
PRIORITIZED GEOGRAPHICAL ROUTING IN SENSOR NETWORKS 

 

 

By 
 
 

Sachin J Mujumdar 
 
 

Thesis 

Submitted to the Faculty of the 

Graduate School of Vanderbilt University 

in partial fulfillment of the requirements 

for the degree of 

 
MASTER OF SCIENCE 

 
in 
 

Electrical Engineering 
 
 

May, 2004 
 
 
 

Nashville, Tennessee 
 
 
 
 
 
 

Approved: Date: 

________________________________________________ ___________________ 

________________________________________________ ___________________ 

   



 

DEDICATION 

 

 

 

 

 

 

 

 

 

To my loved ones, 

My Parents, my Sister and my Wife 

 ii  



 

ACKNOWLEDGEMENTS 

This research was sponsored by the Defense Advanced Research Projects Agency 

(DARPA), under the Networked Embedded Software Technology (NEST) program. 

I would like to thank my graduate advisor, Dr. Gabor Karsai, for helping me focus 

on my research, and for answering an endless stream of questions. I am also very grateful 

to Dr. Akos Ledeczi, my research advisor, who motivated me to implement this 

algorithm. His constant pushing and words of encouragement when I was flagging have 

gone a long way in making this thesis a reality. 

Dr. Mikos Maroti, Dr. Gyula Simon, Peter Volgyesi and other members of the 

NEST project at ISIS have also been very helpful in answering my doubts. Thank you for 

always being willing to spare your time to resolve my queries and look for silly bugs in 

my code.  

It would be unthinkable of me not thank my parents for always encouraging me to 

pursue my beliefs, my ideas and my dreams. Their unquestioning support lent me the 

courage to pursue this difficult journey and focus on my goals. My sister, Siddhi, with her 

faithful and loyal support has been instrumental in my endeavors. I would also like to 

thank my parents-in-law for their blessings. Lastly, but not in the least, I wish to thank 

my wife and sweetheart, Sujata, for believing in me and motivating me. She provided 

endless hours of company and cups of coffee, and was remarkable in putting up with my 

tantrums. Her threats were, in no small measure, responsible for me overcoming my 

occasional bouts of lethargy.  

 iii  



 

TABLE OF CONTENTS 

Page 

DEDICATION.................................................................................................................... ii 

ACKNOWLEDGEMENTS............................................................................................... iii 

LIST OF FIGURES ........................................................................................................... vi 

LIST OF ABBREVIATIONS.......................................................................................... viii 

Chapter 

I. INTRODUCTION ..................................................................................................... 1 

Ad-hoc Networks................................................................................................. 2 
Wireless Sensor Networks ................................................................................... 4 

Features of WSN............................................................................................. 8 
Message Routing................................................................................................ 10 

Message Routing in Sensor Networks .......................................................... 12 
Problem Description .......................................................................................... 13 
Problem Statement............................................................................................. 14 

II. LITERATURE REVIEW ........................................................................................ 16 

Survey of Prominent Routing Algorithms ......................................................... 16 
Dynamic Source Routing (DSR) .................................................................. 17 
Ad-hoc On-Demand Distance Vector (AODV) Routing.............................. 19 
Location Aided Routing (LAR).................................................................... 21 
Low Energy Adaptive Clustering Hierarchy (LEACH) .............................. 23 
SPEED .......................................................................................................... 26 
Greedy Perimeter Stateless Routing (GPSR) ............................................... 30 
Conclusions from the Survey........................................................................ 32 

Developmental Tools......................................................................................... 32 
MATLAB and Prowler ................................................................................. 33 

MATLAB................................................................................................. 33 
Prowler ..................................................................................................... 34 

TinyOS, nesC and TOSSIM ......................................................................... 35 
TinyOS ..................................................................................................... 35 
nesC.......................................................................................................... 37 
TOSSIM ................................................................................................... 38 

Summary ....................................................................................................... 40 

III. PRIORITIZED GEOGRAPHICAL ROUTING...................................................... 41 

 iv  



 

Protocol for Neighborhood Detection and Maintenance ................................... 41 
A Revised Neighborhood Protocol .................................................................... 44 
Basic Geographical Routing .............................................................................. 49 

Problem Topology ........................................................................................ 51 
Modified Geographic Routing........................................................................... 53 

Problem Topology ........................................................................................ 60 
Advanced Geographic Routing.......................................................................... 62 
Prioritized Geographical Routing ...................................................................... 66 

IV. ANALYSIS, EVALUATION AND EXPERIMENTATION ................................. 71 

Implementation .................................................................................................. 71 
PGR Message Overhead ............................................................................... 73 

Comparison via Simulation ............................................................................... 74 
Simulation Environment ............................................................................... 75 
Results........................................................................................................... 79 

V. CONCLUSION AND FUTURE WORK ................................................................ 86 

Conclusion ......................................................................................................... 86 
Future Work....................................................................................................... 89 

REFERENCES ................................................................................................................. 90 

 

 v  



 

LIST OF FIGURES 

Figure                Page 

1. A Typical Sensor Network.......................................................................................7 

2. Structure of a Sensor Node ......................................................................................9 

3. Backpressure Re-Routing [35]...............................................................................29 

4. Broadcasting of ADV_MSG Requests ..................................................................43 

5. Network Snooping .................................................................................................45 

6. Neighbor Table ......................................................................................................46 

7. Building the Neighborhood....................................................................................47 

8. Maintaining the Neighborhood ..............................................................................48 

9. Sample Route in Basic Geographical Routing.......................................................49 

10. Basic Geographic Routing .....................................................................................50 

11. Example of Topology leading to failure of BGR...................................................52 

12. Implicit Acknowledgement in MGR .....................................................................55 

13. "Relayed Messages" Table ....................................................................................56 

14. Modified Geographic Routing ...............................................................................59 

15. Example of Topology leading to potential failure of MGR...................................61 

16. Advanced Geographic Routing..............................................................................65 

17. Message Structure..................................................................................................67 

18. Message Transmission using PGR.........................................................................68 

19. Prioritized Geographic Routing .............................................................................70 

20. Control Messages Overhead per Single Round .....................................................79 

21. Time of Arrival: Single Source, One Message ......................................................81 

22. Settling Time: Single Source, One Message..........................................................83 

 vi  



 

23. Number of Transmissions: Single Source, One Message......................................84 

 

 vii  



 

LIST OF ABBREVIATIONS 

AGR Advanced Geographic Routing 

AODV Ad-hoc On-demand Distance Vector 

ARPANET Advanced Research Projects Agency NETwork 

BGP Border Gateway Protocol 

BGR Basic Geographic Routing 

CDMA Code Division Multiple Access 

CSMA Carrier Sense Multiple Access 

DFRF Directed Flood Routing Framework 

DSR Dynamic Source Routing 

FS Forwarding Set 

GG Gabriel Graph 

GPSR Greedy Perimeter Stateless Routing 

IEEE Institute of Electrical and Electronics Engineers 

IP Internet Protocol 

LAR Location Aided Routing 

LEACH Low Energy Adaptive Clustering Hierarchy 

LMP Last Mile Processing 

MAC Medium Access Control 

MANET Mobile Ad-hoc NETwork 

MIT Massachusetts Institute of Technology 

MGR Modified Geographic Routing 

 viii  



 

NFL Neighborhood Feedback Loop 

NS Neighbor Set 

OSPF Open Shortest Path First 

PDA Personal Digital Assistant 

PGR Prioritized Geographic Routing 

RIP Routing Information Protocol 

RNG Relative Neighborhood Graph 

RRC Relay Ratio Controller 

SNGF Stateless Non-deterministic Geographic Forwarding 

TDMA Time Division Multiple Access 

TinyOS Tiny Operating System 

TOSSIM TinyOS Simulator 

VLSI Very Large Scale Integration 

WSN Wireless Sensor Networks 

 

 ix  



 

CHAPTER I 

INTRODUCTION 

“The number of transistors found on a single integrated chip has doubled 
over the past four years. The amount of transistors that may be fitted in a 
single chip, will double every two years” 

-- Gordon Moore, 1965 
 

 

Moore’s Law has resulted in the rise of computing devices that are extremely 

small, powerful and energy-efficient. Particularly, this has resulted in the market being 

inundated by cheap, compact cell-phones, Personal Digital Assistants (PDAs) and Pocket 

PCs. The major thrust of these devices is towards integrating communications and 

processing power on a single device. With the advances in VLSI technology, entire 

systems are now being fitted on small devices. An important consequence has been the 

research in the development of devices that can not only communicate amongst 

themselves or process data, but also sense their surroundings and actuate them. A new set 

of computing devices that are energy-aware, tiny and which possess communicating, 

actuating, sensing and processing capabilities are being developed.  

With rapid developments such tiny, self-sufficient nodes, Embedded Systems 

have made a huge leap in the field of distributed computing. Complex networks, 

consisting of hundreds thousands and potentially millions of cheap computing devices, 

will eventually be deployed to monitor, sense and actuate their environment. Typically, 

such devices have a specific functionality and are incapable of doing anything else. They 

communicate using the radio medium, and hence are also called Wireless Devices.  
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Since the main functionality of these devices is to sense, these devices are called 

Wireless Sensor Nodes, and their networks are referred to as Wireless Sensor Networks 

(WSN). Each node communicates with the other nodes and / or to one or more specific 

powerful nodes (called base station) using the radio communication. It is often not 

possible to transmit a message directly (in a single hop) to a node that is far away. 

Transmitting a message from one node to another is known as routing. Routing a 

message to its correct recipient is a complex task involving various nodes (multi-hop). 

Ad-hoc Networks 

“Ad hoc” is a Latin word meaning unplanned, makeshift or temporary. Though 

connoting negativity, ad hoc-ism in networks is used to describe a large-class of easy-to-

deploy networking systems with dynamic topologies. 

Murphy et al. [1] define an “Ad hoc Network” to be “transitory associations of 

mobile nodes which do not depend upon any fixed support infrastructure…can be 

visualized as a constantly changing graph. Connection and disconnection are controlled 

by the distance among nodes, and their willingness to collaborate in the formation of 

cohesive, albeit transitory community”. Ad hoc networks are not dependent on any 

conventional supporting infrastructure such as continuous connectivity, unlimited/large 

bandwidth, static configuration and topology, and reliable power supply; they are formed 

by the mere presence of nodes. Communication between nodes is dependent on the 

distance between them. Such communication may either be direct communication, or 

communication based on relaying of messages by willing intermediate nodes. 

The ad hoc nature of the network is primarily due to the dynamism of the 

constituent nodes. A fresh arrangement of the nodes in the network is formed, simply by 
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adding/removing a node to/from the network. Furthermore, a mere change in location of 

one or more of the constituent nodes results in probabilistic connections and a 

rearrangement of the topology. Connectivity between two nodes is continuously changing 

due to constant movement of nodes and radio characteristics like noise and interference. 

The temporal connectivity graph in an ad-hoc network, i.e. the links therein, may be 

expressed in terms of probability of the presence of the above factors. Hence the 

connections are probabilistic in nature. It may be noted here that the term “fresh 

arrangement” denotes a network with a different topology or connectivity graph. New 

nodes appear in the network either due to movement or their willingness to participate in 

the network. Similarly, nodes disappear due to movement out of the area, or due to 

failure. The willingness of nodes to collaborate or participate in the network is a decision 

made by a network technology-dependent implementation at the network level [4]. 

A necessary characteristic of ad hoc networks is their ability to self-organize. The 

nodes need to be self-aware such that a random deployment of nodes will eventually lead 

to an ad hoc network being formed. The nodes have no information about the network 

initially. Each new node will start by recognizing its neighbors – nodes that are willing to 

communicate with the node in question. However, it may be noted that nodes need not 

know their neighbors to effectively route messages in the network. The adaptivity of such 

self-organizing networks is covered in further detail in [3]. The network should be 

capable of allowing a new node to join it, or allow current nodes to leave. Moreover, this 

should be done in a decentralized manner, in the absence of any controller or 

administrator. 
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The ad hoc network space may be classified based on the mobility of its 

constituent nodes [2]. Ad hoc networks consisting of nodes that are able to move are 

termed as Mobile Ad hoc NETworks (MANET). Such networks usually consist of PDAs, 

laptops, cellular phones and other hand-held devices. Due to the ability of the constituent 

nodes to move around in and out of the network, the topology changes constantly. 

Protocols and applications based on a MANET need to be designed keeping in view this 

changing topology. 

Ad hoc networks consisting of nodes that are spread out over a geographical area 

and are immobile are classified as Smart Sensor Networks [54] [55] [2]. Such networks 

are usually application-specific, configured to perform a specific task, and consist of 

resource-constrained nodes fitted with sensors and/or actuators. 

Wireless Sensor Networks 

A wireless ad hoc sensor network, or WSN, is a collection of autonomous, self-

sufficient nodes spread over a geographic area that communicate with each other over a 

radio network [2]. A WSN usually is a dense deployment of these nodes. The nodes are 

typically fitted with sensors to sense the environment. They can also be fitted with 

actuators that perform some mechanical action based on the inputs received. These nodes 

are usually distributed over an area in an ad hoc manner. The radio network thus formed 

is a graph, connecting the various nodes in an impromptu and decentralized manner. An 

example of a mechanical action is the use of feedback control to reduce the turbulence 

caused by the airflow across surface of the wing of an aircraft.  

Such complex networks mentioned above have commercial as well as military 

significance. The typical applications may be as varied as: 
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• Pursuer-Evader, Target Tracking: This involves a mobile target that is being tracked 

by a number of sensor nodes deployed in the area of the target’s movements [8]. 

• Habitat Monitoring: Sensitive environmental zones, biospheres and wildlife habitats 

may be monitored and studied non-intrusively and non-disruptively by using WSN. 

Nodes are dispersed in a particular environment with various sensors like light, 

temperature etc. Data collected from various nodes is used to monitor the particular 

environment and detect any changes. Applications may be developed to monitor, 

predict and minimize damage from any changes to the normal system. Habitat 

Monitoring using sensor networks was first suggested in [12]. The University of 

California at Berkeley’s initiative non-intrusively monitors the microclimates at Great 

Duck Island, Maine, which is the habitat of Leach’s Storm Petrel [9]. University of 

Hawaii’s PODS project [13] uses WSN to investigate the growth patterns of a certain 

species of plants is another application in Habitat Monitoring. 

• Forecasting: WSN may be used to monitor the environment, structures etc. and 

predict trends related to weather, pollution, floods, earthquakes, bush-fires or 

structural damages to buildings [14]. 

• Kindergarten: An interaction-based instruction method to educate children in 

kindergarten has been proposed [15], which makes use of WSN. It is envisioned that 

this process will replace traditional stimulus-response based methods. 

• Smart Home/Office: WSN along-with actuators can be used to constantly monitor 

each individual’s preferences for humidity, temperature and other environmental 

conditions. Homes and Offices can also be equipped with WSN-based Burglar Alarm 

systems that sense movements in prohibited places / times and take appropriate 
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action. MIT has developed a Smart-Room project [10] to adapt computers to better 

understand human intents and feelings [56]. 

• Aircraft Industry: Aircraft interior noise is the result of the engine as well as the 

turbulent boundary layer. The turbulent boundary layer noise enters the cabin through 

the fuselage [16]. Such noise could be reduced by using a WSN deployed over the 

surface of the fuselage. The sensors would sense the noise being developed, and with 

the aid of an actuator would produce vibrations to cancel out the noise. 

