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CHAPTER |

INTRODUCTION

Modern systems are increasingly complex, making their unddmstana
demanding, yet crucial task. Model-based development of systeangrasess that uses
explicit domain-specific constructs with well-defined semantics to septeanalyze, and
synthesize a system [12]. A model is an abstract represenpéionobject or a concept.
Models can be individual entities representing a physical objeathetwork of objects.
In several such implementations, converting these object netwot&sa textual
representation is a problem often encountered.

Model based applications today work with large and intricate netwovkb
thousands of objects and several hierarchical layers. Severahteatsirrently available
for creating and working with such networks of models, such as GME (Genericiivpdel
Environment) [9], UDM (Universal Data Model) [6], GReaT (Grapb-Witing and
Transformation Engine) [14]. Unfortunately, there is usually no e#syface provided
for simple unparsing (converting into a flat representation) of datd structures into a
textual representation.

Simple text based files such as XML files, configuration fde</C++ code are
often generated from large data networks. However, the APIsdeiare not suited for
such tasks. Producing text files usipgntf statements is often cumbersome and doesn’t
give good control over formatting and layout of the resulting téxt Tihey also contain

redundancy. In recent applications, as much as 80% of the output hasohstamt text



that was printed verbatim. Such applications become hard to maintain,small
changes requiring lots of work and recompilation.

There is a need for converting data structures into a tesdpedsentation, such
that the process is described in a declarative way. It would besrmi@my to have a
simple, pattern based, interpretive method, of inserting data int@pnatted text files.
Such text files must be easy to write and maintain. They nagas&oid the necessity to

recompile after making small changes to the text file.

Existing technologies

The UDM (Universal Data Model) framework includes the developmertess
and set of supporting tools that are used to generate C++ progtennterfaces from
UML class diagrams of data structures [6]. UDM is used wila@reobject oriented
approach is followed for describing data structures. A UDM datwork consists of a
network of object instances of classes defined first in @& dagyram, where attributes
and associations can also be included. UDM ships with a pattern sopoasdled
UDMPat.

UDMPat takes as input a UDM data network and a speciallydctede file and
produces a textual output. The text file consists of a mixtunglanh text and special
instructions. The textual part is printed out verbatim to the outputi&@pestructions
can be included in the text file, which will perform specialicas such as traverse
through a data network to retrieve data.

The only alternative for generating text output from a data or&twwith UDM
was to code using the C++ API provided with UDM. The API offengeral methods for

retrieving information from the UDM data networks. The method$iéenAPI can be



used to retrieve data, and the output can be generated psitfgstatements, to print

plain text or data from models.

Problems with the existing technologies

UDMPat, though it is very simple and quite powerful, has not beealyided
because of several drawbacks. It uses special commands whidethaust learn before
using the utility. This takes extra effort, and is not helpful touder beyond the scope of
UDM and UDMPat. Though the text is printed out verbatim and canrbeafted as the
user likes, the syntax of UDMPat offers very little formatting of data.

UDMPat offers very limited control over traversing of the nelyand it is not
expressive enough. For instance, it does not allow conditional seleoti selection of
objects of multiple types. There are no simple methods to count theenwinelements
in a set, or iterate through them in a particular order. It offecs conditional constructs,
and simple comparisons such as string comparisons are difficalthtieve. A more
powerful way to access and handle data is required.

The failure of UDMPat led most programmers to using the CP+. Ahough
powerful in its functionality, it is difficult to use. Generatingimple text output file may
involve severalprintf statements, several escape sequences and repetitive cede. Th
format of the output cannot be specified easily. Plain text whilthbeconstant still has
to be printed throughbout or printf. This makes the code difficult to read and the output
difficult to predict.

Another important problem with this approach is that the code must bgiledm

for every small change. Coupled with the fact that the output is not easllgtplde, this



makes generating a desirable output very difficult. It alsonsi¢laat maintaining these

for later changes will prove costly.

Requirements of a new technology

Since simple textual files are being generated increasoftgy, there is need for
a new technology that combines the good features of the existimgologies, and offers
users with a powerful and easy to use tool to generate a tegprakentation from a
large data network. A simple pattern processor that processesfarmatted text file
interspersed with special instructions to insert data seems the righheay. a

The features required of a good pattern processing tool seenthe fmlowing
[7]:

* It must offer a concise and powerful expression language fassiog
data

* It must provide a concise way to insert data into the output

* It must have concise and powerful iterative and conditional constructs

* It must allow powerful and easy control over white-space and therajen
formatting of the output text.

