verification is complicated by heterogeneity since both physical
and computational components must be taken into account. Techniques which
aid in proving correctness must do so for both domains, and remain compatible
with established engineering processes [1].

Model-based design for embedded control systems involves creating mod-
els and checking correctness at different stages in the development process [2].
Model-based design flow progresses along precisely defined abstraction layers,
typically starting with control design. Then control design models are passed
onto the system-level design stage for the specification of platform details, code
organization, and deployment details. The final stage involves integration and
testing on the deployed system.

This design approach cannot be applied to NCS because heterogeneity cre-
ates a number of challenges that include ensuring controller stability and perfor-
mance for physical systems in the presence of network uncertainties (e.g. time
delay, packet loss). Further, downstream code modifications during testing and
debugging invalidate results from earlier design-time analysis and any compo-
nent change often results in “restarting” the design process. These are challenges
that stem from the coupling between design concerns in different domains. For
example, separate specification of controller requirements and platform designs
seems natural. However, correct controller function depends on the details of
both. Similar coupling exists between different stages of the development pro-
cess, for example between functional design models and software design models.



A number of research projects seek to address the problems of model-based
design for NCS. The ESMoL modeling language for designing and deploying
time-triggered systems shares many structural design concepts [3]. The ESMoL
tools include schedule determination for time-triggered communications, code
generation, and a portable time-triggered virtual machine. AADL [4] is a textual
language and standard for specifying deployments of control system designs in
data networks [5]. AADL projects also include integration with verification and
scheduling analysis tools. The Metropolis modeling framework [6] aims to give
designers tools to create verifiable system models. Metropolis integrates with
SystemC, the SPIN model-checking tool, and other tools for scheduling and
timing analysis.

In order to tackle the challenges of developing software for NCS, we pro-
pose an automated model-based approach on top of passivity. We use Model-
Integrated Computing [2] to develop a domain specific modeling language (DSML)
called the Passive Network Control Systems language (PaNeCS) based on the
passive control architecture presented in [7]. PaNeCS raises the level of abstrac-
tion of networked control system design, and uses passivity to decouple the
control design from network uncertainties. As a result, we can analyze compo-
nent correctness properties independently, and then establish global correctness
from the structure of their interconnections. This stands in contrast to global
techniques that analyze all details of all parts of a model simultaneously.

The paper is organized as follows: Section 2 presents design challenges in
the compositional design of NCS. Section 3 presents passivity-based control of
NCS. Section 4 presents our prototype modeling language. Section 5 presents an
analysis tool for checking passivity. Section 6 presents a model interpreter for
automatically generating Matlab/Simulink simulation code using the TrueTime
platform modeling toolbox. Section 7 shows a case study of a NCS consisting of
two discrete plants and a controller. Section 8 provides our conclusion.

2 Compositional Design of Networked Control Systems

Building systems from components is central to all engineering disciplines to
manage complexity, decrease time-to-market, and contain cost. The feasibility of
component-based design depends on two key conditions: compositionality mean-
ing that system-level properties can be computed from local properties of com-
ponents and composability meaning that component properties do not change
as they interact with other components. Lack of compositionality and compos-
ability leads to behavioral properties that can be verified or measured only by
system-level analysis (and/or testing), which can be inefficient for complex real-
world systems.

NCS involve the interaction of physical dynamics, computational dynamics,
and communication networks. This heterogeneity does not go well with current
methods of compositional design for several reasons. The most important princi-
ple used in achieving compositionality is separation of concerns (in other words,
defining design viewpoints). Separation of concerns works if the design views are



orthogonal, i.e. design decisions in one view do not influence design decisions in
other views. Unfortunately, achieving compositionality for multiple physical and
functional properties simultaneously is a very hard problem because of the lack
of orthogonality among the design views.

Control designers create models for both physical systems and controllers us-
ing tools like Simulink and Stateflow [8]. Models generally consist of functional
data flow networks and variants of state machines. Deployment of a control
design such as a Simulink design to a networked architecture introduces uncer-
tainties due to time-varying delay, data rate limitations, jitter, and packet loss.
This invalidates many of the simulation results for the design. Deployment of the
design to the physical environment is often expensive, and failure during testing
can be costly as well. An increasingly accepted way to address the problems
is to enrich abstractions in each layer with implementation concepts. An excel-
lent example for this approach is TrueTime [9] that extends Matlab/Simulink
with platform-related modeling concepts (networks, clocks, schedulers) and sup-
ports simulation of networked and embedded control systems with the modeled
implementation effects. While this is a major step in improving designers under-
standing of implementation effects, it does not help in decoupling design layers
and improving orthogonality across design concerns. A control designer can now
factor in implementation effects (e.g., network delays), but still, if the implemen-
tation changes, the controller may need to be redesigned.