• Shooter Localization: Various sensor nodes are placed in an ad hoc manner over a 

given area. When a shot is fired, the nodes sense the shockwave and muzzle-blast 

generated by the shot. Nodes that sense this data send it back to the base-station. 

Calculations are performed on data collected from various nodes to calculate the 

origin of the shot. Counter-Sniper, Battleground Monitoring Systems and Urban-

Warfare are archetypal examples for application of such a system. Vanderbilt 

University has developed a Shooter-Localization system for detecting enemy snipers 

[11]. 

It may, however, be noted that Sensor Networks, though a subclass of ad hoc 

networks, differ from them in certain ways. Akayildiz et al [5] give a list of such 

differences: 

• The number of nodes in a sensor network may be much higher than in a typical ad 

hoc network, 

• Sensor networks have a dense topology, 

• The frequency of node failures in a sensor network is much higher, 
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• The topology of a sensor network changes frequently due to link and node failures, 

and to lesser extent due to re-deployment, 

• Sensor nodes are resource constrained in terms of memory, processing power and 

energy, 

• Sensor Networks are designed with an end-goal in mind, like gathering data based on 

particular events, while a simple ad hoc network’s primary goal is just 

communication [2]. 

 

Figure 1 A Typical Sensor Network 

Due to the restricted computing and processing capabilities of the sensor node, 

most sensor network applications use the services of one or more base stations. The 
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sensor nodes collect the data and forward it to the base station. The base station is a 

special node that has more computing power. Once the data is routed back to the base 

station, it processes the data. 

Figure 1 shows the layout of a typical sensor network. The small dots represent 

the sensor nodes collecting data. The big dots are the base-stations with higher computing 

power. Data is routed back to these base-stations possibly using a “multi-hop 

infrastructure-less architecture” [5]. The circle denotes an area where no nodes are 

present. This is termed as a void in the network. 

Features of WSN 

This section lists some of the salient features of a WSN. One of the most 

important features is the hardware, namely the node itself. A node is a resource-

constrained device capable of radio communication, sensing and limited data-processing. 

It is optionally also capable of actuating the environment. It is low on processing power, 

energy as well as memory. A sensor node is usually composed of four components: a 

Processing Unit, a Power Unit, one or more Sensing Units and/or Actuating Units, and a 

Transceiver. The Processing Unit is typically an 8-16 bit, 1-24 MHz microcontroller with 

1kB – 4MB onboard memory. These figures vary within different families of 

microcontrollers, and with different vendors. The Power Unit usually consists of one or 

more batteries, providing 3V - 4.5V, generally with a capacity ranging between 

1700mAh – 2700mAH. The node can be fitted with various sensors for acoustic, photo, 

temperature, pressure etc based applications. Each node may also optionally be fitted 

with an interface for plugging-in an actuator for performing any mechanical actions on a 

application-specific basis. Figure 2 shows the structure of a sensor node. 
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Figure 2 Structure of a Sensor Node 

Network Topology is an important aspect of the sensor networks. The lifecycle of 

a sensor network may be represented in three phases with respect to the topology and its 

maintenance [5]. During the Deployment phase, the nodes are dropped into their positions 

in an ad hoc manner. The nodes need to self-organize into a communicating network. The 

Post-Deployment phase topology maintenance consists of topology changes induced due 

to the failure of the nodes, failure of radio links, or arrival of some mobile obstacles. The 

Re-Deployment phase deals with the deployment of nodes to replace failed nodes. In each 

of the three phases, a sensor network should be capable of seamlessly organizing itself to 

stream data to the base-station. 

Sensor Networks are highly sensitive to energy usage. They may, probably, be 

deployed in inhospitable or hostile environments, where it may not be possible to refresh 

energy sources. Hence, energy consumption is a major issue, and energy-aware protocols 

/ applications are desirable. Energy consumption is observed at three stages in a node [3] 
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– communication, sensing and processing. Optimizing the three processes will lead to a 

reduction in the energy consumed. 

Message Routing 

Nodes in a network communicate with each other via the transmission of 

messages. A tiny network, with a few nodes lying relatively close to each other, may be 

able to establish complete end-to-end communication. This would mean that every node 

is capable of directly communicating with every other node, without any aid from other 

nodes. This would lead to a fully-connected topology, i.e. the resulting graph has vertices 

(nodes) that connected to every other vertex. However, establishing such communication 

within large networks, consisting of hundreds or thousands of nodes flung far apart, is not 

possible. Furthermore, many parameters like interference, noise, dispersion, available 

bandwidth, asymmetry of links and constantly changing signal strength, may make 

complete connectivity unachievable even in tiny networks. Nodes that can send or 

receive messages in a single hop are termed as neighbors. A hop depicts a direct link of 

communication between the two nodes. To send messages to nodes that are farther away, 

the nodes communicate by propagating a message in the network using a commonly-

approved protocol, known as the Message Routing Protocol. 

Message Routing is the process of determining the path that a message will take 

in the network to travel from the source to reach its destination. Typically, each node in 

the network observes dual roles: that of a host and a router. A host is the originator or the 

final receiver of a message, while a router relays a received message onto a path that will 

eventually lead to the intended destination. Message Routing is a widely researched 

subject both within [34][35] and outside [28][29][30][31][32][33] the ambit of Sensor 
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Networks. The idea behind routing is simple: send a message from one node to the other 

node, using intermediate nodes as the relaying terminals. 

Routing can be categorized as follows: 

• Centralized vs. Distributed: In centralized routing, the route that a message is 

supposed to take is calculated by the source, and is embedded into the message. 

Intermediate nodes just check this route and forward the message to the next node on 

the route. Conversely, in distributed routing, each node calculates the next node on 

the route based on the routing protocol. The message consists of only the actual data 

as the payload, with minimal routing overhead. 

• Static vs. Dynamic: Static Routing provides the means for explicitly defining the next 

node from any intermediate node, for a particular destination. This means that every 

node has an entry for each destination node in a table stating the next node to be 

chosen in case a message arrives for that destination. Dynamic Routing chooses the 

next node on the route from multiple nodes based on various criteria like network 

load and density. 

• Flat vs. Hierarchical: The entire network is treated as a flat topology in Flat Routing. 

In Hierarchical Routing, the network topology is assumed to be hierarchical in nature. 

Groups of nodes form a cluster. Clusters are aggregated to form a higher-level cluster, 

and so on till the entire network topology is defined. Routing is carried out based on 

communications between these clusters. 

• State vs. Stateless: In case of Distributed Routing, each node calculates the next node 

on the route. For doing this, it may require to store some information regarding its 

neighbors and/or the message itself. The node maintains expensive routing tables to 
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keep track of what route to follow for a particular destination. Over a period of time, 

the nodes identify the entire topology of the network. Routing protocols that store 

such information are known to follow the State Routing whereas those protocols 

which do not store any information provide Stateless Routing. While state protocols 

are expensive in terms of memory, stateless protocols appear to be expensive in terms 

of time. A good compromise would be to keep track of just enough network 

information that would enable a node to calculate the next hop correctly without 

doing any resource-consuming calculations. By correctly, we mean that the next hop 

chosen should confirm to some routing protocol, and not be chosen randomly. 

Message Routing in Sensor Networks 

Routing in sensor networks presents a particularly challenging problem due to the 

intrinsic nature of the medium used to route the messages. Sensor Networks generally 

communicate via the radio. The use of radio as a medium introduces various problems 

such as: 

• Wireless Link Quality – Radio communication is not bidirectional. Nor does it 

guarantee a uniform degradation of the link quality as the distance between any two 

end-points increases. In fact, the quality of a link is transient; it can change drastically 

over time and distance. 

• Noise – The radio medium is beset with problems of noise signals emanating due to 

the radio antenna, thermal activity, other radio sources etc. This leads to corrupt radio 

messages. 

• Collision – The radio channel is a shared medium. Multiple nodes trying to use the 

same channel result in collision of messages. A good routing protocol should take 
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into account message loss due to collisions and adapt itself to deliver the message, 

overcoming the collisions. 

• Multipath – Reflection of radio signals from terrestrial objects and other impedances 

result in the radio signal being transmitted via multiple paths. This results in 

interference with other signals, and adds to the noise. 

• Fading – Radio signals are transmitted with certain signal strength. Greater signal 

strength results in a bigger ‘radius’ of the communication. This implies that signals 

transmitted at a higher strength will be heard by nodes that are farther. However, due 

to obstacles, energy is absorbed leading to an attenuation of the signal strength. The 

radio channel is subject to change in conditions that changes the attenuation. This is 

known as fading. 

• Restricted Bandwidth – Bandwidth available to a WSN application is limited. Thus 

routing protocols should maintain minimum overhead to transfer as much data as 

possible using the limited bandwidth. This is important in ensuring fast processing of 

the data. 

Problem Description 

Imagine an Early Warning Seismic Network that is deployed in a seismically 

sensitive zone to gather data emitting from the geologically volatile area. While the major 

concern of such a system would be to sense major upheavals in the zone that may signify 

an impending seismic activity, the network may also be used to collect data at otherwise 

"normal" times. This data may provide useful information regarding the geological 

activities that are generally evolving all the time. The major needs of such a system 

would be high fidelity (ability to give early warnings) and minimum false alarms.  
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Routing would play a major part in such a system. The nodes would be constantly 

pushing "normal" data towards the base-stations. Such data may be classified as regular, 

low-priority data. Loss of a few occasional packets/messages would not hamper the Early 

Warning ability of the system. However, when the nodes sense a major change in the data 

that they are sensing, they need to ensure that such data messages are not lost. Hence, 

they need to accord a high priority to such messages before dispatching them towards the 

base-stations. 

Such scenarios wherein data being routed may change in importance over time 

necessitate the evolution of advanced routing solutions that accord varying degrees of 

priorities to the messages, and ensure the delivery of more important messages with a 

higher fidelity than that for less important messages. 

Limited In-Network Data Processing is an important ingredient of many WSN 

applications. Self-Localization is a process wherein nodes localize their positions and 

self-calibrate, generally based on acoustic signals [50][18][19][20][21]. Another instance 

of in-network data processing is the vibration control in the fuselage of the aircraft. 

Sensors would sense the amount of vibrations in a particular area, which would then be 

transmitted to nodes in surrounding areas. The nodes would gather data, process it and 

send signals to the actuators to take corrective action based on the feedback of vibrations 

from the surroundings. A routing protocol providing end-to-end solution between any 

two nodes is essential.  

Problem Statement 

Hence, we argue for the need of a routing protocol that supports transmission of 

messages from any node to any other node and treats messages based on priority. A 
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routing is said to be connected when it is possible to route messages from any node in the 

network to any other node. 

There is a need for a Routing protocol to support message routing in WSN. Such a 

protocol would support any-node-to-any-node message routing as well as provide 

facilities to treat message with different priorities differently. I propose to develop a 

location aware routing protocol that utilizes the positions of the nodes to calculate the 

route. Location awareness has its own set of unique problems. Nodes need to know their 

position as well as the position of their neighbors. With constant changes in the radio link 

strength, it is extremely difficult to keep an updated record of all the neighbors. 

Furthermore, a location-based routing protocol calculates distances between the nodes. 

This is extremely expensive in terms of CPU and energy. One of the challenges would be 

to adapt common algorithms for calculating distance, sorting etc to work well on 

resource-constrained nodes. 

The routing should be robust and insensitive to the changes in topology. It should 

adapt itself quickly to the connectivity changes. This dynamism precludes the use of 

static data tables stored locally on the nodes. 
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CHAPTER II 

LITERATURE REVIEW 

Survey of Prominent Routing Algorithms 

Routing has been a widely and intensely studied subject since the time when 

networks came into existence. One of the earliest forms of routing is the Hierarchical 

Alternate Routing algorithm [27] used in static routing of messages for the telephone 

lines. The first network of computers, ARPANET, heralded the beginning of internet. 

ARPANET used software based on the Bellman-Ford distance vector algorithms, which 

also forms the basis for the RIP (Routing Information Protocol) [28][31], one of the 

earliest and widely used routing protocols. Development of bigger networks and inter-

connected labs, offices etc led to the development of more complex routing protocols like 

OSPF (Open Shortest Path First) [30], BGP (Border Gateway Protocol) [29] etc. With the 

advent of Wireless Communication and the use of ether as a communication medium of 

transferring data, newer routing protocols had to be developed that would work with the 

unique characteristics displayed by the radio medium. Some of the widely used routing 

protocols in this genre are AODV [32] and DSR [33]. However, with the technology 

taking the next big-leap into the area of WSN, a newer crop of routing algorithms has 

been developed that is suitable for the resource-constrained devices in terms of memory, 

computational power and energy usage. Any algorithm that may be chosen for routing 

should possess characteristics that suit the medium and platform that it is being used for. 

Furthermore, it should not only be robust, but also support a range of desired features that 

make the routing as generic, reusable and flexible as possible. 
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Dynamic Source Routing (DSR) 

Dynamic Source Routing (DSR) [33] is one of the most popular routing 

algorithms for wireless networks. It is a Source Routing protocol, which implies that the 

sender of the message builds the entire route at the source itself, and then forwards the 

message to the node in the route. Each node that receives the message checks whether it 

is the destination. If it is not the destination, it just forwards the message to the node next 

in the route that is embedded in the message header. 

The DSR algorithm has two main operations: Route Discovery and Route 

Maintenance. Whenever a node wants to transmit a message to another node, it looks up 

its Routing Tables to check whether it has a route to that node. If it has the route, then the 

message is embedded with the pre-calculated route and forwarded to the first node in the 

route. If there is no such route in the routing table, then the node initiates a Route 

Discovery. The host node initiating the route discovery broadcasts the route request. This 

request, among other things, contains an ID and a route record. This record contains the 

actual route that has been accumulated till that time. On receipt of the route request, each 

node can (1) discard the request (since it has already processed it sometime back), or (2) 

append its own address to the route record and forward it, or (3) return a copy of the route 

in a route reply (since it is the destination for which the route request was initiated). 

If the destination node has a route to the source node in its routing table, it will 

send the route reply using that route. If there is no record of the source in the routing 

table of that node, it initiates a route discovery for the source-node, and piggybacks the 

route reply onto that route request. Once a node gets the route to the required node, it 
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enters this route in its routing table, and maintains a link to this route till it continues 

communication with the destination node. 

Wireless networks, as explained in Chapter I, allow for the network nodes to be 

mobile. Moreover, the links between two hosts are asymmetric in nature. Consequently, 

links between two nodes change continually, leading to a lot of routes existing in the 

various caches of the nodes being invalidated / broken. So long as a route is in use, the 

Route Maintenance procedure monitors the operation of the route and detects any routing 

errors encountered on the route. Errors are detected on the basis of availability of the hop-

by-hop acknowledgements. Whenever a message is passed from one node to the other, 

the transmitting node expects either an implicit or an explicit acknowledgement from the 

receiver at the next hop. If the acknowledgement wait-period times out, the route is 

assumed to be broken. The transmitting node that detects the break in the route then sends 

back a route error message to the source of the message. The node sending back the 

route error message should have a route back to the source; else, it would either initiate a 

route discovery, and then forward the error message when it has the entire route, or 

piggyback the error message on top of the route discovery message. On receipt of the 

route error message, the route is invalidated after the node that encountered the message. 

One of the earliest, and very popular, wireless routing algorithms, DSR does not 

use periodic broadcasts of a node’s position to let other nodes know of its position. Thus, 

it doesn’t have any need for neighborhood tables. However, it does make a heavy use of 

routing tables to store routes to nodes with whom the source node is communicating. 