Considering these requirements, this thesis looks at a new toolofmesging a
data-network to generate a textual output. OCL has been chosbe Emguage for
traversing the data, as it is tightly coupled with UML and pravidevast range of
functionality. OCL offers excellent iterative and conditional carcdst, and a wide range

of data types that help in handling various kinds of objects including collections.



Problem Statement

My objective is to develop a pattern processing tool, which can takgantext
file and produce an output text file (or several output text)fiiesn an object network
by parsing special scripts embedded in the input text file. Anes provided will be the
following:

Data locator: The file containing a data network. For the three persistence
technologies supported by UDM, this is usually an MGA, XML or MElL. This will
be the source of data for the output

UML diagram: The file describing the meta-model for the above data. Teis f
can be generated by the UML interpreter in GME (Generic Modeling Environfagnt)

Pattern file: This is a text file describing the desired output. It contaias fext
and scripts, and must be written by the user according to the outisbe heants to
produce.

The pattern processor will send the plain text verbatim to the outtpuitl parse
the scripts to retrieve data from the data network and insestspecified into the output.
The pattern processor must be independent of the meta-model anbdenusstble with
any paradigm and with any data network. Pattern files writtermodels based on a

certain meta-model should work with any data network based on that meta-model.

Layout of Chapters

Chapter 2 follows with an introduction to the relevant standards and tool
prevalent today. It will discuss the basics of UML, UDM and otéehnologies. Chapter
3 describes the construction of the pattern processor and its usagk.discuss the

choice of scripting language, notation etc. and the motivation behind thesees.



Chapter 4 will bring forward some examples of using the pagsscessor. It will finish
by comparing the task of writing a pattern file with wrifiC++ code to achieve the same
result. Chapter 5 lists the conclusions drawn and the scope for futrkein this

direction.



CHAPTER Il

BACKGROUND

The Unified Modeling Language

The Unified Modeling Language (UML) is a language for spaugf, visualizing,
constructing, and documenting the artifacts of software systemgelaas for business
modeling and other non-software systems [3]. UML is an OMG (®ijiEmagement
Group [4]) standard that defines the basic artifacts and rulesfstructing models in a
standard language.

UML defines the modeling elements (fundamental modeling concapts
semantics), notation (visual rendering of model elements) and ipeisigfidioms of

usage within the trade) for building object-oriented, component basegmsys

3].

Class Association Multiplicity
Class Name Class A [;gea roleb|Class B Class | exactly One
<<Stereotype >> 1
attribute : type = Initial value T s
X : iati Class
operation(argument list) :return type Association Class *
S Class A |iglea rolep|Class B
Specialization m.n P-q zero or one
Class
Supertype 0.1
Association Class
Class
m..n
| | Composition
Subtype1 Subtype2 Class A Class B
- m..n

Figure 1: Elements of UML class diagrams



The most commonly used artifact of UML, and the one we are plyma
concerned with, is the UML class diagram. The UML speciicati3] defines the
notation and semantics to represent objects as classes withtestrand operations, and
associations between such objects such as inheritance and aggregation.

UML class diagrams are a convenient and unambiguous way to mepseseral
aspects of complex systems. Figure 1 shows the basic eleshantiVIL class diagram.
A class is represented as a rectangular box containing e r@ae, and its stereotype
enclosed in angular brackets (guillemots). It is followed byligieof attributes of the
class, along with the type of each. This is in turn followedhylist of operations that
can be performed on the class, and the return types of those operations.

Associations between classes are represented by lines cognénirclasses,
which may in turn contain special symbols indicating the nat@irth@ association.
Inheritance is represented by a triangle. In the figure showrgldkees “subtypel” and
“subtype2” are inherited from the class “supertype”. This mehat “subtypel” and
“subtype2” have all the attributes and operations of “supertype”. Cotigoos a special
kind of association that represents a containment relationship, aagdrésented by a
shaded diamond. The placement of this diamond is important, as it defies class
contains which. In the figure shown, “Class A” contains “Class Bie Tardinality, i.e.
the number of instances that can be contained, is also represetitedagsociation line.
Another type of association is aggregation, which represents wipalg/relation ship.
The difference between aggregation and composition lies in thenkfebf the contained
class. In a composition, the contained class ceases to diwast thhe containing class

ceases to exist. In an aggregation, the ‘part’ class can evast without the ‘whole’



class. Aggregations are however not directly supported in UDMotAdr associations
are represented by a simple line, with the role of each tladat association and the

cardinalities shown along with the association.

