
they access data. Application models de�ne a data{

ow consisting of function models and their intercon-
nections.

The hardware aspect contains models describing the
C40 network, including information about each node
(how much memory, node type) and about the inter-
connection topology.

The goals aspect allows speci�cation of the computa-
tional performance goals to the model interpreter, which
it uses in determining the type and level of parallelism
which will be used. The goals models contain (1) a
throughput goal, (2) a latency goal, and (3) the failure
mode.

5 Summary
The current prototype system is capable of perform-

ing sequences of local image processing algorithms on
512x480, 8 bits

pixel
(256 grey levels) frames at video rate

(30 frames per second), given that enough C40s are
available in the network. A prototype MIRTIS system
has been bench{marked at 520Mops

sec
sustained (counting

only useful computations) while performing a complex
edge detection on live video. The system has also been
shown useful for simple applications.

Future work will extend the capabilities of the sys-
tem to the more general domains of medium and high
level vision. The long{term goal is to build a uni�ed
architecture and programming environment for image
processing and computer vision.

References
[1] Webb, John A., \High Performance Computing in

Image Processing and Computer Vision", Proceed-
ings of the International Conference on Pattern
Recognition, October 1994, Jerusalem.

[2] Webb, John A., \Steps Toward Architecture{
Independent Image Processing," IEEE Computer,
February 1992: p. 21{31.

[3] M. S. Moore: \A DSP{Based Real{Time Image
Processing System," International Conference on
Signal Processing Applications & Technology (IC-
SPAT '95), Boston, October 1995.

[4] M. S. Moore, G. Karsai, and J. Sztipanovits:
\Model{Based Programming for Parallel Im-
age Processing", Proceedings of the First IEEE
International Conference on Image Processing
(ICIP94), Nov. 1994.

[5] G. Karsai: \A Con�gurable Visual Programming
Environment", IEEE Computer, March 1995.

[6] B. Abbott, T. Bapty, C. Biegl, G. Karsai, and J.
Sztipanovits: \Model{Based Software Synthesis",
IEEE Software, May 1993.



appropriately overlapping pieces and communicates the
pieces to the processing nodes. The image processing
program running on each node receives its local input
and output bu�ers as function parameters and performs
the computation. During the computation, the PCT
system splits the next input image and again distributes
it across the network. After the computation has �n-
ished, the PCT system simultaneously merges the par-
tial results and restarts the computation. Since the
communication is concurrent to the computation, each
node is very nearly always computing. For more details
about PCT, see [3].

3.3 MIRTIS Architecture

We have used the MultiGraph Architecture (MGA),
a MIPS architecture developed at Vanderbilt, to cre-
ate an environment which automatically generates the
complex PCT programs. An image processing modeling
paradigm has been developed which contains the image
processing concepts necessary to automatically build
PCT split{and{merge data{
ows. Based on graphi-
cal system models, a model interpreter automatically
generates the necessary PCT communications programs
and computation schedules to implement the data{
parallel computational data{
ow. It then maps this
data{
ow to the parallel hardware architecture. The
details of the parallel implementation are completely
hidden from the user.

Modeling Environment

Model Database

Library
PCT Run-Time

Application
Library

MIRTIS Graphical
User Interface

Pipeline Cut-Through
Computational Network

TI C40 Network

Video In Video Out

MIRTIS Model Interpreter

Figure 1: The MIRTIS Architecture

The MIRTIS architecture follows the basic model{
based system architecture shown in [6]. It consists of
a modeling environment, a model database, a model in-
terpreter, application and run{time libraries, a graphical
user interface, and a C40 network (See Figure 1).

The Modeling Environment

The modeling environment facilitates the creation of
system models. A graphical model editor is used for
building, manipulating, and validating the system mod-
els. The models represent the system in terms of the
MIRTIS modeling paradigm, and are stored in a model
database.

The Model Interpreter

The MIRTIS model interpreter, calledMINT, interfaces
with the graphical model builder and automatically gen-
erates a PCT computational network which realizes the
computations described in the models. During the in-
terpretation process, the interpreter analyzes the graph-
ical system models, partitions the computation, deter-
mines the appropriate numbers of processors to be used
for each of the sub{computations, parallelizes the sub{
computations, maps the parallelized sub{computations
to the hardware network, and produces a pipeline cut{
through computation network.

The Application Library

The MIRTIS image processing application library con-
tains the actual code which implements the image pro-
cessing algorithms. Library routines are written in C,
and are compiled with the standard cl30 compiler re-
leased by TI. The user can add functionality to the
application library by providing C coded subroutines.
Since there is no reference to parallelism in the code,
writing these routines requires no knowledge of par-
allel programming. All parallel facilities are provided
through calls to the PCT run{time support library,
which performs communication, scheduling, synchro-
nization, memory management, etc.