Also, it makes use of IP addresses as host addresses, and is generally suitable for devices 

with network interface cards. The Internet Protocol (IP) [57] is a data-oriented protocol 
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used by source and destination nodes for communicating data over packet-switched 

networks. It is thus unsuitable for WSN devices that are limited memory and energy to 

employ this algorithm. However, DSR has inspired many current WSN algorithms and is 

acknowledged to be a very good routing protocol. 

Ad-hoc On-Demand Distance Vector (AODV) Routing 

Ad-hoc On-Demand Distance Vector (AODV) Routing [32] is another popular 

routing algorithm for wireless ad hoc networks that operates using distance-vector 

routing mechanisms. It is quite similar to the DSR [33] in that it too uses the concepts of 

Path Discovery and Maintenance. However, AODV builds routes between nodes on-

demand i.e. only as needed. 

AODV does not depend on network-wide periodic advertisements of 

identification messages to other nodes in the network. It periodically sends “HELLO” 

messages in the local context of the system, to build up a set of neighbors. It then uses 

these neighbors in routing. 

Whenever any node needs to send a message to some node that is not its neighbor, 

the source node initiates a Path Discovery, by sending a Route Request (RREQ) message 

to its neighbors. This is somewhat akin to the procedure followed by DSR. Nodes 

receiving the RREQ update their information about the source. They also set up a 

backward link to the source in their routing tables. Each RREQ contains the source 

node’s address (IP address) and a Broadcast ID that uniquely identifies it. It also has a 

current sequence number that determines the freshness of the message. Thus, a message 

number with a higher sequence number is considered to be fresher or more recent than 
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that with a lower sequence number. The RREQ also contains a hop count variable that 

keeps track of the number of hops from the source. 

On receipt of the RREQ, the node checks whether it has already received the 

same RREQ earlier. If it has received the same RREQ earlier, it drops the RREQ. 

Otherwise, if it is an intermediate node without any record of a route to the final 

destination, the node increases the hop count and rebroadcasts the RREQ to its neighbors. 

If the node is the final destination, or an intermediate node that knows the route to the 

final destination, it sends back the Route Reply (RREP). This RREP is sent back via the 

same route traversing which the node had received the message from the source. As the 

RREP propagates back to the source node, the intermediate nodes setup forward pointers 

to the actual destination. 

When the source node receives the RREP, it checks whether it has an entry for the 

route. If it did not have any entry in its routing table, the node creates a new entry in the 

routing table. Otherwise it checks the sequence number of the RREP. If the RREP arrives 

with the same sequence number as in its tables but with a smaller hop count, or a greater 

sequence number (indicating fresher route), it updates its routing table and starts using 

this better route. Once an entry for the new route has been created in the table, the node 

can start communication with the destination. Every time a node receives subsequent 

RREPs, it updates its routing table information, and only forwards those that are fresher 

or contain a smaller hop count. Each routing table entry contains information for the 

destination, the next node, number of hops to the destination, sequence number for that 

destination, active neighbors for the route and expiration time of the table entry. The 

expiration time frame is reset every time the source routes a packet to the destination. 
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AODV considers two ways a route may be broken. In the first case, the source 

may move from its position, in which case, it may simply initiate RREQ again. In case 

the destination or intermediate node die or move, some node would receive a message 

that it cannot forward to the next node. This node would then check its routing table and 

find out all the routes that use the failed node for the next route. It then marks all these 

routes as invalid, and sends out RERR to the source nodes of all the routes. On receipt of 

the RERR, each node would invalidate its routes that contain entries to the failed node 

denoted in the RERR. It would then propagate the RERR down onwards as earlier. 

Though AODV is a robust algorithm and works very well for the Wireless 

networks, it is unsuitable for the senor networks as it uses memory consuming routing 

tables. It also assumes the presence of symmetric links in the medium, and disregards any 

pair of nodes that don’t establish a symmetric link. The algorithm is memory intensive 

and is meant for devices with complex network interfaces, as DSR. 

Location Aided Routing (LAR) 

Location Aided Routing (LAR) [25] provides location based routing using 

restrained / directed flooding. This was one of the earlier location-based routing 

protocols, and used few ideas from the DSR protocol described above. 

The first phase of this routing is the Route Discovery using flooding. Whenever a 

node needs to find a route to another node, it initiates the route discovery like in DSR. 

The requesting node sends a route request to all its neighbors. On receipt of this route 

request, the neighbors check whether the route request is meant for them. If not, they 

broadcast the route request again to all their neighbors only once, discarding any more 

route requests for the same combination of sender and receiver. At every hop, a node is 
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added to the route that is contained in the route request. Once a route request reaches the 

destination node, it responds by sending a route reply. This route reply follows a path 

obtained by reversing the path contained in the route request. 

LAR assumes that the mobile nodes are constantly moving and that a node’s 

location at two different times will most probably be different. The Expected Zone of a 

receiving node from the viewpoint of a sending node is the zone in which the receiver is 

expected to be present based on the prior information of the receiver’s location and its 

velocity of movement. If no such information is available, then the expected zone may 

potentially be the entire ad hoc network, leading to the algorithm being reduced to 

flooding. The Request Zone is the zone in which a forwarding node must lie. An 

intermediate node may only forward a route request if it is within the request zone. 

The main thrust of LAR is the methodology used to determine whether a node is 

in the Request Zone or not. Two schemas may be used. One schema assigns the request 

zone to be a rectangle with its sides being parallel / perpendicular to the X-Y axes. This 

rectangle is cornered at one side by the sending node. The other corner of the rectangle is 

formed by the intersection of the tangents to the Expected Zone (usually a circle) of the 

destination. In case of the sender being located within the expected zone, the request zone 

is specified to be a rectangle enclosing the expected zone. 

The request zone is not specified explicitly in Scheme Two as was done in 

Scheme One. Instead, the route request contains two parameters. One is the distance of 

the sender from the last known position of the destination. The last known co-ordinates of 

the destination are also specified in the route message. On receipt of the message, an 

intermediate node will calculate its own distance from the destination. If this distance is 
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less than the distance contained in the message, and it is at least some specific distance 

away from the previous hop’s node, the node will accept the route request, else it will 

drop it. 

The LAR is another protocol that is designed for the wireless networks in general, 

but does not account for the unique and stringent characteristics of the sensor network. 

Thus expensive routing tables need to be maintained. This protocol is similar to DSR in 

operation but differs in the aspect of route building. However, an added disadvantage of 

this protocol is that route is found out using flooding. This gives an O(n) complexity to 

each route discovery. However, each node receives the same route request from each of 

its neighbors, making it process O(n) requests for propagation. These control messages 

are too many. The LAR protocol chooses a route that is of the smallest length. However, 

on receipt of multiple routes of same length resulting from the route request, LAR is 

unclear about which route to accept and store. 

Low Energy Adaptive Clustering Hierarchy (LEACH) 

Most sensor network applications are related to data collection. The job of the 

sensor nodes is to monotonously collect and route data to one or more central processing 

nodes or base-stations. LEACH [34] has been designed for WSN running such 

applications. The basic premise of LEACH is that the control nodes in the WSN are 

situated far from the area of the deployment of nodes. It also presumes all nodes to be 

energy-constrained and homogeneous. The assumption of homogeneity aids in the energy 

calculations. Sensor networks generally contain redundant or supplementary data. Such 

data needs to be aggregated into a single chunk of useful and meaningful data that can 
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then be sent over to the base station. This is known as data aggregation or data fusion. 

LEACH provides features for data aggregation too. 

LEACH is a hierarchical routing algorithm. It assembles the nodes into groups or 

clusters. Each of these groups has a cluster-head. LEACH has four phases of operation: 

Advertisement, Cluster Setup, Schedule Creation and Data Transmission.  

In the advertisement phase, each node decides whether it can become a cluster 

head or not for the current round. This is based on the percentage of cluster heads desired 

in the WSN as compared to the population of the WSN. Based on this percentage, P, a 

node becomes eligible for being a cluster-head if it has not been a cluster-head in at 

least 1
P  rounds in the past. A threshold value is calculated for each node using the 

current round number, r, and P. This threshold value is given by the equation: 
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A random number between 0 and 1 is generated. If the generated number is less 

than the threshold for that node, the node becomes a cluster-head. Each node that is 

elected to become a cluster-head advertises itself using the Media Access Control (MAC) 

[59][58] based Carrier Sense Multiple Access (CSMA) [60] protocol and transmitting at 

the same energy. Once the advertisement is done, each non-cluster-head node decides 

what cluster to join based on the received signal strength from the cluster-head 

advertisement. The assumption here is that links are not only symmetric but also consume 

the same amount of energy for transmission either way. The cluster-head which was 

heard with the largest signal strength would obviously be the closest to the node, and 

hence would be chosen. This process is repeated periodically, so that every node in the 
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WSN is given a chance to become a cluster head, and all nodes can equally share the 

responsibility of message transmission. This also distributes the energy-usage of 

transmission, ensuring a longer life for all nodes. 

In the Cluster Setup phase, all nodes transmit their membership requests to the 

chosen cluster-heads. This information is stored by the cluster-heads for the next phase. 

The Schedule creation phase involves the creation of a Time Division Multiple 

Access (TDMA) [61] schedule. The cluster-head creates a TDMA schedule for 

interacting with every node in its cluster. This schedule allots a fixed time slice to every 

cluster-node during which it can establish an active communication channel with the 

cluster-head. The nodes can either switch themselves off or perform other duties when 

they are not slotted to communicate with the cluster-head. It then sends this schedule 

information to the cluster members informing them of their time-slot during which they 

may transmit their data to the cluster-head. 

The final phase involves Data Transmission. At the end of every TDMA cycle, 

the cluster-head collects all the data that has been gathered. It then compresses all the 

data using some application-specific signal processing algorithm. This composite data is 

now transmitted to the far-away base station using a high-energy signal. 

Communication between the nodes in each cluster is based on a TDMA schedule 

with CDMA [62] protocol. However, having the same CDMA codes for all clusters 

would lead to collisions / interference with messages from other clusters. Such 

interference is avoided by the use of different CDMA codes. 

Each cluster-head is rotated periodically. This ensures that the load of high-energy 

transmission to the base station is distributed fairly among all nodes. Since the cluster 
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membership is decided on the basis of signal strength of the message received from the 

cluster-head, communication within a cluster leads to low energy consumption. This 

algorithm may be extended to multiple levels of hierarchical clusters. 

However, the most obvious constraint of this routing is its specific usage for 

applications involving data aggregation only. Though no expensive routing tables need to 

be maintained, the actual routing is done over only two hops. Nodes in most WSNs, 

especially those deployed in hostile environments, are not distributed uniformly. Thus, it 

may not be possible for a cluster head to transmit to a base station even using higher 

energy to increase the signal strength of the transmission. There is no support for routing 

from one node to any other. Furthermore, the all the phases considered together implicitly 

impose the constraint of symmetric links being present in the WSN. This constraint 

cannot be satisfied very easily. The algorithm also does not talk regarding scenarios 

involving nodes that do not chose to join any clusters due to a plethora of reasons; the 

node may not be able to hear any cluster-heads, the node may send the message to join a 

cluster later than the deadline etc. Thus, the LEACH routing protocol is not suitable for 

WSN applications whose primary responsibilities involve duties other than data 

collection and aggregation. 

SPEED 

John Stankovic et al. proposed the SPEED protocol [35] that utilizes geographic 

routing and provides three different services for routing messages: Regular Unicast, Area 

Multicast and Area Anycast. Regular Unicast involves sending a message to a single 

node in the network. Area Multicast provides for transmitting messages to a particular 

geographical area in the network. All the nodes in the area will receive the messages. 
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Area Anycast offers the choice of sending a message to any node in a particular 

geographic area. This means that the application does not care about which particular 

node receives the message so long as the message is delivered to any node in the area. 

SPEED claims to provide a QoS routing with “Soft Real-Time” guarantees. Its 

major components are Neighborhood Beacon Exchange, Stateless Non-deterministic 

Geographic Forwarding, Neighborhood Feedback Loop, Backpressure Rerouting and 

Last Mile Processing. 

Neighborhood Beacon Exchange involves periodic broadcast of the neighborhood 

beacons containing the node ID and the position / location. Each Neighbor Table entry 

contains the NeighborID, its location, a SendToDelay (calculated as round-trip delay for 

a message to the neighbor) and the time of the entry’s existence in the neighbor table. 

The last entry basically denotes the lifetime of the neighbor. 

The protocol distinguishes its set of neighbors into a Neighbor Set (NS), which 

are inside the radio range of the node, and a Forwarding Set (FS), which is a subset of 

Neighbor Set, consisting of nodes that are closer to the destination. The Stateless Non-

deterministic Geographic Forwarding (SNGF) is employed to forward messages to only 

those nodes that are present in the FS of the node. Nodes in FS are subdivided into two 

sets; those that have a relay speed (defined as Distance to destination / hop delay) higher 

than some desired speed, called setpoint, and those that have a relay speed less than the 

setpoint. SNGF forwards the message to nodes that have higher relay speed. If there are 

no such nodes, then a relay ratio is calculated and fed to the Neighborhood Feedback 

Loop (NFL). This loop essentially activates a Relay Ratio Controller (RRC) in case there 

are no nodes in the Forwarding Set, FS, which have a higher relay speed than the 
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setpoint. The RRC takes into account the miss ratios (percentage of misses wherein the 

neighbor receives a packet that is below the relay speed) of the neighboring nodes and 

calculates the relay ratio such that the NFL can converge the miss ratios of the neighbors 

to zero. 

SPEED uses MAC layer feedback to calculate congestion of traffic on a node’s 

forwarding nodes. Heavy traffic leads to a reduction in the relay speed affecting the real-

time guarantees. Once a node senses the congestion around a forwarding set of neighbors, 

it re-routes the packets through another set of forwarding neighbors, thus partially 

reducing the traffic around the congested nodes. Eventually all the neighbors of the 

congested nodes would route packets around them, thus reducing the congestion and 

increasing the relay speed. In case of congestion around all the forwarding nodes of a 

node, say x, ‘x’ drops a few packets. ‘x’ also sends a back-pressure beacon which details 

the node id, the delay to send the messages and the direction of the delay (based on the 

ultimate destination of the message). This enables nodes, that are forwarding messages to 

‘x’ to subsequently deliver to the destination ‘d’, to reroute the messages to ‘d’ via some 

other node. Figure 3 explains this with an example. In this case, the node ‘x’ corresponds 

to node 5, while destination, d, is the node 13. 

Node 2 delivers message to node 13 via nodes 3, 5 and one of 7, 9, or 10. 

However, there is a temporary outage of connection between nodes 7, 9, and 10 on one 

side, and node 13 on the other. Consequently, there is a delay in forwarding messages to 

node 13. Node 5 senses the delay and sends a back-pressure message to node 3, which 

then starts routing messages intended for node 13 via nodes 4, 11 and 13. It may be noted 

that node 5 still continues to participate in forwarding messages from node 4 to node 6. 
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The SPEED protocol avoids the voids in the network using a similar mechanism 

as Backpressure Routing. 

 

Figure 3 Backpressure Re-Routing [35] 

 SPEED employs the Last Mile Processing (LMP) to transmit messages in the 

Area Multicast and Area Anycast services. The area in these services is generally defined 

by a sphere. In case of an anycast, any node inside this sphere that receives the message 

will store the message immediately. Multicast service forces nodes in the area to 

broadcast the message to other nodes within the boundary of the area, while keeping a 

copy of the message. The LMP is also used for Unicast wherein the message is broadcast 

but only the destination node may save a copy of the message. 