Universal Data Model

The UDM includes the development process and set of supporting toolrehat
used to generate C++ programmatic interfaces from UML atkagrams of data
structures. These interfaces and the underlying libraries provide convenienhpnagia
access and automatically configured persistence serviceatiistructures as described
in the input UML diagram [6].

The storage technologies currently supported are as follows:

* XML with an automatically generated DTD file,
* MGA, the native interface of the GME modeling environment
* Memory-based storage.

UDM s typically used in any object-oriented approach where abjact first
defined in a UML class diagram. These can then be instantiatgchprmatically. UDM
has the tools to generate a convenient C++ API from the datéustrirc the UML class
diagram. This API gives access to all the components of the diagram, and all the
methods necessary for building, navigating and manipulating a netwoekl loasthe
class diagram. UDM ships with the UDM generator, a UML pgradior GME (which
allows users to draw UML class diagrams using GME), an irg&pfor this paradigm
(which generates an XML file from the UML class diagrams) and a nuaflseipporting

applications.
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Figure 2 describes the common usage of UDM. We start wittMa tlass
diagram created in GME. An XML file is generated from ttlsss diagram, using the
provided interpreter. When the UDM generator is executed, passingNtisfile, it
generates some header (.h) and program (.cpp) files. Thedeecased in any user
application, along with the other UDM libraries, providing a convenid?itfAr the user
to access components of a data structure based on the inittad@dgsam. The UDM

application also generates a DTD file for accessing data networks defikétli

Interpreter XML

) UDM Generator
L

UML class diagram

—!
L
User project 15
with UDM .
libraries 11
I'.
1
Data-networks XML
in MGA back-end
Data-networks
| - Data-networks .
in alternative back-ends in XML back-end

Figure 2: Usage of the UDM Framework



For each UML class in the source diagram, UDM generatestactass with the
corresponding name. All classes in UDM are derived from the ddassUdm::Object
which defines the generic functionalities of objects in UDM. d&igcimethods are

provided to create class objects for these classes. InheritateeUML class diagram is

reflected as C++ public inheritance. Figure 3 shows a simpbpimg of UML classes to

UDM.
i Fassigrument to same type
BaseClass nathespace ExampleDiagram { : Erum P
U Ohject Ohject; int fl(DetivedClass &c) |
DetivedClass cd = ¢
class BaseClass 1
RGO LT Fvom derived to base
int f2(Bazeclazs &b, DetivedClazs ) {
ciass BaseClass : 1 b=e
public Object {
DerivedClas }: ffrom base to derived
! ’ int f3(DerivedClass &e, BaseClazs &h) {
Feheck if compatible
ifib.meta’) == DervedClass meta) {
c=h;
h
h
Class Diagram UDM Header User Code example

Figure 3: C++ classes generated by UDM [6]

For each class in the UML diagram, a C++ class with the smoreling name is
defined by UDM. All classes belong to a namespace with the seame as the UML
class diagram. Variables exist as instance objects in ttledma, and handles are
provided for setting the variables. For each UML attributedtass, access methods are
defined in the corresponding C++ class. UML diagrams may conte@ssapermissions

on attributes, but these are not generated in the interface, \aleattributes are

12



considered public. Inheritance is reflected as C++ public inhedtathus giving
seamless access to attributes and methods of the base class from tkecthesve

UML composition relationships are reflected as access method®tin the
containing and contained classes, which return instances of wreppses. All objects
in UDM must be contained in exactly one paredtdm:ParentAttr<childObject>
represents the single parent of the object. It can be assignadytobject of type
childObject. Udm::ChildAttr<parentObject> is used to represent a contained object
when the maximum multiplicity on the child side is 1. It can b&yassd to any object of
type parentObject. When the maximum multiplicity on the child side is greater than
Udm::ChildrenAttr<parentObject> is used, which can be assigned to any object of type
set<parentObject>. New relationships can be assigned in this way.

Similarly, access methods are generated on the parent and childrsadeessing
the parent and children of the objects.