The Graphical User Interface

The graphical user interface, called MUI, is used to con-
trol the operation of the model interpreter, load the C40
network, and monitor/interact with the running system.
MUI allows algorithmic parameters to be adjusted dy-
namically, so the user can experiment with and \tweak"
algorithms easily.

4 The MIRTIS Modeling Paradigm
The MIRTIS modeling paradigmwas designed specif-

ically for parallel image processing. It includes three
modeling views, or aspects: Computation, Hardware,
and Goals.

The computation aspect describes which algorithms
are to be performed, and in what order. Computa-
tion models are represented visually in a graph data{

ow style: blocks representing computations and inter{
connecting lines representing the 
ow of data. There are
two types of computation aspect models, library func-
tion models, and application models.

Function models describe the individual algorithms
available in the image processing application library.
They contain pertinent information about the library
functions, such as performance behavior and the way



� Usually the algorithms perform fairly simple com-
putations to produce each output pixel.

� Images are large data sets which lend themselves
easily to data parallelism.

� Processing sequences of images with these algo-
rithms requires high computational power, and
many applications (especially the real{time appli-
cations) need the speedups of parallelization.

Split{and{Merge Data Parallelism

Because of the properties mentioned above, image pro-
cessing algorithms are easily data parallelizable. A sim-
ple data parallel programming technique which is appli-
cable to image processing is the split{and{merge model
[3],[4],[1]. In [2], Webb proves that a very general class
of image processing algorithms can be performed us-
ing this technique. Since the split{and{merge technique
is simple, it is possible to create accurate performance
models for these computations, which are necessary for
determining how many processors are needed to meet
the real{time constraints of a particular application.
2.2 Real{Time Image Processing

A Real{Time system is one that, due to interaction
with its environment, must produce outputs which are
not only numerically correct, but also meet timing con-
straints. The addition of timing constraints to an image
processing system adds complexity and raises several
key issues which must be addressed.

Hardware Architectural Issues

Image processing is computationally intensive due to
the large size of image data. Table 1 shows the data
rates necessary for real{time video processing. The last
column shows the computation rate required to perform
a 5x5 convolution at each corresponding data rate. Note
that even for moderate digitization resolutions, such
as 512x480, the computational data rate required by
this simple �ltering operation (370Mops

sec
) far exceeds the

capabilities of traditional computer hardware architec-
tures.

The hardware architecture must be capable not only
of performing the computations in real{time, but also of
supporting the communications bandwidths necessary
for real{time image processing.

resolution depth frame rate data rate 5x5conv

colsxrows bits
pixel

frames

sec

Mbytes

sec

Mops

sec

512x480 8 30 7.0 370

640x480 8 30 8.8 460

512x480 16 30 14 370

640x480 16 30 18 460

Table 1: Real{Time Video Throughput Requirements

The system must also include special hardware to
interface with either analog or digital video sources.

These types of interfaces do not often exist on modern
commercially available parallel computers [1].

In some applications, the system latency (the time
between sensing a visual event and outputting the re-
sults from that event) can be critical. The hardware
architecture must support low latency both in the com-
munications and computations.

We contend that the best solution which addresses
these issues while retaining the required 
exibility is to
use a scalable, parallel hardware architecture.

Software Architectural Issues

It is a well known fact that the largest obstacle to
generating real world parallel applications is not build-
ing the hardware, but providing programming environ-
ments which will allow programmers to utilize it eas-
ily and e�ciently. The complexities of parallel sys-
tems, such as task decomposition, sub{task allocation,
scheduling, inter{task communication, and synchroniza-
tion, can easily overwhelm even an experienced pro-
grammer.

The main issue to be faced in developing a parallel
imaging environment is how to deal with these complex-
ities in a way that takes advantage of the properties of
image processing algorithms. A suitable software envi-
ronment is needed which provides the user with (1) high
level methods of specifying the computations and real{
time constraints, and (2) a programming paradigmwith
transparent access to the parallel facilities.

Real{Time Issues

The relevant real{time constraints for image processing
are throughput and latency. In order to meet throughput
and latency requirements, information is needed about
the performance properties of the computations relative
to the hardware architecture, the network topology, and
the behavior of the communication network. Mathe-
matical models of the system performance (throughput
and latency) must be formulated in order to determine
(1) the granularity of parallelism required, and (2) the
mapping of the computations to the hardware necessary
to meet the constraints. These models must be accurate
in order to guarantee that a particular computation can
or cannot be done in real{time on a particular hardware
con�guration.