The SPEED protocol is another Greedy geographic forwarding protocol designed 

to avoid the pitfalls of general greedy forwarding of messages. It provides real-time 

guarantees to delivery of messages. However, the algorithm is dependent on a rich MAC 
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layer in the NFL and Backpressure rerouting phases. MAC layers conforming to IEEE 

802.11 specifications as required in SPEED may not available in most sensors. SPEED 

has been implemented on the Berkeley motes [36] with a code size of 6,036 bytes. 

However, it does not offer any service to distinguish messages based on their importance. 

Greedy Perimeter Stateless Routing (GPSR) 

The GPSR [22][23] proposed by Karp and Kung is one of the earlier geographical 

routing protocols. The GPSR adopts a greedy forwarding strategy to route messages. It 

makes uses of a neighborhood beacon that sends a node’s ID and its position. However, 

instead of sending this beacon periodically and add to the network congestion, GPSR 

piggybacks the neighborhood beacon on every message that is ever sent or forwarded by 

the node. 

Every node in GPSR has a neighborhood table of its own. Whenever a message 

needs to be sent, the GPSR tries to find a node that is closer to the destination than itself 

and forwards the message to that node. However, this method fails for topologies that do 

not have a uniform distribution of nodes, or contain voids. Hence, the GPSR adapts to 

this situation by introducing the concept of Perimeter Routing utilizing the right-hand 

graph traversal rule. Whenever a message is received by the node, x, from a node, z, it 

forwards the message to another neighboring node, y, such that the edge x – y is the first 

sequential edge traversed counterclockwise from the edge z-x. The authors claim that this 

approach in conjunction with a heuristic of no-crossing that is used is able to find routes 

99.5 % of the times. However, the no-crossing heuristic that is used to force the nodes to 

follow the right-hand rule may also result in the disconnection of the network. 
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The amended GPSR thus takes into account the planarization of the network 

graph. The GPSR converts the network graph into either a Relative Neighborhood Graph 

(RNG) or a Gabriel Graph (GG). Every time a new neighbor is detected, or the network 

topology is changed, the graph is re-planarized. Whenever a node has a message to be 

delivered, it starts its transmission in the greedy mode. If the node can transmit the 

message to a node that is closer to the destination than itself, it will do so. However, if 

there is no such closer node, then the GPSR will enter the perimeter node, and transmit 

the message to the next node using a simple planar-mode graph traversal. On entering the 

perimeter mode, the GPSR saves the address of the node, say l, which was the transition 

point between the greedy mode and the perimeter mode. Every time the message reaches 

a new node, the GPSR checks the message to verify whether the current node is closer to 

the destination than l. If it is, the GPSR immediately transfers to the greedy mode, and 

resumes greedy routing. 

Every packet transmitted in GPSR has a fixed number of retransmits. This 

information is given to the node by the MAC layer that is required to be compliant to the 

IEEE 802.11 standard. Mostly, the MAC layers are merely simplified versions of the 

802.11 standard. This may render the GPSR protocol unusable in its default form. The 

GPSR does not elucidate more on the action taken in case a message is unable to be 

transmitted even in perimeter mode. Finally GPSR disallows the use of periodic 

broadcast of the neighborhood beacons, and piggybacks these beacons on the messages 

sent by each node. This leads to an increase in the message size by 12 bytes, which is a 

lot in case of resource constrained nodes that typically have a message body of ~30-50 

bytes. Moreover, the overhead introduced in planarizing the graph every time the 
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topology changes may render the algorithm unusable in scenarios involving a highly 

dynamic topology / link interface between nodes. 

Conclusions from the Survey 

Various routing protocols are available. Most of the routing protocols that were 

studied were either unsuitable for use in WSN, or had issues with implementation on 

highly resource-constrained nodes. DSR and AODV are arguably the most popular of all 

routing protocols. However, due to their extensive use of routing tables and source 

routing, they render themselves inappropriate for routing in WSN. LAR introduces the 

concept of routing using geographical positions of nodes. It also demonstrates the use of 

smart flooding to build routes. Nevertheless, it is still a source routing protocol. LEACH 

is the first routing protocol for WSN that was studied. However, LEACH may be 

unsuitable for use in most environments that do not involve base-station routing or data 

aggregation. GPSR and SPEED are the most promising, though both make use of the 

IEEE 802.11 MAC layer that may not be supported in most devices. However, none of 

these protocols support a prioritized mode for delivering messages. They do not provide 

any service for distinguishing the importance of messages in the network. 

Developmental Tools 

Development of algorithms for WSNs is a complex task. From conceptualizing 

the algorithm to implementing it and finally testing it is a long, tough and arduous 

undertaking. A valuable asset in this development is a process that allows one to test the 

rudimentary ideas before actually implementing the algorithm on the target platform. 

However, once the implementation is achieved, it needs to be thoroughly tried and tested 
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before it can be rapidly deployed on WSNs in real-world scenarios. Testing an algorithm 

for a WSN or a WSN application would involve use of hundreds, if not thousands, of 

nodes deployed over a vast area. A simulation environment that aids such a deployment 

and testing of the algorithm needs to be used. Some of the popular simulation 

environments for sensor networks are MATLAB [39], SensorSim [37][42], which is an 

extension of ns-2 [41], and GloMoSim [38]. This section reviews the tools and 

environments that were used in the development and analysis of PGR. We chose to use 

Prowler [40], a Discrete-Event simulator for WSN, which runs under MATLAB. 

MATLAB and Prowler 

MATLAB 

MATLAB, developed by Mathworks [39], was originally developed by Dr. Cleve 

Moler to provide functionality for handling complex matrix libraries. MATLAB is a 

language for technical computing. The basic data element in MATLAB is a matrix that 

does not require any pre-dimensioning. The language provides a user-friendly 

environment that integrates computing, programming and visualization. It is typically 

used in environments requiring computation, analysis, modeling, simulation, application 

development, rapid prototyping, visualization, and algorithm development among others. 

MATLAB comes equipped with a wide variety of toolboxes developed for 

specific domains like real-time systems, signal processing, control systems, fuzzy logic, 

neural systems, simulation, state-charts etc. Each of these toolboxes can be used 

separately or in conjunction with others. 

The MATLAB system consists of five parts:  
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• The MATLAB language: This contains functions and other programming features 

that let the user perform command-line operations based on a matrix as its data 

element. 

• The Graphics System: This handles the graphical interface part of the application 

development. It provides 2D and 3D visualization, image processing and GUI 

support. 

• The MATLAB API: This provides an interface for integrating C and FORTRAN 

programs with MATLAB. 

• The MATLAB IDE: This includes an editor, a debugger, a command-line, a 

workspace environment etc. 

Prowler 

“Prowler is a probabilistic wireless network simulator capable of simulating 

wireless distributed systems, from the application to the physical communication layer” - 

[40]. Prowler allows an application developer to simulate a WSN application using two 

different radio models. It simulates the radio transmission, propagation and reception 

involved in ad-hoc radio networks. Prowler is also able to successfully simulate collisions 

of messages and the operation of the MAC layer. 

A Prowler application consists of three basic files that contain the topology, 

animation and the actual application information. Users can also provide information or 

help file, as well as a parameter file for specifying the application-specific parameters. 

The main application file contains the application-specific code. The topology file 

specifies the various topology structures that an application uses. This file contains code 
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to generate a fixed or random topology as required by the user. The animation file 

specifies how the Prowler GUI would react to the events generated by the application. 

Prowler provides applications with various events during the simulation. It lets the 

user application react to the initialization of the application, sending and receiving of 

packets, collisions, and the end of application. Prowler also provides multiple timers. 

However, these are single-firing timers, and need to be set to fire again after a user-

defined interval. Pre-defined actions that an application may use include Send_Packet for 

sending messages and Set_Clock for starting the clock. An application may be simulated 

from Prowler by registering it with Prowler. The user can specify the number of nodes 

that need to be simulated, and each node is installed with an image of the application. 

Prowler has been developed as a simulator specifically targeting the TinyOS 

platform for sensor networks. Nevertheless, it can also be used as a generic simulator for 

applications using WSN. One drawback of Prowler is that it is a homogeneous simulation 

environment. It cannot simulate different applications concurrently in the same 

environment. 

TinyOS, nesC and TOSSIM 

TinyOS 

TinyOS is a component-based operating system for the sensor networks. It 

consists of a tiny scheduler and a graph of components [45]. Each component is a 

collection of “command handlers, event handlers, an encapsulated fixed-size frame, and a 

bundle of threads”. A typical TinyOS application is a collection of components. Each 

component uses zero or more other components, and is in turn used by multiple 

components. There is a single top-level component in the hierarchy with a zero 
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cardinality of being used by any other component. These components interact with each 

other using interfaces. 

TinyOS uses a static memory allocation model to allocate memory blocks. This 

manifests as a reduction in execution time savings due to access of variables at statically 

compiled locations instead of dynamic pointer access. The overhead incurred due to 

dynamic allocation of memory is also eliminated, thus ensuring that the memory footprint 

of a component is known at compile time. 

Commands are functions that implemented by low level components and are 

provided for use to the higher level components. They are non-blocking requests made to 

the components providing them. Commands should return a value to its caller to indicate 

the status of the call. 

Event handlers are used to deal with hardware events. Whenever any hardware 

interrupt like timer, counter, etc. occur, a chain of event handlers is invoked that 

propagates up the hierarchy of the component structure. It may also propagate 

downwards using the commands. To prevent cycles, commands cannot signal events. 

Tasks or threads are functions that provide the primary functionality in a 

component. They are posted from within a command or an event. They may signal 

higher-level events, call lower-level commands and post other tasks within the 

component. These tasks are atomic with respect to other tasks, though they may be pre-

empted by an event. Tasks are scheduled using a simple FIFO scheduler. A Task neither 

takes any parameters as its arguments nor does it return any value. 

TinyOS uses the Active Message communication model used widely in parallel, 

distributed systems [46]. Each active message contains a user level handler that needs to 
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be invoked on its arrival at a node. It contains a data payload as well. Both are embedded 

as arguments in the Active Messages. 

nesC 

nesC [44], an extension of the C language [47], has been designed to code 

applications in TinyOS. nesC has been designed to directly support TinyOS’ event-based 

concurrency model and need for static memory allocation.  

nesC offers a component-based design solution for programming applications for 

TinyOS. Components interact with other components via Interfaces. An interface is a 

manifestation of the behavior, or part thereof, exhibited by a component. Interfaces can 

either be provided or used by components. An interface, quite like a header file, contains 

information regarding commands provided and events used. A component providing an 

interface needs to implement the functionality of the commands contained therein. 

Similarly, a component using the interface, while calling the commands implemented 

elsewhere, needs to provide implementation for any events defined by the interface. 

Thus, Interfaces are bi-directional. They have a set of functions that are implemented by a 

component that provides the interface, as well as a set of functions that are implemented 

by the component that uses the interface. The provided interfaces represent the 

functionality offered by a component to its user, whereas the used interfaces correspond 

to the functionality required by a component. 

nesC segregates the component-space into two: Configurations and Modules. 

Modules contain the application code, implementing one or more interfaces used / 

provided by the component. They are usually named as ComponentNameM, the trailing 

‘M’ denoting that the component is a Module. Alternately, Configurations, identified by 
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the trailing ‘C’ in ComponentNameC, contain the logic to wire all the other components 

together. This wiring logic connects the interfaces provided by components to interfaces 

used by other components. Every nesC application is contains a single top-level 

configuration. 

TinyOS offers concurrency through tasks and events. nesC can determine the race 

condition related issues at compile-time. “The concurrency model of nesC is based on 

run-to-completion tasks and interrupt-handlers, which may interrupt tasks and each other. 

The nesC compiler signals the potential data races caused by the interrupt handlers” - 

[48]. 

TOSSIM 

TOSSIM or Nido [43][49] is a discrete-event simulator designed for simulating 

nesC applications written for TinyOS. TOSSIM uses the nesC code written for the 

TinyOS application and compiles it for the PC platform.  

TOSSIM simulates the behavior and operations of up to a thousand nodes running 

TinyOS applications. It generates discrete-event simulations directly from the TinyOS 

structure by replacing a few low-level components. This results in the translation of 

hardware interrupts into discrete simulator events. The entire TinyOS node-network is 

modeled as a directed graph. The nodes form the vertices of this graph, while an edge 

exists between two nodes if the source of the edge can transmit to its destination. Each 

edge has a bit-error rate value associated with it, which signifies the fidelity of the radio 

link between the two nodes. A bit-error rate of zero (0) signifies perfect transmission 

conditions, while a value nearing one (1) denotes a very low probability of message 

transmission due to high noise / interference. 

 38  



 

The start of a simulation results in the instantiation of a user-specified number of 

nodes. These nodes are booted in a staggered sequence to prevent artificial or involuntary 

synchronization amongst the nodes. This is a result of TOSSIM keeping a global time. 

Also, to achieve maximum fidelity with the TinyOS applications running on the mote, 

TOSSIM operates at the granularity of the mote instruction clock cycle.  

Since TOSSIM simulates the TinyOS application on a PC platform, a mechanism 

needs to be provided that would simulate the hardware interrupts. This is achieved 

through the use of a simulator-event queue. A simulator event, different from a TinyOS 

event, invokes the interrupt handler of the hardware abstraction components used in the 

TOSSIM executable. Each simulator event is associated with a specific mote. When the 

simulator event is executed, a global state is et depicting the currently running mote. 

Once control transfers out of the hardware abstraction layer, TOSSIM executes the 

TinyOS code as it would be executed on a real mote platform. A few of the hardware 

components abstracted by TOSSIM are the clock, the ADC, the EEPROM, several 

components in the radio stack etc. 

TOSSIM also provides facilities to use various degrees of radio fidelity from 

perfect transmission to a lossy communication model. Different radio model provide the 

users with the ability to test the applications at different levels of complexities. 

TOSSIM provides a framework for simulating the radio network as well as the 

nodes. It also provides mechanisms through which the simulated nodes can communicate 

with external world, by use of Java-based applications. A Java-based graphical interface 

for TOSSIM, TinyViz, has also been developed recently. It provides visualization and 

control capabilities to simulations via the use of various plugins. 
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Summary 

Various simulation tools, frameworks and integrated environments exist to test 

algorithms and applications for WSNs. A typical application / algorithm development 

life-cycle starts from the conceptual stage, and runs through the feasibility study, 

implementation, testing, and finally, deployment stages. It is unviable to investigate the 

feasibility of an algorithm by testing it on a native platform. Hence a simulation 

environment that allows testing of the general concepts of the algorithms is desired. We 

use the MATLAB-based Prowler for these purposes. Once an algorithm has been 

investigated and implemented, a testing environment is desired to check the correctness 

of the implementation. Since it is impractical to test such an implementation on a real 

WSN due to sheer logistics involved, a simulation environment that provides features 

closer to the native environment is favorable. We use TOSSIM towards this purpose. 
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CHAPTER III 

PRIORITIZED GEOGRAPHICAL ROUTING 

This chapter describes the priority-based, location-aware routing algorithm named 

Prioritized Geographical Routing (PGR). The first section describes a beaconing 

component that enables the nodes in the network to learn about their neighbors. This 

beacon also allows the nodes to continuously update their record of their neighbors and 

adapt themselves to the changing topology of the ad-hoc network. Later, the basic 

algorithm for greedy geographic forwarding is described. Topologies that lead to the 

failure of this greedy scheme are identified. Therefore, there is a need for developing an 

alternative mechanism to ensure the delivery of appreciably important messages to their 

intended recipient, while allowing less important messages to be lost. “Failure” indicates 

the loss of a message in the network due to poor connectivity, noise, interference, 

network-holes or change in topology. A message should be dropped if and only if no path 

is found to the destination. Any other cause for the loss of a message should be construed 

to be failure. 