Control systems are often verified using complex optimization techniques. For
example, linear matrix inequalities (LMIs) can model many important controller
properties (e.g. stability, response time, reachability). In a system built from the
composition of multiple blocks, such analysis quickly becomes intractable. In
order to assess global stability, designers must build a single, large model which
includes all possible states of the system. In contrast, passivity theory can ensure
global stability (in a robust way) by a combination of component analysis and
specific rules for composition of passive components.

Downstream code modifications during testing and debugging may invali-
date models and results from earlier design-time analyses. Changes made during
design, development, and testing cycles may cause extensive software revisions
and force expensive re-verification. Model-integrated computing tools provide
automated software generation, analysis, and system configuration directly from
models [2]. PaNeCS supports forward generation of platform-specific simulation
models as well as lightweight passivity analysis. Code generation and other ver-
ification tools are planned for future versions.

3 Passivity-Based Control of Networked Control Systems

Our approach for designing NCS is based on passivity. There are various precise
mathematical definitions for passive systems [10]. Essentially all definitions state
that the output energy must be bounded so that the system does not produce
more energy than was initially stored. Passive systems have a unique property
that when connected in either a parallel or negative feedback manner the overall



system remains passive. Passivity provides an inherent safety – passive systems
are insensitive to implementation uncertainties, so passivity can be exploited in
the design of NCS. The main idea is that by imposing passivity constraints on
the component dynamics, the design becomes insensitive to network effects, thus
establishing orthogonality (with respect to network effects) across the various
design layers. This separation of concern allows the model-based design process
to be extended to networked control systems.

Fig. 1. A networked control system

We briefly discuss the passivity based control architecture for multiple plants
controlled by a single controller via a network [7]. In Fig. 1, the Bilinear Trans-
form block represents the transformation between signals and wave variables.
Wave variables were introduced by Fettweis in order to circumvent the problem
of delay-free loops and guarantee a realizable implementation for wave digital fil-
ters [11]. Wave variables allow systems to remain passive while transmitted data
over a network subject to arbitrary fixed time delays and data dropouts [12], [13].
A detailed mathematical description for wave variables in NCS can be found in
[14]. In Fig. 1, upk(i) (k=1,2), can be thought of as a sensor output data in wave
variable form for each plant. Likewise, vcj(i) (where j=1,2) can be thought of
as a command output in wave variable form for the controller.

The power junction in Fig. 1 is an abstraction used to interconnect wave
variables from multiple controllers and multiple plants in parallel such that the
total power input is always greater than or equal to the total power output. It
provides a formal way to construct a networked control system [7]. The power
junction makes it possible for a single controller to control multiple plants over
a network such that the overall system remain stable. A more detailed mathe-
matical definition of the power junction can be found in [7]. In Fig. 1, the power
junction has waves entering and leaving as indicated by the arrows. The waves
entering the power junction from the controller are the delayed version of the
waves leaving the controller, as indicated by the time delay block. Also, the
waves entering the controller are the delayed version of the waves leaving the
power junction. Likewise, the waves entering the plant are the delayed version of
the waves leaving the power junction and the waves entering the power junction
are the delayed version of the waves leaving the plant.



Fig. 2. The passive upsampler and passive downsampler.

In the design of NCS there is a need to reduce digital control traffic in the
network. In order to achieve this we use the passive upsampler (PUS) and passive
downsampler (PDS) pair. The Fig. 2 represents the passive upsampler (PUS) and
passive downsampler (PDS) construction. wo(i) denotes a discrete wave variable
going out of a wave transform block. For example, in Fig. 1, vc1(i)and up2(i), the
wave variables going out of the Bilinear Transformation block, are unique wo(i)’s.
Similarly, wi(i) represents the respective discrete wave variable going into a wave
transform block. For example, in Fig. 1 uc1(i)andvp2(i), the wave variables going
into the Bilinear Transformation block, are unique wi(i)’s. Essentially, the PUS
and PDS provide the upsampled and downsampled versions of their wave variable
inputs respectively while preserving passivity. Hence, by preserving passivity the
stability of the system is maintained.