UDM data networks are organized in a single tree, i.e. each object (excegutthe r
object) is contained in exactly one parent. New objects areedrasting the static
Create method of each object, passing the parent object. The code Helows the

Create method in UDM generated classes:

class A : public Object {

static A Create(const Object &parent,
const CompositionChildRole &role = Udm::NULLCHILD ROLE
)i

13



UDMPat

UDMPat is one of the generic programs packaged with UDMMBB reads
UDM data while processing a pattern script to generate tegtuplt to one or several
files. The pattern file consists of a mixture of plain textg special pattern instructions.
The plain text is sent verbatim to the output. The special ingingctire evaluated by the
pattern processor, and the result is sent to the output [6].

Since this is a generic program, the data structure informagigupplied at
runtime. UDMPat takes three arguments:

<in-data>: The input UDM data network

<diagram>: This is an XML file that represents the mesgm@im (the UML class
diagram based on which the data-network is created).

<pattern-file>: the name of the pattern script

The pattern script can contain several types of instructions ffmrpeng several
tasks. The most relevant instructions are the ones that retnfevenation from the input
UDM data. Using these, it is possible to access attributesteaate through associations
and containment relationships.

UDMPat always accesses the UDM data in read-only mode. Tterpacript is
always executed in the context of a UDM object. Some instructansbe used to
change the context. The most commonly used instructions, and theidraaipacks are
listed below.

The $<variable-name> is the simplest command, used to return the ofabh
variable. This variable may be defined earlier using the $NE{variable>, <value>)

command, or an attribute of the object currently in context. While tb@smands allow

14



defining and retrieving simple variables, they do not allow singplerations on the
variables such as string concatenation or ordering of a set.

The $!EVAL_FORALL(<fieldspec>, <arg>) command gets the seblgkcts
identified by <fieldspec> and iterates through them. This isothg iterative construct
provided, and is very limited. It does not allow the user to selget af objects based on
a special condition such as the value of a certain attribute. Thedfrthes iteration can
not be controlled by the user. Nested iterations with arbitraty sf objects is very
difficult to achieve.

The $!IFEMPTY(<argl>, <arg2>) command evaluates <arg2> afg¥x>
evaluates to an empty string. This is the only conditional conslrismnot intuitive, and
simple numerical and string comparisons cannot be achieved easily.

The $!TO_FILE(<arg>) command directs output to the file spetify <arg>. It
first closes the current file, before opening a new file. Thas&ken switching between
outputs impossible. Once a file is closed, it cannot be reopened to agptnd
Reopening the file causes all its existing data to be erasesting files are always
overwritten.

The $!POSTINCR(<varname>) command returns the value of <varname>,
increments its value by 1. This is the only way to increment nisni®mple
mathematical operations such as addition or multiplication cannot be performed.

These are the main drawbacks with UDMPat, which has led torehsta a

pattern language that will offer more control, flexibility and ease of use tastre

15



The Object Constraint Language

The Object Constraint Language (OCL) is another OMG stanaartuilding
software models. It is defined as a standard “add on” to the (2MIEkpressions written
in OCL add vital information to the models written using UML.

A diagram cannot express all the statements that must be afparthorough
specification. For instance, consider the UML diagram shown béltw. association
passengers associates a flight to a number of instances of the Persan 8at the
number of instances is limited by tmemberOfSeats attribute of the Airplane class.

There is no way in the UML diagram to specify this restriction.

Flight i
q 0.+ 1 Airplane

flightnr: Integer humberOfseats: Integer
flights plane

availableSeats(): Integer
flights (0.7

passengers | 0.F

Person

narme: String

Figure 4: Sample OCL classes [2]

This restriction can be overcome by using a OCL constraint:

Cont ext Flight
| nv: passengers->size() <= plane.numberOfSeats
In this way, expressions written in a precise, mathematibaked language like

OCL offer a number of benefits over the use of diagrams tofg@esystem. However, a

16



system specified in a language that uses an expression repiesegtame is not easily

understood. A combination of UML and OCL offers greater power in specifying models.

Characteristics of OCL

OCL is a constraint definition language but can also be usedj@sralanguage.
A constraint is defined as follows: “A constraint is a regtrcon one or more values of
an object-oriented model or system.” [2]. Because OCL expressansndicate any
value or collection of values in a system, OCL has the capabibkimilar to SQL. The
body of a query expression can be completely specified by a single OCksapre

OCL is based on mathematical set theory and predicate, lagd has formal
semantics. The notation, however, does not use any mathematical symtimresult is
an unambiguous language that is easily read and written by all [2].