Protocol for Neighborhood Detection and Maintenance 

Most routing algorithms depend on the knowledge of the nodes in their vicinity, 

viz. their neighbors. The PGR also needs information about its neighbors to successfully 

forward messages towards their intended recipients. This is achieved by a simple 

algorithm wherein each node periodically broadcasts a message requesting for neighbors 

to identify themselves. Identification is accomplished by replying to the requesting node 
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with their position coordinates. We model the position as a triple with x, y and z 

coordinates, thus enabling the protocol, and by extension routing, in a real-world three 

dimensional (3-D) system. This is necessary to accurately deploy the routing in real 

systems. 

A simplistic neighborhood beaconing protocol may involve a node broadcasting 

its own position. Nodes receiving this broadcast would add the broadcasting node and its 

position to their neighborhood. As discussed in Chapter I, however, one of the intrinsic 

characteristics of radio networks is asymmetry. To recap, a node that can send a message 

to another node may not necessarily receive a message from that node and vice-versa. 

Thus, a neighborhood detection protocol that relies only on sending a node’s own 

position, or advertising self, may not yield a neighborhood that will actually have nodes 

that can hear the node sending a message. This leaves the neighborhood in an incorrect 

state, due to the presence of nodes that cannot be reached. 

For reasons explained above, a smart neighborhood beaconing protocol is needed. 

This protocol should ensure that any node that is added to the neighborhood is reachable. 

The reachability requirement is realized by the use of implicit symmetry constraints 

embedded in the protocol. Each node broadcasts an advertisement message, called 

ADV_MSG, at regular intervals, requesting information from its neighbors. The 

information consists of the node’s position and optionally, the node’s ID. Many WSN 

applications are more concerned with the location from where the information arrives, 

rather than the ID of the node sending the information. In such applications, storing a 

node’s ID is unnecessary. Nonetheless, the node’s ID may be required on platforms 

whose underlying infrastructure does not provide support for directing a message to a 
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location. On receipt of such a message, the receiving node checks to see whether it knows 

its own position. Though location awareness is resolved in WSNs, it may happen that a 

node may have been unable to determine its position. Nodes of this kind are not allowed 

to join the routing. A reply is issued only if node has knowledge regarding its position in 

the network. The reply message is a unicast to the requesting node. It may happen that a 

set of nodes do not desire to participate in the routing. Such nodes may choose to refuse 

to reply to the ADV_MSG. 

 

Figure 4 Broadcasting of ADV_MSG Requests 

When a node receives a reply to its earlier ADV_MSG, it adds the replying node 

to its neighborhood. A successful entry into the neighborhood results in the neighboring 

node being assigned an initial weight, W. This weight is treated as an age-factor that is 

periodically reduced. Once the weight reduces to zero, the neighbor is perceived to be 

dead, out-of-range or incommunicado and is dropped from the neighborhood. 

ADV_MSG replies from a node already present in its neighborhood are discarded. Once 

a node is entered in the neighborhood, its age is decreased gradually. Thus, the algorithm 

stipulates that every node be dropped from the neighborhood after its lifetime is over.  
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Figure 4 shows the working of the protocol, detailing the process of advertising. 

Node A broadcasts the ADV_MSG. Nodes B and C hear the request. However, only 

Node C replies with its position. Node B cannot reply due to it being unaware of its 

position.  

However, an obvious drawback to this schema is the protocol’s inability to 

correctly reflect the current situation. Consider nodes ‘A’ and ‘B’ that are currently in the 

neighborhood of node ‘X’. Once entries corresponding to ‘A’ and ‘B’ are made in the 

neighborhood of ‘X’, they would be aged periodically. Meanwhile, if ‘A’ dies or moves 

away, it still has the same weight relative to B’s weight. This leads to the presence of 

outdated information in X’s neighborhood. In applications using a fixed-size 

neighborhood, as most WSN applications are, this may also prevent legitimate and more 

current neighbors from joining the neighborhood. 

Another shortcoming of this simplistic neighborhood beaconing protocol is 

related to a node’s faithfulness. A node that is entered in the neighborhood table may 

refuse to forward messages relayed to it. Moreover, it may regularly reply to the 

ADV_MSG, thus ensuring its continued presence in the neighborhood. 

A Revised Neighborhood Protocol 

Problems highlighted in the previous section may be addressed by improving the 

simple beaconing protocol. As mentioned earlier, nodes periodically request for and 

receive positions from any neighboring node via the ADV_MSG. On receipt of the 

ADV_MSG from a neighbor, the node may check for it’s presence in its neighborhood. 

Whereas the simple protocol accepted replies only from new nodes (nodes not currently 

present in the neighborhood), the new protocol processes replies from all nodes. If a node 
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already exists in the neighborhood, its current weight is increased by a scalar, thus 

lengthening its lifetime. 

Another technique of reflecting the current topology more accurately allows the 

node to snoop the network, listening for routing messages, called GEOROUTE_MSG. 

Every time the sensor node relays or sends a message to its neighbors, it snoops on its 

neighbors to listen whether they are successful in forwarding the message. On recording a 

forwarded message, the node rewards the neighbor by increasing the weight. Figure 5 

demonstrates this technique. Node A has relayed a message to Node C and is overhearing 

the network messages. It hears Node C forwarding the message to some node X, and 

increases the weight of Node C. 

 

Figure 5 Network Snooping 

The initial weight assigned to a neighbor as well as the subsequent increments 

may be pre-determined; or, they may be calculated at run-time depending on the density 

of the network or the load of messages passing through the node. For e.g., if a node is a 

part of a dense network, some nodes will be in a relatively small region. Thus, a node 

may age faster and be removed from the neighborhood. In this case, the initial weight and 
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increments may be small, so that the weight becomes zero as soon as possible. 

Conversely, in regions having a less dense population, each active neighbor is a precious 

resource. Hence, care must be taken to ensure that its lifetime in the neighborhood is as 

long as possible. Similarly, a node involved in relaying a high number of messages is 

utilizing more energy. It should not be forced to participate in further relaying. Thus, 

smaller weight and increment values may be assigned to it. The run-time determination of 

the neighbor’s weight and its subsequent value in the neighborhood makes the protocol 

highly reactive to the current dynamics of the WSN. Pre-calculated scalars, based on 

empirical data, have been used to configure the neighborhood in the implementation. 

The Neighborhood is a component that is used by the routing component. It 

operates in two phases; the first phase sets up the neighborhood graph for the node, 

whereas the second phase updates this graph continually. This ensures that any changes 

in the topology of the network are detected and eventually reflected in the neighborhood 

of the node. 

 

Neighbor Structure: 
struct Neighbor{ 
 unsigned integer NodeID; 
 Position NodePosition; 
 unsigned integer NodeWeight; 
} 
 
NeighborTable 
list of Neighbor; 

Figure 6 Neighbor Table 

Figure 7 and Figure 8 below detail the algorithm for building and maintaining the 

neighborhood. Each entry in the neighbor table / neighborhood is a structure consisting of 

three elements as shown by the pseudo-code in Figure 6. It may, however, be noted that 
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applications not making use of a Node ID may choose not to use the corresponding field 

in the neighbor table. 

 

BuildNeighborhood 
Input: NodeID, Position, TimerFrequency, ADV_MSG 
Output: NeighborTablePointer 
Internal: NeighborTable, InitialWeight, Increment, Decrement 
Algorithm: 
Neighborhood.Build(NodeID, Position) 
{ Set Timer to every TimerFrequency secs; 
 ADV_MSG.mode := REQ; 
 ADV_MSG.node := NodeID; 
 ADV_MSG.position := Position; 
 return NeighborTablePointer; 
} 
 
Neighborhood.Timer.fired() 
{ ADV_MSG.destination := ALL; 
 Neighborhood.Send(ADV_MSG); 
 forAll Neighbors, n, in NeighborTable 
 { n.NodeWeight -= Decrement; 
 } 
} 
 
Neighborhood.Send(ADV_MSG) 
{ if(ADV_MSG.position != NULL) 
  Send ADV_MSG to ADV_MSG.destination; 
} 
 
Neighborhood.Receive(ADV_MSG) 
{ if(ADV_MSG.mode == REQ) 
 { ADV_MSG.mode   := REP; 
  ADV_MSG.destination  := ADV_MSG.node; 
  ADV_MSG.node  := NodeID; 
  ADV_MSG.position   := Position; 
  Neighborhood.Send(); 
 } elseif (ADV_MSG.mode == REP) 

{ if (ADV_MSG.node is present in NeighborTable) 
 { Get Neighbor, n, in NeighborTable; 
  n.NodePosition := ADV_MSG.position; 
  n.Nodeweight += Increment; 
 } 
 elseif (NeighborTable is not full) 
 { Neighbor n.NodeID := ADV_MSG.node; 
  n.NodePosition  := ADV_MSG.position; 
  n.NodeWeight := InitialWeight; 
  NeighborTable.insert(n); 
 } 
} 

} 

Figure 7 Building the Neighborhood 
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The routing component initializes the Neighborhood component at the start. The 

Neighborhood component initiates the building of the neighborhood using the 

Neighborhood.Build(…), where it sets a timer to periodically broadcast the advertisement 

messages. The Neighbor.Receive(…) is an event that is fired whenever a ADV_MSG is 

received. It processes the message and either updates the Neighbor Table or replies to the 

ADV_MSG request. Messages are sent using the Neighborhood.Send(…) command. 

 

MaintainNeighborhood 
Input: NeighborTablePointer 
Internal: RelayIncrement, RelayDecrement 
 
Neighborhood.Maintain() 
{ Send message, m, to neighbor, N; 

if ( N acknowledges m) 
  NeighborTablePtr->N.NodeWeight += RelayIncrement; 
 else 
  NeighborTablePtr->N.NodeWeight += RelayDecrement; 
} 

Figure 8 Maintaining the Neighborhood 

The Neighborhood Maintenance is performed by snooping over messages in the 

network. Whenever the routing component transmits a message, it waits for an 

acknowledgement. On receipt of the acknowledgement, the routing component invokes 

the Neighhborhood.Maintain(…) command to update the weight of the node to which the 

message was relayed. It can be seen that neighborhood maintenance is carried out at two 

levels; the first consists of a reply to periodic requests for node positions, while the 

second allows the routing component to interact with the neighborhood component 
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Basic Geographical Routing 

This section presents the greedy geographical routing that was also the basic 

component in GPSR [22][23]. It is based on the assumption that the node knows the 

geographical position of the destination node. This approach to routing involves relaying 

the message to one of its neighbors that is geographically closest to the destination node 

of all the neighbors, and is geographically closer to the destination than the node itself. 

This approach attempts to find a short path to the destination, in terms of either distance 

or the number of hops. This is based on the geographical distances between the nodes in 

the graph (network). 

 

Figure 9 Sample Route in Basic Geographical Routing 

A node that requires sending a message acquires the address of the destination. 

The address is in the form 3-D coordinates of the physical location of the destination. The 

coordinate system is presumed to be determined by the application. After preparing the 

message, it calculates the Euclidean distance from self to the destination. Next, it 

calculates the Euclidean distance from each of its neighbors to the destination. The 
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greedy approach tries to always shorten the distance to be traveled to the destination to 

the maximum possible extent. Therefore, the node considers only those neighbors that are 

closer to the destination than itself. The sending node then chooses the node closest to the 

destination and relays the message onto the neighbor.  

 

BasicGeographicRouting 
Input: MSG, NeighborTablePtr, Counter 
Internal: Position, EuclideanDistance(a,b), Sort(…) 
 
BGR.Send(MSG, Counter) 
{ if(MSG.destination != ALL) 
 { dist := EuclideanDistance(MSG.destination, Position); 
  Neighbor *n := NeighborTablePtr->head; 
  i := 0; 
  while(n && n->next != NULL) 
  { dists[i] := EuclideanDistance( n->NodePostion, … 

    MSG.destination); 
   n = n->next; 
  } 
  sort_dist = Sort(dists, ASCENDING); 
  if( sort_dist[Counter] > dist ) 
   exit; 
  else 
   MSG.destination := node corresponding to  
    sort_dist[Counter]; 
 } 
 Send MSG;  // Uses the OS-provided API 
} 
 
BGR.Receive(MSG) 
{ if( MSG.destination == myself) 
 { MSG.destination := ALL; 
  MSG.mode := ACK; 
 } 
 BGR.Send(MSG, 0); 
} 

Figure 10 Basic Geographic Routing 

A node receiving a message may either be the final destination, or it may be one 

of the intermediate nodes on the route to the destination. On receipt of a message, a node 

checks whether it is the final destination. If it is, it broadcasts an acknowledgement to 

signal the receipt of the message to the last relaying node. The other nodes in the vicinity 
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ignore this signal. If the node is an intermediate hop to the message being relayed, the 

node will calculate the next hop of the message in the manner described above.  

A sample topology is shown in Figure 9. Nodes x and y are the “sender” and 

“receiver” respectively. Node x sends the message to node, a, which is the closest of its 

neighbors to the destination node. On receiving the message, a calculates b to be the next 

closest neighbor and relays the message to b. Node b in turn relays the message to c, 

which in turn relays it to the intended recipient of the message, y. 

The Basic Geographic Routing (BGR) does not use any data structures stored 

locally on a node apart from the Neighbor Table. Thus, no information is stored locally. 

An algorithm for this basic geographical routing is shown in Figure 10. 

The sending component does not differentiate between the source of the message 

and an intermediate node on its route. The receiving component needs to handle to two 

different types of messages; one that says that the node is the destination, and the other 

that specifies the node to be an intermediate node for relaying the message. Both 

messages are handled in exactly the same way, without any form of distinction. 

Problem Topology 

A void in the network is an area where there are no nodes that can participate in 

communication. A void may be present in the system at deployment itself. For e.g., 

sensor nodes are placed in an area which also consists of a water body. A void may also 

be created due to noise, interference or merely due to low-energy on the node, once the 

network has been deployed and is in-use. It is obvious that voids in the network will lead 

to the failure of the basic geographical routing. Figure 1, in Chapter I, shows an instance 

of where a node marked ‘S’ will not be able to route the message to the destination 
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marked ‘D’ due to the presence of a void in the network, along the route. This void is 

shown by the circle. Moreover, given the unstable nature of links in radio 

communications, even a densely deployed network over time will create topologies 

unsuitable for the routing described above.  

 

Figure 11 Example of Topology leading to failure of BGR 

The general premise on which the above algorithm operates is that a message can 

only be relayed in the forward direction, i.e. the distance to the destination can only be 

shortened. However, this policy fails in situations covered by some generic topologies. In 

this section, we introduce topologies that motivated us to find a solution to robustly 

deliver high-priority messages. 

We present an example network topology that results in the failure of the basic 

geographic routing. It may be noted that though the topology presented below is in a two-

dimensional frame, the problems it illustrates can be extended to three-dimensional 
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layouts as well. The example topology, presented in Figure 11, is in the form of a curve. 

This layout generally describes scenarios wherein there is a path to the destination, but 

the path does not always shorten the distance to the destination. In this situation, the 

sender and the receiver were positioned at the two extreme ends of the curve. The basic 

algorithm tries route the message towards the destination, always reducing the remaining 

distance. But, eventually, it encounters a void, leading to the failure of the algorithm. 