4 PaNeCs

We introduce the passivity-based modeling language (PaNeCS). The modeling
language is developed using a meta-configurable tool, the Generic Modeling En-
vironment (GME), from the Model Integrated Computing (MIC) tool suite [15].

4.1 Components

The language top level consists of four main components: the PlantSystem,
the ControllerSystem, the PowerJunction and the WirelessNetwork.

PlantSystem Fig. 3 shows a part of the metamodel that describes the plant
subsystem. Plant represents a model for any discrete linear time-invariant (LTI)
system and can be extended to a nonlinear system. The dynamics of the Plant
are represented in the following state space form:

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k).

(1)

The Plant dynamics are parameterized by matrix attributes A, B, C, D, and a
scalar SamplingTime. The attributes can be specified using any valid expression
that evaluates to the proper dimensions. BilinearTransformP represents a model
for the wave scattering technique for transforming the wave variables received



Fig. 3. PlantSystem Language

from the power junction into control input to the plant and for transforming the
plant output signal into wave variables that are transmitted over the network.
PassiveUpSampler and PassiveDownSampler pair represent components that
reduce digital control traffic while maintaining system stability.

ControllerSystem Fig. 4 shows the part of the language that describes the
controller subsystem. DigitalController is a model representing the algorithm
for controlling the networked plants. Similar to the model of the Plant in the
PlantSystem, the DigitalController is modeled as a LTI system and its dynam-
ics can be represented in the state space form of Eq. (1). Therefore, the Digital-
Controller parameters have similar attributes to the Plant. BilinearTransformC
is similar to the BilinearTransformP described in the PlantSystem. ZeroOrder-
Hold represents a component that holds its input for the time period specified
in the sampling time attribute. ReferenceInput represents the desired signal to
be tracked by the plants.
Power Junction Fig. 5 shows the part of the language that describes the power
junction. The PowerJunction can contain ports for the connection of the plants
and controllers. They are briefly described as follows: PowerInputPowerOutput
represents a port through which the PlantSystem connects to the PowerJunc-
tion. Using the PowerInputPowerOutput entity, the PowerJunction sends cal-
culated control signals to the PlantSystem and also receives sensor signals from
the PlantSystem. PowerOutputPowerInput represents a port through which
the ControllerSystem can connect to the PowerJunction. Using the Power-
OutputPowerInput entity, the PowerJunction sends the averaged sensor signal
to the ControllerSystem and receives the calculated control signal from the
ControllerSystem.



Fig. 4. ControllerSystem Language

Fig. 5. PowerJunction Metamodel

WirelessNetwork Fig. 6 represents the network and its parameters for the
NCS. The WirelessNetwork model provides modifiable parameters for simu-
lation. Data rate sets the throughput for simulating network activity. Disturban-
cePacketSize configures the size of simulated disturbance attack packets on the
network (introduces delays). This provides a way for simulating the NCS under
non-optimal conditions. DisturbancePeriod configures the frequency of distur-
bance attacks on the network.

4.2 Aspects

Our modeling language has two aspects: Control Design Aspect and Plat-
form Aspect. The Control Design Aspect visualizes the controller modeling
layer. This includes the plants, controller, and power junction, as well as their
interconnections – indicating the flow of control and sensor signals.



Fig. 6. Wireless Network Model

The Platform Aspect visualizes the physical platform layer. This model view
shows the physical components of the NCS. The entities in this view include
the plants, controller, and the wireless network as well as their interconnections
indicating the flow of data packets over the network. Though the plants and con-
troller appear in both aspects, in the Platform aspect they represent physical
entities rather than control design concepts.

4.3 Structural Semantics

The language semantics require structural constraints that cannot be captured
with the metamodeling notations described in the sub-languages described above.
Using the Object Constraint Language (OCL), we can describe well-formed rules
for models, enabling “correctness-by-construction” for passive designs.