OCL is a strongly typed language, such as Java, C# etcalséasa declarative
language. OCL expressions simply state relationships betweggbles in terms of
functions or rules. The OCL parser can apply some algorithms oe tekdions to
produce a result. We are interested in processing such erppeessiretrieve and print

data into a text file.

Craig Cleaveland’s Template Language

Craig Cleaveland, in his book titléogram Generators with Java and XML [7],
creates a language for writing templates for program gessrwhose input uses XML.
In this book, a pattern language called Template Language (THgvsloped, for

creating program generators in Java. TL can be written infdmoes — a simple form

17



using the ‘# character as the delimiter, and a somewhat veldkeform. The figure
below describes the usage of TL.

The initial template can be written in its simple or XML forf translator is
provided to easily convert between the two forms. From this tempglageprogram
generator is generated using TL2Java. When this program gensratompiled and
executed, providing the XML input file, it generates the requmedjram based on the
template and the provided inputs.

TL incorporates the idea of retrieving data from a networkhim case, an XML
file), and producing a text file output. While it is mainly idegd to generate Java
programs, it can generally be used to generate any kind of text file.

An example template file in simple form is given below:

public class HelloWorld {
public static void main(String[] args) {
System.out.printin("Hello #"//name"#");
}

The same template in XML form is as below:

<?xml version="1.0"?>
<tI>public class HelloWorld {
public static void main(String[] args) {
System.out.printin("Hello <value path="//name"/>" );

}</tl>

18



hello xml hello template
HelloPG java spec xml
)’J- ™
!
!
!
i
HelloPG class L _ 7 HelloWorld java

=

HealloVWorld class

Figure 5: Usage of TL

The TL2Java tool parses this template and generates a prognamatge The
program generator is a Java program that produces a text ousedt dda the program
template and an XML file containing some data. The plainitetktte template is printed
out verbatim by the program generator. It then uses the Javapékéer to evaluate the
special XPath expressions in the template. When the programatgene executed, it
gueries the provided XML and inserts data from the XML in theiBpd locations. The

above template will produce the following output for the given XML file:

19



XML input for the template:

<?xml version="1.0"?>
<name>Craig</name>

Output produced

public class HelloWorld {
public static void main(String[] args) {
System.out.printin("Hello Craig");
}

Related Work

The Gandalf project [15] [16] is concerned with semi-automayicgdinerating
software development environments that integrate programming aedisysvelopment
environments. It uses a syntax directed editor to provide a languagaedr
environment. Such editors maintain programs internally as a syr@ex which is
unparsed to display text on screen [17]. Since the syntax tree gg@vighiform internal
representation, such editors can replace text editors and pafbersemplates for such
syntax trees can be related to meta-models, and the requitgiams governed by these
templates can be related to object networks based on the meta-model.

In [18] tree-structured data is compared to relational databasas, attempt to
describe a query language for such data, which will be as®asg tand as expressive as
SQL. The attention is directed to pattern languages based on regular expressions

DISTIL [19] is a software generator implementing a detia@adomain specific
language for container data structures. The paper stressiesportance of a declarative
language that is specific to the domain of the data structubeSTiL extends the C

programming language with declarative statements and operations orrutztaes. We
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will see later that OCL is a suitable declarative laggui@r querying data structures, and

is domain specific by nature.

Comparison of Pattern Approaches

The above sections described some approaches for generatingetekpfih data
networks. The basic idea revolves around specifying plain text andlspstructions in
a text based input file, which when processed by an interpreter, will genéeateoatput
file containing the plain text and data extracted from the data network.

UDMPat uses its own pattern language for querying data fnendata network.
It has primitive iterative and conditional constructs. The pati@nguage is not very
expressive and not easy to understand.

TL uses XPath as the querying language. It first gereesatantermediate Java
program called the “program generator”. This must be compiled>ewited to obtain
the final output. This intermediate step is often cumbersome, angdriferable to have
a tool that will generate the output in one pass, without a need for compiling.

The next chapter describes the new pattern processor develdhedthesis, and

the choice of a pattern language for the processor.
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CHAPTER 1lI

A NEW PATTERN PROCESSOR FOR UDM

A new pattern processor is developed for UDM in this thesis dpplication is
capable of generating a text output given any UDM data netwutlagattern file. The
pattern file can contain plain text interspersed with speciafuictgons that will be
described in this chapter.