Depending on the depth of the curve and the distance between the two ends, the message 

travels till a point from where the message needs to traverse to a node such that the 

distance to the destination is not the shortest possible distance. However, a path does 

exist to the destination whose length is much greater than the distance between the source 

and the destination. The basic algorithm is incapable of handling such topologies. 

Modified Geographic Routing 

The previous section demonstrated the need for a uniform layout to find an 

increasingly shortest path, based on the basic geographic algorithm. In the absence of a 

uniform layout, finding such a path to the destination invariably failed. We define the 

uniform layout as a random deployment of nodes distributed uniformly over an area; i.e. 

the density of nodes in any given area is close or approximately same to the density in 

any other area. Sometimes, it may be more beneficial to take a temporary detour and go 

farther away from the destination in order to eventually approach and reach it [17]. This 

problem is encountered when, due to the loss of communication or presence of 

geographical constraints, voids are created in the radio network. Thus, in the process of 

relaying the message, it is possible to reach a node that is located on the periphery of 

these blanks spaces. In such cases, it is generally impossible to relay a message across 

 53  



 

onto the opposite bank of nodes, unless the message is relayed with higher power 

consumption. The distance to which a message can be transmitted, or the range of the 

node, increases monotonously with the power consumed in transmitting that message [7]. 

Thus, increasing the power utilized to transmit a message leads to an increasing its signal 

strength, and eventually the distance at which it can be received. However, using more 

power in energy-constrained environments is inadvisable as well as detrimental. 

Regardless of the extra power consumption, a successful message transmission is not 

guaranteed in situations where the blank space (void) is large enough to thwart a 

communication. 

Hence, it is desirable to have a solution that can handle the topologies covered 

previously. One way of doing it is using Perimeter Routing as in GPSR [22][23]. We 

propose two incremental solutions that fit-in with our need for prioritized routing, 

Modified Geographic Routing (MGR) and Advanced Geographic Routing (AGR). The 

AGR is built incrementally on top of the MGR, which itself is based on the BGR. 

The Basic Geographic Routing tries to find neighbors closest to the destination at 

each node. When the next hop on the route is not available, due to a variety of reasons 

discussed earlier, the routing fails and the message is discarded / lost. A more robust 

approach involves the use of snooping as covered in the Neighborhood Building section. 

Whenever a message needs to be relayed, the algorithm proceeds in the same way as 

earlier. The node calculates its own distance from the destination node. It then calculates 

the distances of all its neighbors from the destination. Using the earlier condition, it 

chooses the neighbor that is closest to the destination, and closer to the destination than 

itself. It then relays the message to the neighboring node.  
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Figure 12 Implicit Acknowledgement in MGR 

However, instead of discarding the message as done earlier, the node stores a 

reference to the message in the “OutMessages” table. This table is a list of messages that 

have been forwarded and awaiting acknowledgements. It then starts snooping the 

network, and waits for the relayed message to be acknowledged. The acknowledgement 

is either explicit or implicit. The receiving node may be the intended recipient (final 

destination) in which case the acknowledgement will be an explicit one, represented by a 

broadcast announcing the arrival of the message. Otherwise, if the receiving node was 

just another intermediate hop intended to relay the message, the acknowledgement will 

be implicit in nature. The node in its snooping mode will wait to overhear the further 

transmission of the message by the next node. This implicitly requires the radio 

communication to be symmetric. However, lack of symmetry merely leads to the 

spawning of another copy of the message, as described later. 

Figure 12 shows an example for implicit acknowledgement. If node A sends a 

message with Message ID M to node B at time ‘t0’, the node A will wait to receive either 

an explicit acknowledgement from B, or an implicit one. The implicit acknowledgement 
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will be in the form of an overheard transmission of message M by node B to some other 

node, say node C, at time ‘t0 + t’.  

 

RelayedMessage Structure: 
struct RelayedMessage{ 
 integer (or string) MessageID; 
 integer BestNeighborCount; 
 enumeration MessageMode; 
} 
 
 
RelayedMessages Table: 
array 1..X of RelayedMessage; 

Figure 13 "Relayed Messages" Table 

As discussed above, the transmitting node stores a reference to the message and 

awaits an acknowledgement after transmitting the message. Once it receives an 

acknowledgement, the transmitting node discards the message. However, it stores the 

unique message ID and the “BestNeighborCount” in a “Relayed Messages” Table [Figure 

13]. The BestNeighborCount is used to keep track of the next-best neighbor available to 

forward the message. This table also contains a field for “Message Mode” which is 

discussed in detail later.  

The node discards the message from the OutMessages table once an 

acknowledgement is received. If, within a certain time-frame, no acknowledgement is 

received, the message is presumed to be lost. In such a case, the transmitting node, A in 

the example in Figure 12, chooses the next best neighbor from its neighborhood that 

satisfies the same constraints viz. the neighbor is closer to the destination than all other 

neighbors, and closer to the destination than the sender itself. The transmitting node then 

relays the message to the newly chosen hop / neighbor. This process is repeated till the 

node either receives an acknowledgement, or runs out of neighbors that are closer to the 
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destination than itself. If the node does not have any more forwarding neighbors, it will 

send a Failure Message back to node from whom it received the message. The failure 

message is nothing but the original message that was received by the node sending the 

failure message, with a failure-to-forward flag attached. On receipt of a failure message, 

the node looks up its RelayedMessages table and gets the last best neighbor. It then tries 

to find next-best neighbor, relative to the last best neighbor, as described above.  

As long as the node is trying to relay the message to its next-best neighbors, it 

will store the MessageMode in the RelayedMessages table to “Advance”. On failing to 

forward it to any of its next-best neighbors, the node sends the failure message. At this 

point, it marks the message with a “Fail” mode. 

Since the WSN nodes are resource-constrained, the entries in the Relayed 

Messages table need to have some lifetime defined after which they are discarded. The 

MGR removes entries from this fixed-size table either when they are timed out or on a 

successful delivery of a message that is fresher than the entry in RelayedMessages table. 

This is determined by the MessageID, which is a combination of the NodeID and a 

sequence number. If the RelayedMessages table is full, and there is no entry that may be 

replaced, the oldest entry in the table is removed. 

This enhancement to the algorithm ensures that nodes do not drop packets till they 

have searched for as many forwarding paths as possible, while trying to always move 

forward. This ensures that the resulting path, though not being formed by choosing the 

closest neighbor-to-destination possible, is still the most direct route towards the 

destination. It is obvious here that there are no loop-backs. At no point in time is the 

message relayed to a node that is farther to the destination. Thus, the only way a message 
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can be farther to the destination than it was earlier in time is by the transmission of failure 

messages. No node receiving a failure message will relay the message farther back unless 

it is a failure message. However, it is not guaranteed that the message wont fork on its 

way to the destination. Due to the dynamicity of the connectivity, asymmetrical links 

may crop up in the radio network after the neighborhood has been built. This invalidates 

the implicit symmetry requirement between a node and its neighbor. Hence, it is probable 

that a message that is relayed further by a neighbor is not “heard” by the transmitter. In 

such a scenario, the transmitter may fork another copy of the message along another 

route, leading to the presence of multiple copies in the network. Nodes that are further 

down the route and receiving multiple copies may resend the same message. Possibilities 

of such occurrences are mitigated by use of unique Message IDs. However, such 

possibilities may not be entirely prevented. If the Message ID has timed out or been 

removed from Relayed Messages table, the node has no way of knowing whether it has 

already relayed the message earlier. Moreover, a destination node may still end up with 

multiple copies of the message if the two forked routes are entirely disjoint. 

In the example shown in Figure 12, A transmits M to B at t0. Say, B does not 

acknowledge the receipt of the message. A then finds the next-best neighbor B1 and 

relays the message to it. In case of even B1 not acknowledging, A transmits M to B2, 

which is the next-best neighbor. B2 then may transmit to C1. If A cannot hear any 

acknowledgements, it tries to find the next-best neighbors. If it cannot find any, A sends a 

failure message back to the node from which it received the message M.  

 

ModifiedGeographicRouting 
Input: MSG, NeighborTablePtr 
Internal: Position, EuclideanDistance(a,b), Sort(…),cnt 
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MGR.Send(MSG, cnt) 
{ if(MSG.destination != ALL) 
 { 

 dist := EuclideanDistance(MSG.destination, Position); 
  Neighbor *n := NeighborTablePtr->head; 
  i := 0; 
  while(n && n->next != NULL) 
  { dists[i] := EuclideanDistance( n->NodePostion, … 

    MSG.destination); 
   n = n->next; 
  } 
  sort_dist = Sort(dists, ASCENDING); 
  MSG.destination := node corresponding to  
    sort_dist[cnt]; 

do 
{ Send MSG;  // Uses the OS-provided API 
 OutMessages.Insert(MSG); //ignore if present 
 RelayedMessage r.MessageID  := MSG.messageID; 
 r.BestNeighborCount   := cnt; 
 r.MessageMode   := MSG.Mode; 
 RelayedMessagesTable.UpdateInsert(r); 
 cnt      := cnt + 1; 
}while (ACK not received || No Forwarding Neighbors); 
  
if(ACK received) 
{ OutMessages.Delete(MSG); 
} 
else  // Sends Failure Message 
{ MSG.destination  := MSG.last_transmitter; 
 MSG.Mode   := FAIL; 
 Send MSG;  // Uses the OS-provided API 
} 

 } 
 else // Message ACK by destination 
  Send MSG; 
} 
 
 
MGR.Receive(MSG) 
{ cnt  := 0; 
 mode  := NORMAL; 

if( MSG.destination == myself) 
 { MSG.destination := ALL; 
  MSG.mode := ACK; 
 } 
 elseif( MSG.Mode == FAIL ) 
 { RelayedMessage r  :=  
    RelayedMessagesTable.Retrieve(MSG.MessageID); 
  cnt   := r.BestNeighborCount; 
  MSG.mode  := NORMAL; 
 } 
 MGR.Send(MSG, cnt); 
} 

Figure 14 Modified Geographic Routing 

The MGR is given by the algorithm in Figure 14. This approach will easily 

overcome such network voids as those demonstrated by Figure 1 and Figure 11. 
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Problem Topology  

However, there would still be situations wherein even the MGR fails. An example 

topology with which this failure was most frequent is the one shown in Figure 15. This 

layout has two or more paths to the destination. However, one of the paths, generally the 

shortest path, leads to a void. The nodes on this path do not have any other immediate 

neighbors that can route to the destination. Any protocol, including the BGR and MGR 

presented above, that takes this path and does not provide any facility for backtracking is 

doomed to fail. The deceptive nature of the topology was devised to comprehensively test 

a routing algorithm’s ability to deliver a message. The layout is deceptive in the sense 

that it leads the algorithm to believe that there is a short path to the destination. However, 

this proves to be deceptive and the routing encounters a void. In this topology, even 

backtracking may not work. As MGR always tries to relay the message to a node that is 

closer to the destination, messages may need to backtrack till the source. However, a 

node that is closer to the destination than the current node may still not be found. 

Moreover, a failure message sent back may be lost, leading to a failure in backtracking. 
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Figure 15 Example of Topology leading to potential failure of MGR 

MGR’s success in this topology depends on the nodes near the periphery of the 

void. The successive failure messages will get the message back to the node that did have 

alternate path. If the nodes along the periphery of the void are closer to the destination 

than the node currently with the message, the MGR will succeed. However, if there is no 

such node, then MGR may backtrack till the source and fail. This behavior may be 

alleviated by sending a message backwards, i.e. to a neighbor that is farthest from the 

destination as well as self. Figure 15 shows an example, wherein the message traverses 

the deceptive route. This is shown by the line-arrows. Lack of forwarding neighbors 

causes successive nodes on the deceptive route to send back failure messages. These are 

shown by the dotted arrows. The second node (immediately after ‘S’) sends the message 

to another node. This node sends a failure message which is lost. 
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Advanced Geographic Routing 

The MGR tries to relay the message to nodes that are closer to the destination 

than itself. In doing this, it chooses nodes that are progressively farther than the 

destination i.e. it chooses neighboring nodes between itself and the destination, such that 

first choice is the closest neighbor, and the subsequent choices, if any, farther from the 

destination than the earlier choices. Yet, choosing these nodes would result in a path that 

leads the message to a node that is closer to the destination than any of the nodes 

traversed on the route (discounting the nodes that have resulted in failure messages and 

backtracking). However, the routing tends to fail when it is unable to send a failure 

message. This may occur due to either the node trying to send the failure message being 

the source, or the node being unable to hear the implicit acknowledgement. In such a 

scenario, it is necessary to travel backwards, i.e. to a node that is farther than the current 

node to the destination. The layout in Figure 15 is a very good example of a layout where 

even the Modified Geographical Routing will eventually fail. However, this failure 

cannot be predicted with surety. It is merely an assessment based on simulations, 

observed due to the probabilistic connections in the network. 

High priority messages need to reach the intended recipient. They may contain 

data that is very important in the context of the WSN application deployed. Hence, we 

introduce the concept of temporary backward traversal to the Modified Routing 

Algorithm, and name the resultant algorithm as the Advanced Geographical Routing. 

This approach involves waiting for the acknowledgements of the relayed 

messages. Once a message is relayed to the node on the next hop, the transmitter waits to 

hear an acknowledgement as explained in Modified Geographic Routing. The algorithm 
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proceeds as in MGR till a failure message is sent. If the transmitting node does not 

receive any acknowledgement to this failure message, it tries to find nodes that are farther 

to the destination than itself. It chooses the neighbor that is farthest to the destination than 

itself. The message is then relayed to the chosen node which then tries to forward the 

message using the same algorithm. This approach tries to ensure that the new set of 

neighbors that the next-hop node will consider to relay the message will be significantly 

different from the current set of neighbors. We adopt this policy as the transmitting node 

would have already considered all the nodes that it can forward a message to. Relaying a 

message to a neighbor which is just farther than itself to the destination, in effect very 

close to the transmitter, would result in a new set of neighbors that is almost equal to the 

current set of neighbors. This would lead to an unnecessary overhead of relaying the 

message to the same nodes that had been unable to forward the message earlier. An 

approach of transmitting to the farthest possible node from self leads to a set of new 

neighbors that is noticeably different from the current set. But, the difference in the set of 

neighbors depends on the location of the node with respect the line joining the transmitter 

and the destination. If the node is closer to this line, then the neighbor set may not be 

much different. However, if the node is further away from the line, the set of neighbors 

differ by about 45%. 

The AGR makes use of the RelayedMessages table, Figure 13, to keep track of 

the mode of the message. Once the "Fail" flag is set in the MessageMode, it waits for an 

acknowledgement to the failure message. If it does not receive the acknowledgement, it 

changes the mode to "Backward" and then transmits a message to the farthest neighbor. If 

a node exhausts all possible neighbors to whom it can relay a message, it marks the 
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message with a "Permanent Failure". Any incoming message with this MessageID is not 

processed further, but dropped. Figure 16 shows the detailed algorithm for the Advanced 

Geographical Routing. 