3 MIRTIS Overview
3.1 Hardware Architecture

The current trends in parallel hardware technol-
ogy have produced parallel processing building blocks
(DSPs, etc.) powerful enough for real{time image pro-
cessing. The MIRTIS hardware platform [3] is a net-
work of Texas Instruments TMS320C40 DSPs (C40s).
The input node is a C40 digitizer, and the output node
is a C40 display module.
3.2 Pipeline Cut{Through

PCT is a communications technique implemented on
the C40 which implements the split{and{merge process-
ing model. PCT automates the splitting and merging
processes and makes the data parallelism transparent
to the programmer. It splits the input image data into



Model-Based Synthesis of a Real{Time Image Processing System�

Michael S. Moore Jim Nichols

Department of ECE Sverdrup Technology

Vanderbilt University MS 9013, Bld. 1099

Nashville, Tn. 37235 Arnold AFB, Tn. 37389

Abstract

MIRTIS is an environment which employs model{
based synthesis techniques to generate real{time im-
age processing applications. The system is capable of
creating very high performance implementations of a
large class of image processing computations. It auto-
matically data parallelizes the computations using the
split{and{merge processing model and executes them
on a parallel hardware architecture, a network of C40
DSPs. MIRTIS provides high level programming inter-
face which masks the complexities of the underlying par-
allel implementation. Graphical tools are used for build-
ing models and controlling the running applications.

1 Introduction
Non{dedicated image processing applications users

usually have to trade o� algorithm implementation
exi-
bility for real{time performance. Most existing o�{the{
shelf real{time systems use specialized hardware archi-
tectures to perform speci�c algorithms in real{time (eg.
convolution). A draw{back of specialized hardware is
that it cannot always be re{programmed with new or
non{standard algorithms. Some imaging facilities, such
as the one at Arnold Engineering Development Cen-
ter (AEDC), need a system which can be rapidly pro-
grammed, con�gured, and scaled to solve a wide variety
of problems. They require:

� Scalable Real{Time Performance: The system
must be easily scaled up or down for a particular
application.

� Programmability: Engineers must be able to
rapid prototype experimental/custom algorithms
and create real{time computational data{
ows
consisting of both these and standard algorithms.

� Flexibility: It must possible to rapidly recon�g-
ure the system software and hardware to meet the
application requirements.

� Parallel Programming Interface: The pro-
grammer must be able to write parallel programs
without dealing with parallel issues. The program-
ming style must be independent of the underlying
parallel hardware architecture.

�This work was supported by the AFOSR/AFMC, United
States Air Force, contract number F49620-94-C-0076.

� High Level Tools: The interfaces to the system
must be easy to use.

This paper presents MIRTIS (Model{Integrated
Real{Time Imaging System), which has been devel-
oped through a joint e�ort between Vanderbilt Univer-
sity and AEDC. MIRTIS uses Model Integrated Pro-
gram Synthesis (MIPS) techniques to automatically
\synthesize" data parallel image processing applications
which are executed on a network of Texas Instruments
TMS320C40 DSPs (C40s). Real{Time execution is
achieved by scaling the data parallelism to the appropri-
ate level to reach the performance speci�cations. The
scaling is done with virtually no overhead via a commu-
nications concept called PCT (Pipeline Cut{Through).
Since the software is automatically parallelized the user
is insulated from the complexities of the parallel im-
plementation. MIRTIS provides a high level modeling
interface, which is used to manage the hardware and
software con�gurations.

2 Background
2.1 Problem Domain

Throughout this paper, the term image processing
includes the image to image transformations which con-
stitute low{level vision. Examples of image processing
operations are contrast enhancement (eg. histogram
stretch, histogram equalization, linear rescaling), �lter-
ing (eg. smoothing, median �lter), edge detection and
segmentation (eg. sobel, laplacian, Laplacian of Gaus-
sian (LOG), thresholding), local histogram operations,
and morphological operations.

When processing image sequences it is often useful
to perform calculations on consecutive frames. For ex-
ample, time domain averaging (averaging several frames
together) is used for noise reduction, and instantaneous
di�erencing is a simple method of motion detection.
Some techniques operate both in the 2{D image plane
and in the time domain. Examples are 3{D �ltering
and 3{D morphology. These types of algorithms are
also included in our de�nition of image processing.

Image processing has been the most common area
for the application of high performance parallel com-
puting [1]. The operations have several characteristics
which make them particularly suitable for implementa-
tion on parallel computers [2].

� They are regular. Usually the same computation is
performed for each pixel in the image.