The figure below shows the typical usage of the pattern procdstakes three
inputs, and processes them to produce a text file output. The firstigphe data
network to be parsed. This can be in any of the back ends provided by (XEIM
MGA or MEM). The second input is the diagram file used to gead¢hat data. The final

input is the pattern file which describes the output.

Data network
Meta di
diagram Patiern Processor Ouiput text file
Patiern File

Figure 6: Usage of pattern processor
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The pattern processor is available as a command line applicatias,alibrary

function. The command line application is invoked in the following manner:
UdmOclPat <data locator> <diagram> <pattern file>

The first parameter is the data network file. The second gaeans the meta-
diagram. The meta-diagram represents the UML class diag@m vithich the data-
network is designed. This is usually the XML file generatecthfthe GME UML meta-
model for the data by the GME UML Interpreter. The third patamie the pattern file.
In the command line application, the context for evaluating pattemudtisins is always
the root object of the data network.

The library function is invoked in the following manner:
UdmPat::ProcessPat(<data network>, <context>, <patt ern string>);

This function is in the UdmOcl.lib library. The first paramatethe UDM data
network object containing the data network to be parsed. The secamlepar specifies
an object in the data network that will be the context for thessions in the pattern
file. All OCL expressions in the pattern file will be evakatn this context. If the data

network isnw, this parameter can usually be setmoGetRootObject(), which returns the

root object of the data network. When using the library functiais, nbt necessary to

explicitly pass the meta-diagram.

Structure of the Pattern file

The pattern file provides a powerful, convenient and flexible waleszribe the
recipe to generate a text output from a UDM data network. Ttierpdile consists of

two parts — plain text that is printed out verbatim, and specialugigins that are
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processed by the pattern interpreter, and the result sent to tmet. olhe special
instructions in the pattern file are separated by the ‘and “> ” tags. These tags may
enclose OCL expressions or any of the additional special insimgcthat will be
discussed below.

The most basic form of the pattern file is a simple tégt\without any special
instructions. Such a text file will just be copied to the outpuespective of the data
network it may be used with. For instance, the following pattgustgplain text and will

be printed as it is:
Hello World.

This can be enhanced by adding a plethora of special instructiaigaio any
desired output. For instance, we might want to replace “World” withesdata from the

data network.

Theprint command

The print command is the most basic of the special instructiboanlbe used to

print any data to the output. The syntax for the print command is:
print( <expression>);

where <expression> is any OCL literal or expression. O@rali$ are strings,
numbers or Boolean literals such as “true” or “false”. The egmwa enclosed in
parenthesis is evaluated, and the result is printed to the outputelghession results in
any of the basic types in OCL, namely string, real, integer or BooleaaJuts i¢ printed.
In some cases, an OCL expression may evaluate to an OCL slbpbcas a class. If it
results in an OCL object, it cannot be printed. Curreihdefined]  is printed in this

case.
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Now we can modify the pattern to print the name of the root objettte data

network, in the following way:
Hello <: print( self.name ); :>.

In this case, “Hello " is plain text, and is printed as is. Te” tag indicates the
beginning of special instructions. In this case, there is only omuatisin, namely, print.
The argument specified for print $glf.name . self refers to the context object. In the
case of the command line application, it will be the root obpédhe data network.
“self.name " will result in the value of the “name” attribute of the radtject (or an
error, if the root object has no such attribute). This value isevetl from the data
network, and sent to the output by the print command. The clostrigtdg indicates the
end of special instructions. The remaining text, including tHecharacter, is copied to

the output as plain text.

Theopen command

The output produced by the pattern processor is sent to standard output by default.
The open command allows the user to direct this output to a file. The syotathe

command is as follows:
open(<file name>, <mode>, <handle>);

The first parameter specifies the name of the file to whidiput must be sent.
This can be a simple string or an OCL expression, givingisee the option of deciding
the file name at run time. For instance, the name can be based ematobute of some
model in the data-network, such as the name of a class. The secandtpaia a string
specifying the mode in which the file is opened. There are thossible modes:

overwrite, indicated by “0”,append, indicated by “a” offail, indicated by “f’. When a
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file is opened in overwrite mode, any existing file with thenesaname is overwritten.
When opened in append mode, the output produced is appended to the flk daf &hie
same name already exists. In fail mode, the processor téesiwgh an error if a file
with the same name already exists. The final parametheibandle, which is a simple
identifier that can be used subsequently to access the opened file.