 

AdvancedGeographicRouting 
Input: MSG, NeighborTablePtr, Mode 
Internal: Position, EuclideanDistance(a,b), Sort(…),cnt 
 
AGR.Send(MSG, cnt, Mode) 
{ if(MSG.destination != ALL) 
 { 

 dist := EuclideanDistance(MSG.destination, Position); 
  Neighbor *n := NeighborTablePtr->head; 
  i := 0; 
  while(n && n->next != NULL) 
  { dists[i] := EuclideanDistance( n->NodePostion, … 

    MSG.destination); 
   n = n->next; 
  } 
  if(Mode == ADV) 

  sort_dist = Sort(dists, ASCENDING); 
 else 
  sort_dist = Sort(dists, DESCENDING); 
 

  MSG.destination := node corresponding to  
    sort_dist[cnt]; 

do 
{ Send MSG;  // Uses the OS-provided API 
 OutMessages.Insert(MSG); //ignore if present 
 RelayedMessage r.MessageID  := MSG.messageID; 
 r.BestNeighborCount   := cnt; 
 r.MessageMode   := MSG.Mode; 
 RelayedMessagesTable.UpdateInsert(r); 
 cnt      := cnt + 1; 
}while (ACK not received || No Forwarding Neighbors); 
  
if(ACK received) 
{ OutMessages.Delete(MSG); 
} 
else  // Sends Failure Message 
{  MSG.destination := MSG.last_transmitter; 

if (MODE == ADV) 
 { MSG.Mode  := FAIL; 
  Send MSG; // Uses the OS-provided API 
  if (NO ACK received) 
  { MSG.destination := node corresponding to 
    sort_dist[last_entry]; 
   post task to call AGR.Send(MSG, 0, BACK); 
  } 
 } 
 else // Failed to send a Backward Message 
 { RelayedMessage r :=  
  RelayedMessagesTable.Retrieve(MSG.MessageID); 
  r.MessageMode := PERMA_FAIL; 
 } 
} 

} 
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 else // Message ACK by destination 
  Send MSG; 
} 
 
 
 
AGR.Receive(MSG) 
{ cnt  := 0; 
 mode  := ADV; 

if( MSG.destination == myself) 
 { MSG.destination := ALL; 
  MSG.mode := ACK; 
 } 
 elseif( MSG.Mode == FAIL ) 
 { RelayedMessage r  :=  
    RelayedMessagesTable.Retrieve(MSG.MessageID); 
  cnt   := r.BestNeighborCount; 
  MSG.mode  := NORMAL; 
 } 
 AGR.Send(MSG, cnt, mode); 
} 

Figure 16 Advanced Geographic Routing 

This algorithm differs from the earlier ones in that it does not always try to find a 

path that reduces the distance to the destination. The advanced geographical routing 

works in two phases. In the first phase, it is exactly the same as the modified routing 

presented above. The second phase starts only when there is a failure in delivering the 

message during the first phase, which may be due to asymmetric links formed over time. 

This phase involves choosing a route which results in a temporary diversion. This 

diversion leads to a hop in the path that lengthens the distance to the destination. This 

lengthening of the distance is so chosen to increase the distance to the maximum possible 

extent. The transmitting node finds the farthest node to the destination from its 

neighborhood and relays the message to that neighbor.  

 65  



 

Prioritized Geographical Routing 

Using the three techniques / variations described above, we present a priority 

based any-node-to-any-node geographical routing algorithm call the Prioritized 

Geographical Routing (PGR). 

PGR supports three priority levels – Low, Medium and High. PGR is a 

configurable routing algorithm that enables transmission of messages from any node in 

the ad-hoc network to any other node, provided the geographic position of the destination 

is known. 

Whenever a node needs to transmit a message to some other node in the network, 

it invokes the PGR. It gets the destination’s position, and then based on the application, 

decides the priority of the message from any of Low, Medium and High. Based on the 

priority chosen, PGR uses the appropriate routing from the three techniques described 

above. For sending a message with low priority, PGR uses the Basic Geographical 

Routing. This ensures that low priority messages do not clog up the network, trying to 

reach their intended destination, and tie-up the resources on the intermediate nodes. 

Whenever there is a need to send a message with a higher priority, but it is not entirely 

necessary for the delivery of the message, the nodes may send the message with a 

Medium priority. In this case, PGR uses the Modified Geographic Routing. However, as 

demonstrated in Chapter I, there would be cases wherein messages need to reach the 

intended recipient if at all a path exist from the originating node to the destination node. 

Such a constraint calls for the use of the Advanced Geographic Routing which the PGR 

deploys for messages with a priority level of High. 

 66  



 

The PGR flags the messages using two types: Normal and Failure, as necessitated 

by the three geographic routing techniques covered yet. A normal message, as the name 

suggests, is a message that carries an important payload and is relayed from a node to 

another. This message is intended to carry the data to the destination. A failure message 

is one that is sent by a node saying that it could not relay the message ahead. This 

message is received by the node that had earlier forwarded the message to sender of the 

failure message.  

 

Message 
 
Structure: 
struct PGR_Message{ 
 integer (or string) MessageID; 
 boolean MessageType; 
 Position (or integer) NextNode; 
 Position LastNode; 
 Position Destination; 
 enumeration Priority; 
 integer data[]; 
} 

Figure 17 Message Structure 

The structure of the messages used in PGR is given by Figure 17. MessageID is a 

uniquely generated ID based on the source of the message. MessageType is a Boolean 

value specifying whether a message is in “Normal” mode or “Failure” mode. The 

NextNode contains the node address to which a message is being relayed. The LastNode 

field is used to keep track of the node from whom the message arrived. Destination, as 

the name suggests, is the final destination of the message. Priority is an enumerated field 

indicating the low, medium or high priority of the message. 
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Figure 18 Message Transmission using PGR 

Figure 18 shows an example of a successful transmission. This example shows 

the delivery of the message using a High Priority scheme in a layout that is deceptive in 

nature. It further describes the PGR in detail. Here, the sender / message-originator is the 

node labeled “S”, while the node labeled “D” is the intended recipient / end destination. 

The example walks through the working of PGR, using each of the three priority levels.  

In the first case, the message was sent with a Low priority. The path that was 

followed by the message was: S  a  b  c  d  e  f  g  h. Once the 

message reaches node “h”, it is unable to find any forwarding nodes. Hence, it drops the 

message. 
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Now, consider the case of the message being transmitted with a Medium priority. 

In this case, the message follows the same path as earlier, and reaches node “h”. On being 

unable to find any forwarding neighbors, it sends a failure message back to node “g”. 

Node “g” tries to forward it using alternate paths, and fails again. So, it sends a failure 

message back to node “f”. This pattern is followed till the failure messages reach back to 

node “b”. Disregard node “j” for the moment. Node “b” then forwards the message to the 

next-best node “i”, which again sends a failure message back to node “b”. Note that, “i” 

will be unable to forward the message to the other nodes “c”, “d” etc as they have already 

failed for this particular destination, and would not accept the message for transmission. 

“b” sends a failure message to “a”, which finally sends a successful relay to node “l”. The 

message is relayed till node “s”, wherein it is again blocked from progressing further 

towards the destination. Nodes “s”, “r”, “q” and “t” all send back failure messages to “r”, 

“q”, “t” and “p” respectively. However, “p” is unable to receive the failure message from 

“t”, leading to the failing of the routing. 

The third case pertains to the message transmission with priority set to high. In 

this scenario, the message is routed like in the earlier two priority levels. However, when 

“b” tries to send a failure message to “a”, it does not receive any acknowledgement; 

implicit or explicit. As a result, “b” relays the message using the Advanced Geographical 

Routing, to its neighboring node “j” that is farther than itself from the destination “D”. 

However, “j” is unable to relay it further. A similar situation arises later in the route, 

when “t” sends a failure message back to “p”. Not receiving any acknowledgment from 

“p”, “t” finds its farthest neighbor, “u”, from “D” and sends the message to “u”. “u” is 

then able to successfully relay the message further until it reaches “D”.   
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The PGR is given in Figure 19. It uses the three components – BGR, MGR and 

AGR – to route messages using the priority specified. 

 
PrioritizedGeographicRouting 
Input: MSG, Destination, Priority, NeighborTable 
 
Algorithm: 
PGR.Send(MSG) 
{ MSG.Priority := priority; 
 switch (Priority) 
 { case LOW:  Use BGR; 
  case MEDIUM: Use MGR; 
  case HIGH:  Use AGR; 
 } 
} 
 
PGR.Receive(MSG) 
{  if( MSG.destination == myself) 
 { MSG.destination := ALL; 
  MSG.mode := ACK; 
  Send MSG; 
 } 
 elseif( MSG.Mode == FAIL ) 
 { RelayedMessage r  :=  
    RelayedMessagesTable.Retrieve(MSG.MessageID); 
  cnt   := r.BestNeighborCount; 
  MSG.mode  := NORMAL; 
  if(MSG.Priority == HIGH) 
   AGR.Send(MSG, cnt, mode); 
  else 
   MGR.Send(MSG, cnt); 

} 
 
} 

Figure 19 Prioritized Geographic Routing 
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CHAPTER IV 

ANALYSIS, EVALUATION AND EXPERIMENTATION 

The PGR provides a priority-based facility to transmit messages and an ‘any-

node-to-any-node’ solution for WSN applications requiring in-network data processing. 

This chapter provides details of the algorithms implementation, the analysis and results of 

experiments. 

Implementation 

A WSN consists of anywhere between hundreds to thousands of nodes. Usually, 

these nodes are situated in a relatively small area, leading to a conceivably dense 

population of nodes. This may in turn lead to each node having neighbors on the order of 

ten (10). However, the nodes are resource-constrained devices with low memory. Hence, 

it is imperative to have a restriction on the number of neighbors that a node can have. 

Depending on the WSN application, a restriction may also be placed regarding the 

proximity of the neighbors to the node itself. For instance, an application collecting data 

and routing it back to a base-station may have a restriction that each node should have 

neighbors that are least a fixed distance away from node. Conversely, an in-network data 

processing application may restrict the neighbors to be at most a fixed distance away. 

Nonetheless, irrespective of such trivial restrictions, the neighbor table should be 

optimized to hold a fixed number of nodes. A good parameter for deciding the size is 

density of deployment of the WSN. If the density is known beforehand, the fixed size of 

the neighborhood table is easily calculable. Based on simulation statistics, a neighbor 
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table of size equaling approximately 0.05% - 0.1% of the density (number of nodes / 

km2) seems to yield a fairly satisfactory neighborhood. 

The PGR is essentially greedy in finding a path to the destination. The essence of 

the entire process is to continually calculate Euclidean distances between two nodes. This 

process is repeated at every node, and is directly proportional to the number of neighbors 

a node has. However, the square function is monotonic and hence, the calculation of 

euclidean distances by square root is unnecessary. The node can cache the sorted list of 

its neighbors that satisfy the closeness constraint till it receives an acknowledgement of 

the message transmission. Calculation of Euclidean distances involves multiplications 

and square root, a fairly high CPU-consuming process. Hence, it is crucial to use an 

alternate way to perform these calculations. A fairly accurate method for calculating the 

integer square root by shift-operations is shown in [51] by D. J. Evans for advanced 

calculations involving gaming applications. This results in an integer square root with 

less than 5% error, and is sufficient for calculations for finding the next relay node. 

Resolving the neighbor closest to the destination entails keeping track of the 

smallest distance to the destination and the corresponding node. This can be implemented 

easily using simple algorithms. However, these calculations need to be done every time 

an acknowledgement is not received and the node needs to forward the message again to 

the next-best neighbor. Similar calculations are also triggered by the arrival of the failure 

message. This may lead to a lot of time being devoted to finding the next neighbor. This 

scheme is suitable for applications where messages are processed periodically and 

occasionally. 
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An alternative is to cache the nodes in a sorted list. On the non-arrival of an 

acknowledgement, the node needs to merely lookup the BestNeighborCount in the 

Relayed Messages Table, and pick up the next best neighbor from this list. Once an 

implicit acknowledgement is received, this sorted list may be destroyed. In this case, the 

sorting operation is required only twice, once when the message arrives in the normal 

mode, and once when the message arrives back in failure mode. The problem with this 

scheme is that space proportional to the neighbor table needs to be allotted for every 

message or at the very least every destination, being currently processed by the node. 

This leads to an exponential rise in the amount of space required based on the number of 

messages being processed simultaneously by a node. This scheme is suitable for 

applications that do not generate a lot of traffic at once. It may also be used in 

applications wherein the primary task of the nodes is routing of data to the base-station. 

In case sorting needs to be performed for the above schema, various sorting 

algorithms may be used. Conventional sorting algorithms like Quick Sort, Merge Sort etc 

provide a performance complexity of O (n*(log n)). However, their performance for 

sorting a few numbers is not satisfactory. In fact, Bubble Sort, with a complexity of O 

(n2), is better-suited for this. The implementation of PGR uses Comb Sort [52], a 

variation of Bubble Sort that is an improvement over Bubble Sort without sacrificing 

Bubble Sort’s simplicity. 

PGR Message Overhead 

The structure of a PGR message is given in Figure 17 . Position contains three 

fields, each of 16 bits. The MessageID is a 23 bit field. It can be combined with the 1-bit 

field of MessageType, leading to a consumption of 24-bits. The Priority field is 2 bits in 
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length. A WSN operating system would provide facility for transmitting a message to a 

particular location. Thus, the overhead of actual routing is restricted to the MessageID, 

MessageType, LastNode, Destination and Priority. On the TinyOS platform, PGR 

requires 11 bytes in a packet length of 29 bytes. The underlying message transmission in 

TinyOS is restricted to either a broadcast or a node ID. Thus, we are able to avail the 

LastNode and NextNode fields as Node IDs (2 bytes) instead of a Position (6 bytes). 

Comparison via Simulation 

The PGR is compared with the Directed Flood Routing Framework (DFRF) [53]. 

The simulation environment used for the comparison is the MATLAB-based Prowler 

[40]. Prowler is a discrete-event based simulation tool, developed for simulating the 

performance characteristics of WSN algorithms. The Prowler has been covered in detail 

in Chapter II. We use the Directed Flood Routing Framework as a basis for comparison 

as it also results in an assessment of two different approaches towards routing in wireless 

networks in general, and a WSN in particular. Furthermore, the working of DFRF had 

already been validated using simulations in Prowler. Thus, a valuable set of data was 

readily available for comparisons. 

The DFRF revolves around a flood-routing engine for WSNs. The engine 

communicates with the radio stack provided by the underlying OS. Applications desiring 

to use the DFRF register with the engine. The engine also registers the routing policy to 

use. This routing policy is also based on flooding. The DFRF engine handles the actual 

transmission and reception of the messages. The policy manages the pool of messages to 

be transmitted / relayed. It makes decisions regarding the importance of the message, the 

lifetime, the direction/angle of its transmission etc and provides the engine with the order 
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in which the messages need to be transmitted. Thus, the DFRF achieves separation of the 

policy of routing the messages from the actual transmission details. The routing policy 

can be described using a simple state machine.  

One of the policies that may be used in DFRF is the Gradient Convergecast 

policy. This policy involves the base-station or the root node sending a message (s) to all 

the nodes in the network. Nodes receiving the message calculate the gradient with respect 

to the root node in terms of the number of hops it takes to reach root node. Whenever a 

message is received, it will only be relayed forward if the gradient of the recipient is 

lesser than that of the transmitter. Other examples of policies, outside the scope of our 

analysis, are the Broadcast policy and the Spanning Tree policies. 

This section compares the PGR to the DFRF with a gradient convergecast policy. 

Routing in sensor networks can primarily be of two kinds: any node to a base station or 

any node to any other node. Most of the WSN applications use the any-node-to-base-

station routing. Hence, a comparison of PGR with the DFRF is also tailored towards 

evaluating this aspect of routing. 