After the instance model is created, the constraint checker interprets the de-
fined constraints and reports any violations. In order to conform to the passive
control architecture, only a single connection is allowed from a Plant to a Bilin-
earTransformP block. This constraint can be specified using OCL and a violation
of this constraint will alert and notify the designer to correct the design error.
Hence, OCL helps in defining precise control of static semantics of the language.
Three classes of constraints were implemented Cardinality Constraints, Connec-
tion Constraints and Unique Name Constraints. Cardinality Constraints ensure
that the required and the correct number of components are used in the NCS
design. For example, for each PlantSystem model there must be one Plant.
Connection Constraints restrict the number of allowable connections between
components. For example, in the PlantSystem model there can be only one
connection going from Plant to BilinearTransformP. Unique Name Constraints
ensure the uniqueness of the names of components in the Plant and Controller
subsystems as well as in the top level model of the NCS. For example, in the
PlantSystem no two components can have the same name.

An example of the OCL constraint implementation is shown below. This
specifies that the number of allowable connections from a BilinearTransformC
model to a DigitalController to be one.

Desc r ip t i on : There must be only one connect ion from
Bil inearTransformC to the D i g i t a l C o n t r o l l e r

Equation : l e t dstCount = . . .
s e l f . a t tach ingConnect ions (” s r c ” , C o n t r o l l e r B i l i n e a r )−> s i z e in



dstCount <> 0 implies dstCount = 1

5 Passivity Analysis

In order to achieve the desirable properties observed in passive systems that
ensure the designed networked control systems is insensitive to network effects,
we have to analyze the components of the networked control system and make
sure they satisfy the imposed passivity constraints.

The power junction element enforces some simple mathematical constraints
which ensure passivity for interconnected components. Further, the component
interconnections are restricted in such a way that they are “correct-by-construction”.
Only valid (parallel) connections are allowed to the power junction, so any inter-
connected system of passive components in the language will be globally passive.
The modeling language and its constraints encode the passive composition se-
mantics, greatly reducing the analysis burden for determining passivity (and
hence stability [7], [10], [14]) of the composed system design.

Due to the “correct-by-construction” approach we use in designing networked
control, we only analyze the Plant and DigitalController for passivity. If the
Plant and DigitalController both satisfy the passivity constraints, the network
control system as whole also satisfies the passivity principles.

The dynamics of the Plant and DigitalController models can each be defined
by Eq.(1) and are characterized by the matrices A, B,C, D of size compatible
with the number of inputs and outputs in the system and the number of states in
the model. The passivity constraints for these models is defined by Linear Matrix
Inequality (LMI) constraints [16]. For example, the LMI formula for strict output
passivity for an LTI digital controller is given by[

AT PA− P − Q̂ AT PB − Ŝ

(AT PB − S)T −R̂ + BT PB

]
6 0

Q̂ = CT QC, Ŝ = CT S + CT QD

R̂ = DT QD + (DT S + ST D) + R

∃ε > 0, Q = −εI, R = 0, S =
1
2
I

(2)

The CVX semidefinite programming (SDP) tool is used in a Matlab script for
solving the LMI.

The analysis of the Plant and DigitalController components of the networked
control system for passivity is done automatically by an integrated Matlab anal-
ysis function. Each component is assumed to have a linear time-invariant (LTI)
discrete-time model, so we use LMIs together with the CVX semidefinite program-
ming tools for Matlab [17, 18]. On invocation (i.e. the modeler presses a button),



a C++ model interpreter within GME [15] visits each component, and invokes
the analysis function. Any components failing the passivity test are reported to
the user.

6 Code Generation

The main objective of the code generator is to generate MATLAB code that
maps the models generated using the modeling language to Simulink models
that represent the networked control system.

We develop a model interpreter that is used to synthesize simulation code
from an instance model of the passivity based modeling language. The interpreter
is developed in C++ using the Builder Object Network (BON2) API provided
with GME [15]. The interpreter traverses all the entities of a particular networked
control system instance model and extracts model parameters. These parameters
and model structure are used to generate MATLAB files for configuring and
building Simulink and TrueTime models to simulate the NCS. TrueTime is a
simulation environment that extends MATLAB/Simulink with implementation-
related modeling concepts such as networks, clocks and schedulers [9] that is well
suited for the simulation of networked control systems.

The model interpreter creates translation rules between models and desired
outputs. The entities in the instance model each map to a set of equivalently-
defined components in Simulink and components from an advanced Simulink
passivity-based control library. For example, the Plant and DigitalController en-
tities each map to an equivalent discrete state-space Simulink block. For these
two entities the parameters for the equivalent Simulink blocks are instantiated
using the parameter values entered by the user describing the dynamics of the
entities. These parameters include the A, B, C and D matrices as well as the sam-
pling time. For an example using the passivity control library, the BilinearTrans-
formP in the PlantSystem maps to an equivalent wave variable transform block
in our library.