The open command by itself does not direct output to the file imrebdidit
merely opens a file for output and assigns a handle to it. It Ineussed with the switch

command that is described next.

Theswitch command

A pattern file can contain multiple open commands, giving the usexhitigy to
open multiple files for output. The pattern processor identifieotitgut stream by a
handle, and sends all the output to that handle. The switch command aduiclie®f

these handles the output is sent to. The syntax for the switch command is:
switch( <handle> );

The only parameter is the handle, which must be defined previoustydpes
command.
When used properly together, thgen andswitch commands give the user the

ability to open multiple files and switch output between files easily.

Using OCL statements in the pattern file

The three basic commands for producing output were discussed above. In addition
to these, the pattern file can contain a number of statementSlrtl@at can be used to

navigate in the data network.
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Since OCL is being used as a scripting language here, resnietions have been
added to create a suitable syntax and structure. All OCL statements mustread&mi-
colon. The body of any iterator must be enclosed within curlyesraglso, the OCL
statements must fall within the<*” and “>" tags to be processed by the pattern
processor. With these restrictions, any OCL statement caneldeirushe pattern file. A
simple example below shows the usage of an OCL statement in the pattern file.

Consider the class diagram below. It describes a meta-madbEfexample that

follows.

Box

name : String
+

0.=®

[tern

hame : String

Figure 7: Sample class diagram

The diagram describes a class Box that can contain any numbiterof
instances. For a data network based on this, the following pattennctiemtrwill list the

name of the Item instances contained in a Box:
< self.ltem->forAll( i | { print(i.name); }); >

In the above statement, “self” points to the current contexts dissumed here
that the context is an instance of Box. The detailed examplewithéollow later will
provide more detailed explanation of a variety of OCL statesnemd their usage in the

pattern file.
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Separating plain text and pattern instructions

All text in the pattern file that is not enclosed within tke >” tags is considered
plain text, and will be sent to the output verbatim. The processloatt@mpt to process
any text enclosed with these tags as a special instrudtisnniportant to understand the
usage of these tags to achieve the desired output. Plain text aanbeelded within
pattern instructions by closing and opening these tags appropriatelynstance, the
following instruction adds to the pattern instruction described above to groauc

modified output:

< self.ltem->forAll(i | { ;>
The Box contains a <: print(i.name); :>\n <:
i

This will produce a modified output by adding the text “The Box castéaiin
front of the Item names. The “\n” produces a new line at the dietnAtively, the same

output can be achieved using the following script:

< self.ltem->forAll(i | {
print(“The Box contains a “ + i.name + “\n”);

This describes a typical result of embedding plain text wipgcial instructions.
The more detailed examples that follow will delve deeper intdingiplain text and

pattern instructions.

Internal Operation of the Pattern Processor

The pattern processor uses an ANTLR [11] generated parser & tharinput

pattern file. A tree structure is created from the patitenand it is traversed to perform
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the functions specified in the pattern script and produce the required.dthputxisting
OCL parser for UDM was extended to allow for the processirtgeo§pecial instructions
described above.

ANTLR, ANother Tool for Language Recognition, (formerly PC3Tis a
language tool that provides a framework for constructing rezegniparsers, compilers,
and translators from grammatical descriptions containing Java, @#-+oactions [11].
An ANTLR grammar file consists of a list of constructs sfy@og grammar elements.
Action code can be attached to each element, specifying wiat auist be taken when
that element is encountered. Parsers fall into two maigaags, the top-down parsers
and the bottom-up parsers, based on the order in which the parse deseerated [8].
Recursive-descent parsing is a top-down parsing method, in whselt af recursive
procedures are executed to parse the input. ANTLR generates a recurserd-passer.

The ANTLR grammar for the OCL parser for GME lists OGéneents such as
the various expressions and literals. Action code is included ttecaietnee structure
from these elements. This grammar was extended, to create fmdéhe special
structures encountered in a pattern file.