Simulation Environment 

The wireless-connectivity graph of nodes in a WSN changes frequently. Nodes 

that are participating in routing messages between two nodes may cease doing so. Demise 

of a small number of nodes that are concentrated in a tiny area of operation will generally 

not affect the routing of messages between two nodes. However, if a significant number 

of nodes are unable to participate in routing, message transfer in the network may be 

jeopardized. It is assumed that all nodes are obligated to participate in routing messages. 

A good metric for evaluating the robustness of a routing protocol is its adaptivity to such 
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voids in the network. These voids may be created in the network during its deployment; 

or they may materialize due to noise, loss of power etc. A routing protocol should not 

only be able to transfer messages across voids that exist on deployment, but also adapt to 

handle voids created due to the dynamicity of the network. We adopt three topologies for 

this evaluation. 

The Uniform topology is a randomly generated network of nodes that are 

uniformly distributed across the field. Most of the envisaged WSN deployments generally 

lead to a uniform deployment. Hence, this can be treated as a default layout to test the 

efficacy and performance of the routing protocols. The Void topology is again a static 

deployment of uniformly distributed nodes. However, a void is created at deployment 

such that most routing messages would need to clear this void. This topology tests the 

routing protocol’s ability to traverse the voids. The final topology is a combination of the 

uniform and void topologies. This topology is deployed as uniform distribution of the 

nodes. However, over a period of time, a few nodes are killed to artificially create a void 

in the network. Hence, it is named as the Dynamic Void topology. This scheme 

predominantly tests the adaptivity of the routing protocol to the changing network 

connectivity. 

Though topologies play a prominent part in the functioning of message-routing 

protocols, a routing protocol cannot be judged based solely on the virtue of its adaptivity 

to various topologies. The wireless medium is a shared medium. Any transmitted 

message – addressed to all nodes in the vicinity, or multiple nodes, or specifically 

addressed to a single node – is actually heard by all the nodes. The lower-level MAC 

layer decides whether the message needs to be processed or not, and subsequently, either 
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ignores / drops the message or passes it on to higher-level components in the network 

stack. Thus, each node that hears any message needs to spend some amount of time and 

energy to perform this minimum processing. Moreover, in a policy such as broadcast, 

most nodes would receive the message and be expected to process the message and relay 

it further. Transmission of a message also costs energy. Thus, it is important to reduce the 

number of messages, rather copies of a message, in the network. Hence, the Number of 

Transmissions resulting from a single message is an important benchmark for assessing 

the routing protocol. 

Multi-hop message routing is the traversal of a message across multiple nodes 

from the source node on its way to the destination node. Messages need to traverse across 

a network in bounded time. A delayed message is useless most of the time; it also clogs 

up the network carrying useless or outdated information. Hence, measuring the Traversal 

Time to reach a destination is a good benchmarking metric. 

Usually, messages are routed via multiple routes. This behavior may have been 

incorporated intentionally in the routing protocol. Broadcast-based protocols will 

evidently route multiple copies of the message. Oftentimes, nodes that do not hear a 

message being relayed, or some sort of acknowledgement, spawn off another copy in the 

network. Such copies of the same message, apart from increasing the processing load on 

the nodes, hog the network bandwidth. We study this facet of the performance of the 

routing protocols using a timing parameter, Message Lifetime. This measures the amount 

of time lapsed since the transmission of the message by the source node, till the last copy 

of the message is delivered to the node, i.e. the time during which the message is alive in 

the network. Another important parameter that determines the quality of a routing 

 77  



 

protocol is its ability to deliver the messages. This ability is quantified by the Success 

Rate of message transmissions. Success Rate is defined as the ratio of number of 

messages delivered successfully to the total number of messages actually transmitted. 

The PGR and the DFRF framework with a convergecast policy are compared 

using the above-presented four benchmarking metrics. Both protocols are benchmarked 

against each of the metrics, for all the three topologies described above. 

Finally, a study is performed to analyze the performance of the routing under 

different network load conditions. A routing may perform fairly robustly in low-load 

conditions involving transmission of a single message. Thus, a good evaluation should 

also consider the performance of routing under varying degrees of network traffic. This 

requirement is evaluated by using three transmission schemes. The first scheme is a 

simple routing of a single message. The next scheme involves monotonous / periodic 

transmission of messages from the same source. The third and final scheme involves 

transmission of multiple messages in the network at about the same time. Thus, multiple 

nodes will act as sources and transmit a message for delivery within a very small 

timeframe.  

The experimentation setup consisted of 50, 100 and 150 nodes dispersed in an 

area depicting 100m x 100m in Prowler. The average radio range of transmission was a 

radius of 10m. However, the radio model in Prowler was setup to model the transmission 

range as an imperfect circle. 
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Results 

This section presents and explains the results of the experiments. We first study 

the effect of control messages overhead. PGR periodically sends control messages for 

building up the neighborhood.  
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Figure 20 Control Messages Overhead per Single Round 

For the experimentation, the PGR periodic advertisement is set for every 5 

seconds. On the other hand, DFRF uses control messages only once, at the deployment 

phase of the WSN application. However, the settling time for these control messages 

turns out to be quite high. Experiments were conducted on 50, 100 and 150 motes. Two 

topologies, Uniform and Void, were used. The data is provided in Figure 20. In general, 

the PGR performed better than the DFRF for one single message in the “knowing the 
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neighbors” phase. The performance of PGR was observed to be same for both Uniform 

and Void topologies. PGR neighborhood beacon was indifferent to the variation in 

topology. The minimal increase in time for 100 motes is an acceptable difference. DFRF, 

due to transmission of messages to all the nodes via broadcast, spawns more messages 

leading to a greater time for building the neighborhood, or as in case of DFRF finding the 

gradient. It was also observed that the number of nodes directly affect the ability of a 

network to settle down after sending control messages. This time seems to increase 

proportionally to the number of nodes. This is due to a proportional increase in the 

number of control messages transmitted by each node added to the network. 

However, DFRF builds its gradient by continuously sending the control-message. 

Greater the number of messages better is the gradient. Thus, the time before a WSN 

application can start routing data back to the base-station using DFRF is directly 

proportional to the number of control messages needed. The above figure presents 

statistics for only one control message, which results in a far from satisfactory gradient. 

Conversely, in PGR, each node sends the advertisement message periodically, in this case 

every 5 seconds. However, the WSN application can start routing at the end of first 

round. Further rounds are merely for adapting to changing topologies. Thus, PGR 

performs better when there is a need to immediately start routing data after deployment. 

Though the PGR is expected to perform reasonably well using a low priority for 

uniform layouts, the following round of tests were carried out in a high priority mode. 

This was done to ensure that worst-case behavior may be observed and accounted for in 

the experimentation results. 

 80  



 

The next round of results shows data from the transmission of a single message 

from a single node. As earlier, the test setup consisted of 50, 100 or 150 motes spread 

over a simulated area of 100m x 100m. The source transmits a single message and the 

time to reach the destination is calculated. The experiment is repeated for over 25 

messages, and the times are averaged. Only four topologies are used. The dynamic void 

topology behaves similar to the Uniform topology as the void is not created until after the 

transmission of the first message is long over. 
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Figure 21 Time of Arrival: Single Source, One Message 

The time of arrival of a message gives the time delay from the time the message 

was transmitted by the source to the time it was delivered at the destination. Figure 21 

shows the performance of PGR and DFRF on two topologies. The setup that was used 

had the source situated in the left-bottom corner of the network, while the destination / 

base-station is located at the right-top corner. The source and the destination were 
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separated by an euclidean distance of approximately 87m. This translates to an estimated 

hop count of about nine (9). In general, both PGR and DFRF take a longer time on 

topologies with a void in between a source and destination. DFRF takes a longer time due 

to its inability to adapt itself to the void. PGR finds voids along the route. Nodes that 

encounter these voids wait and retransmit the message. This waiting time adds up the 

time required to deliver the message. Due to the availability of pre-calculated gradients, 

DFRF performs better than PGR, which has to perform calculations at every node, in the 

delivery-time stakes. PGR’s time of arrival is also bumped up due to the waiting-time 

required in the retransmissions to the next-best neighbors.  

Settling Time is the time lapsed from the first transmission till the last 

transmission of the copy of the same message. This gives an important indication about 

the lifetime of a message and its use of network resources after it has been delivered. 

Figure 22 shows the performances of the both the algorithms on the previous setup. PGR 

takes a significantly less amount of time to settle down after the transmission of the 

message. Its performance is similar in either topologies, but fares marginally worse in the 

Void layout as compared to the Uniform layout. An interesting observation is that PGR 

appears to perform badly in a network of 50 nodes as compared to its performance in 

networks of 100 or more nodes. This is due to a probable lack of neighbors closer than in 

itself to the destination. This reflects more on the topology used than PGR’s performance. 

DFRF, due to its broadcast policy, takes a longer time to settle down.  
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Figure 22 Settling Time: Single Source, One Message 

Another parameter that was studied is the Number of Transmissions per message. 

This parameter symbolizes the total number of hops and attempted hops a message and 

its copies traveled in the network. Ideally, it should be equivalent to the hops required to 

follow the most optimum route available. However, this is seldom so. Usually, nodes 

either broadcast / multicast the message, or resend a message in case of a missing 

acknowledgement etc. Due to this, multiple copies of the message exist in the node, with 

each copy in turn potentially spawning more copies. As may be seen in Figure 23, PGR is 

much better as compared to DFRF. The only time PGR performed worse was in a layout 

of 50 nodes, wherein it needed to go into its high-priority mode and do some backward-

traversals to eventually reach the destination.  
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Figure 23 Number of Transmissions: Single Source, One Message 

All the experiments resulted in a 100% Success Rate in this scenario. 

Further tests were carried out using the same framework as above. However, the 

message transmission policy was changed. In the first instance, a sequence of messages 

was transmitted from a single source periodically. Network congestion was studied in 

terms of the above parameters. The trend shown above continued most of the time. 

However, significant changes were observed in case of the Dynamic Void topology. 

Whenever the topology changed and a void was created, it took a significantly longer 

amount of time for DFRF to deliver the message. Furthermore, it ended up traversing all 

the nodes in delivering a single message. Consequently the settling time was also 

observed to be more. PGR, on the other hand, did not exhibit any trouble in adapting 

itself to the changed topology. Spikes in data were observed for the message being routed 
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when the void was created artificially. This was due to the back-tracking required to find 

an alternate path. PGR also failed in delivering the message when the node with the 

message was killed. The success rates for PGR were observed to be between 90-100%, at 

an average of 98.37% with a Standard Deviation of 2.756%. The success rates for DFRF 

were between 95-100%, averaging 98.96% with a Standard Deviation of 1.724%. 
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CHAPTER V 

CONCLUSION AND FUTURE WORK 

Conclusion 

Advancements in Micro-Electrical Mechanical Systems (MEMS) are leading to 

development of cheap devices that can be used in various applications. One such area is 

the Wireless Sensor Network. WSNs are deployed in applications ranging from data 

collection to in-network data processing and actuation. Routing is an integral and a very 

important part of such WSNs. There exists a need for a multi-faceted routing protocol 

that can cater to various highly specialized applications.  

PGR or Prioritized Geographical Routing strives to address this need. PGR 

provides a robust, lightweight routing protocol with the ability to route messages from 

any node to node. Furthermore, it has the capability to treat messages of differing 

priorities differently, and adopts varying strategies to ensure message delivery. 

A routing protocol based on the position of the nodes in the network is more 

robust and scaleable than protocols that do not make use of any location-based 

information. Additionally, it also eliminates the need to keep track of various node IDs in 

a WSN that may typically run into thousands of nodes. A geographical routing protocol 

was developed and implemented to provide two services: Any-node-to-Any-node 

message delivery and Priority-based routing.  

The PGR protocol does not store state of a route at any of the nodes. Neither does 

the PGR store information about the route to be followed for a particular destination, nor 

does it build complex data structures to describe a route to be taken to reach a particular 
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destination. This enables the routing of messages from any node in the network to any 

other node. The route from one node to another is calculated in a distributed manner, 

taking into account the Euclidean distance between the current node and the final 

destination. 

PGR also provisions for handling messages with differing priorities. It offers three 

different priority levels that may be used according to the domain of the application. The 

three different priority levels ensure that the network is not clogged by unimportant 

messages, while performing an exhaustive search for very important messages. 

The PGR protocol was subsequently implemented in nesC for the MICA2 

platform using TinyOS. It was used to provide routing in small and medium sized 

applications. Successful execution on the MICA2 platform as well as simulations in 

TOSSIM proves that (1) Messages could be sent from any node to any other node 

successfully, (2) Messages with higher priority had higher probability of being delivered 

to their intended destination. 

 The PGR was compared with DFRF framework using Prowler. The tests showed 

that advantages of the PGR protocol are: (1) In a uniformly distributed network of nodes, 

the average time for delivery is on an average one-half times more than DFRF, (2) The 

average settling time of the network due to a message in a uniformly distributed network 

was twice less than that of DFRF. This was due to the low number of message-copies 

spawned by PGR, (3) PGR exhibited a better adaptation to the changing topologies as 

compared to the DFRF. The number of transmissions per message by PGR over the 

uniform topology, voided topology and a dynamically created void in the topology show 

an increase of only ~2%. The same scenario leads on an increase of ~6% in the DFRF. 
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Comparisons with DFRF lead us to believe that, PGR can be successfully deployed in 

environments requiring flexible topology and immediate adaptation to topology changes. 

PGR showed a comparable Success Rate with respect to DFRF. PGR also uses less 

control messages as compared to the DFRF. Thus, its initial settling time, or the network 

initialization time is better as compared to the DFRF. 

A prioritized location-based message routing is a feasible protocol for 

communication within a sensor network. Furthermore, such an implementation is a good 

way of reducing the traffic in the network. 

Location-based routing protocols have been studied for long [22][23][25]. The 

major advantage of location-based protocols is their scalability. In a network that has 

hundreds of nodes constantly joining and leaving, and the link quality varying 

continuously, a protocol that scales according to the number of nodes in the network is 

desirable. Results provided in the previous chapter show that PGR easily adapts itself to 

the change in the number of nodes. Since the routing is based entirely on the geographical 

position of the nodes and is not affected by any other factor, the PGR scales to a change 

in the area (graph) boundaries as well. It has been proven that protocols that do not use 

location based routing are not as scalable [24][26]. 

Location awareness is resolved in most WSN applications, and the nodes know 

their position, either relative or absolute. Location-based routing uses localized 

algorithms and works in a decentralized manner. This makes the protocol light-weight 

and robust. 
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Future Work 

Several new approaches can be investigated to improve the efficiency and 

working of the algorithm. To begin with, sensor nodes are highly energy-constrained. 

The PGR, while reducing the total number of hops in the network and thus the energy 

required to transmit a message, is a greedy approach that tends to use the same set of 

forwarding nodes for a route between a given source and destination. Situations wherein 

a message needs to be continually routed between the same pair of nodes would lead to 

rapid draining of power from the set of nodes when compared to the neighboring nodes. 

The greedy approach also tends to utilize the computing power of the same set of 

nodes, while keeping their neighbors relatively free of any routing computations and thus 

any routing overhead incurred. A future research direction may be the study of 

forwarding a message to not the best neighbor, but any one from a set of neighbors. 

The routing protocol described in this thesis is dependent on the presence of 

symmetric links implicitly. Without an acknowledgement of message receipt from the 

next node, the current node launches into a message retrieval mode and tries to forward 

the message to other nodes, leading to the possible existence of multiple messages in the 

network. A research effort could look into the minimization of such multiple messages by 

reducing the dependence on implicit acknowledgements. 
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