The WirelessNetwork entity maps to an equivalent TrueTime wireless net-
work block used to simulate the network dynamics. Also, each of the PlantSys-
tems and ControllerSystems map to Truetime Kernels, which provide interfaces
for receiving and sending data over the TrueTime wireless network as well as
processing and sending data to components of the subsystem.

7 Case Study

We introduce a case study to demonstrate our design approach and also show
that networked control systems designed using this approach are robust and
remain stable when subject to uncertain network effects. We create a networked
control system which involves the control of two discrete plants using a single
controller. The controller controls the two discrete plants to track a specified
reference signal. The goal of the experiment is to model the network control
system and generate a simulation of the behavior of the system. Fig. 7a and



(a) Control Design Aspect

(b) PlatformAspect

(c) Plant Subsystem

(d) Controller Subsystem

Fig. 7. Sample Model of a Networked Control System

7b respectively show the control design and platform aspects of the instance
model respectively. Also, Fig. 7c shows the details of the plant system while



Fig. 7d show the details of the controller system. The two plants modeled in the
experiment were simple integrators (with masses of 2kg and .25kg respectively)
which are discretized. The plants’ dynamics were modeled in state space form
and the corresponding A, B, C and D matrices as well as the samplint time,
Ts were provided as parameters to the instance model. We used a proportional
controller as the digital controller. This controller was used to control the plants
to track a user-specified reference. The digital controller was also modeled in
state space form and the A, B, C and D matrices and also the sampling time, Ts

were provided as input parameters to the instance model. The parameters for
the dynamics of the plants and controller is provided in Table 1. The analysis
tool checks and verifies that the Plant and DigitalController models satisfy the
passive constraints. If the passivity constraints are satisfied, the code generator is
used to generate code for creating a platform-specific Simulink simulation model
from the parameters and design models in the modeling language.

PaNeCS provides the flexibility to easily model networked control systems
using passivity and more quickly configure the model parameters of the system
for many different adaptations when compared to a “manual approach”. Using
PaNeCs we tested the dynamics of the NCS by running different experiments
under different network conditions by adjusting parameters in the language and
then generating code for simulating each configuration of the model. The pa-
rameters for the simulations are provided in Table 2.

Experiment 1: Nominal Conditions In experiment 1, the system operates
without the introduction of disturbance attacks. The three data rates considered
are 0.1s, 0.5s and 1s. The data rates were achieved by modifying the Sample,
M parameters of the PassiveUpSampler and PassiveDownSampler entities. We
only present the results of the NCS for the data rate of 0.1s. Fig. 8 displays the
velocity of the plants and the reference velocity provided to the controller. The
plants closely track the reference velocity. The round trip delay for each plant,
has very little effect on the stability of the plants’ velocity response. The delay
can be attributed to the internal processing of the plants and controllers rather
than network delay itself.

Table 1. Plant and Controller Dynamics.

A B C D Ts

Plant1 1 1 .005 .0025 .01s

Plant2 .996 1 .04 .02 .01s

Controller 0 0 0 10π .1s

Experiment 2: Network disturbances In experiment 2, a disturbance attack
is introduced in the network. A disturbance node is configured using the Dis-
turbancePeriod and DisturbancePacketSize from the WirelessNetwork model.



Fig. 8. Nominal velocity response and time delays (Data rate=0.1s)

Packets are sent over the network based on the value of a uniformly generated
random number. Similar to Experiment 1, three cases based on the data rates
are tested but we only present the results for the data rate of 0.1s. Fig. 9 shows
the velocity response of the plants and the time delay for each plant. The results
show that even in the presence of disturbance attacks, the plants remain stable
in tracking the reference velocity. This demonstrates the advantage of the pas-
sivity approach we use in designing networked control systems which guarantees
the stability of the NCS in the presence of uncertainties due to network effects.

Fig. 9. Velocity response and time delays with disturbance attack (Data rate=0.1s)



Table 2. Simulation Parameters Summary.

Data Rates

0.01s 0.05s 0.1s

Plant1,M 10 50 100

Plant2,M 10 50 100

Disturbance Ts = 0.01 Packetsize = 110, 000bits

8 Conclusion and Future Work

Our model-based approach simplifies the process of designing networked control
system. We presented PaNeCS, a modeling language that is used in designing
passivity-based networked control systems. We have presented an analysis tool
that is used in testing system components for passivity. We have also discussed
the model interpreters that generate code for simulation in MATLAB/Simulink
using the TrueTime platform modeling toolbox. A case study involving the con-
trol of multiple discrete plants over a wirless network was used to demonstrate
the details of models generated using the modeling language as well as the result-
ing simulation of the generated networked control system. The results showed the
networked control system designed using our approach is robust and insensitive
to uncertainties due to network effects. Our future work focuses on two major
directions: (i) extending the language to include nonlinear and more complex
systems,(ii) generating executables for deployment on actual systems.

References

1. Henzinger, T., Sifakis, J.: The embedded systems design challenge. In: FM: Formal
Methods. Lecture Notes in Computer Science 4085. Springer (2006) 1–15

2. Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: Model-integrated development
of embedded software. Proceedings of the IEEE 91(1) (Jan. 2003)

3. Porter, J., Karsai, G., Volgyesi, P., Nine, H., Humke, P., Hemingway, G., Thi-
bodeaux, R., Sztipanovits, J.: Towards model-based integration of tools and tech-
niques for embedded control system design, verification, and implementation. In:
Workshops and Symposia at MoDELS 2008, Springer LNCS 5421, Toulouse, France
(2008)

4. AS-2 Embedded Computing Systems Committee: Architecture analysis and de-
sign language (aadl). Technical Report AS5506, Society of Automotive Engineers
(November 2004)

5. Hudak J. and Feiler P.: Developing aadl models for control systems: A practitioner’s
guide. Technical Report CMU/SEI-2007-TR-014, CMU Software Engineering In-
stitute (SEI) (2007)

6. Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Paserone, C., Sangiovanni-
Vincentelli, A.L.: Metropolis: an integrated electronic system design environment.
IEEE Computer 36(4) (April 2003)

7. Kottenstette, N., Hall, J., Koutsoukos, X., Antsaklis, P., Sztipanovits, J.: Digital
control of multiple discrete passive plants over networks. Technical report, Institute
for Software Integrated Systems, Vanderbilt University (March 2009 Submitted)



8. The MathWorks, Inc.: Simulink/Stateflow Tools. http://www.mathworks.com
9. Ohlin, M., Henriksson, D., Cervin, A.: TrueTime 1.5 Reference Man-

ual. Dept. of Automatic Control, Lund University, Sweden. (January 2007)
http://www.control.lth.se/truetime/.

10. Kottenstette, N., Antsaklis, P.J.: Stable digital control networks for continuous
passive plants subject to delays and data dropouts. In: Proceedings of the 46th
IEEE Conference on Decision and Control. (2007) 4433 – 4440

11. Fettweis, A.: Wave digital filters: theory and practice. Proceedings of the IEEE
74(2) (1986) 270 – 327

12. Secchi, C., Stramigioli, S., Fantuzzi, C.: Digital passive geometric telemanipulation.
In: IEEE International Conference on Robotics and Automation. (2003) 3290 –
3295

13. Berestesky, P., Chopra, N., Spong, M.W.: Discrete time passivity in bilateral
teleoperation over the internet. In: IEEE International Conference on Robotics
and Automation. (2004) 4557 – 4564

14. Kottenstette, N., Koutsoukos, X., Hall, J., Antsaklis, P.J., Sztipanovits, J.:
Passivity-based design of wireless networked control systems for robustness to
time-varying delays. Real-Time Systems Symposium, (RTSS 2008) (December
2008) 15–24

15. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., IV, C.T., Nordstrom,
G., Sprinkle, J., Volgyesi, P.: The generic modeling environment. Workshop on
Intelligent Signal Processing (May 2001)

16. Kottenstette, N., Antsaklis, P.J.: Time domain and frequency domain conditions
for passivity. Technical Report ISIS-2008-002, Institute for Software Integrated
Systems, Vanderbilt University and University of Notre Dame (November 2008)

17. Grant, M., Boyd, S.: Cvx: Matlab software for disciplined convex programming.
http://stanford.edu/ boyd/cvx (February 2009)

18. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs.
Recent Advances in Learning and Control (a tribute to M. Vidyasagar), Springer
Lecture Notes in Control and Information Sciences (2008) 95–110