The initial stages of a compiler, such as the one generatabyR, are shown

in Figure 8 below:

. SYMiax-
character lexical 5 token directed y i.ntenmﬂ.ia.te
siream analyzer siream translator Tepresentation
(parser)

Figure 8: Initial stages of a compiler
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The grammar lists groups of characters forming tokens, whikttbevrecognized
by the lexical analyzer. The lexical analyzer readsnbatifile character by character,
and returns a string of tokens. Some of the functions perfobydde lexical analyzer
are recognizing literals, identifiers, keywords etc., and hanelimte space in the input
file. In some cases, the lexical analyzer has to read sbaracters ahead before it can
predict a token. This is called “look-ahead”. If the look ahead doeesdt in a new
token, the extra character has to be pushed back to the input. The outputexical
analyzer is sent to the syntactical analyzer or parseigurd-i9 below shows the

functioning of the lexical analyzer.

read characier pass token and

lexical its atirihutes
@ analyzer parsex

push back characier

Figure 9: Basic functioning of a lexical analyzer

The parser obtains a string of tokens form the lexical analgner verifies that
the string can be generated by the grammar for the sourgealg@m The ANTLR
grammar for the OCL parser contains a list of such valisdggrof tokens. ANTLR
allows the addition of action code along with such declarations, whithevexecuted
when a particular string of tokens is encountered. Action codawddes] in the ANTLR
grammar for the OCL parser to generate a tree representetionthe input OCL
statements. The tree representation consists of severalcldsses. A basic class
TreeNode is defined, which can be part of such a tree. Variasises are defined for

representing the various types of nodes, which inherit from the basic cteds¢ote.
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Each node in the tree implements certain methods that asisttiaversal of the
tree. The nodes implement a method caltheckimplementation, which checks the
syntax of the OCL expressions. It is necessary to perfornehiisk before attempting to
evaluate the OCL expressions. A method ceesluate evaluates the expression at that
node. The Evaluate method is also used by the pattern processor ute é¢kecspecial
instructions in the pattern file.

There are two basic nodes in the pattern processor, cadetiNode and
EnumerationNode. The part of the pattern file that is printed out verbatmms the text
nodes. The text node has a string attribute which holds the tetgonted. All script
sections are added to the tree as enumeration nodes. These enumedsfonan then
contain more enumeration nodes, text nodes, or a varied number of nodedirtgpa
the actual script command. For instanc®riatNode represents a print command, and
contains alreeNode which represents the OCL expression which is to be evaluated and
printed. Figure shows some of the main nodes that form the treéeaindetationships
in a class diagram. The OCLParser has several nodes suckeratoriNode,

IfThenElseNode, FunctionNode etc., which are not shown in the figure.

TreeNode
checkimplementation) | E—

Ewvaluated)

EnumerationNode TextNode PrintNode FileNode

*

String: strText String strHandle
String strdode
String strFileMarne

Figure 10: Class hierarchy of nodes for the OClspatree
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The top level in the tree is always BnumerationNode. The pattern processor
adds <:{ ”and “}:> " tags to the pattern file, converting the entire patterniriile one
enumerated expression. The subsequent text and instructions in the filateme added

as children to this top level node.

toplevel: EnumerationNode

!

forall: IteratorNode Argument: EnumerationNode
declarator = | G—
I T I
textl: TextNode printl: PrintHode text?: TextHode
strText = " The Box contains a " strient =" 'n "

1

i.name: TreeMode

Figure 11: Object diagram showing tree structdre script statement

Let us look at how a tree is generated from a simple patterf-ér our example,

consider a pattern file with the following text we have seen before:

< self.ltem->forAll( i | { :> The Box contains a <
print(i.name); :>\n<:}); >

The top level enumeration node contains one enumeration node fiorAthe

OCL statement. The argument of tleall  statement contains a mixture of plain text

32



and special commands. It thus containBegNode, followed by aPrintNode, followed
by the finalTextNode. Figure 11 depicts the resulting tree.

Notice that thePrintNode contained in thérAll  statement is shown to contain a
TreeNode. All TreeNodes can be broken down to the individual command nodes
representing the OCL statement, expression or literal. Therpgttocessor uses the
OCL parser that is shipped with GME and UDM. The OCL pdrséds a tree for each

OCL statement, which becomes a part of the larger tree in the pattern processor.

Generating output from a pattern file

Once the tree structure has been built and verified, the Evahedted is called
on the nodes to produce the output. In the OCL parser for GME, the Evaietiod
parses the expression and returns a Boolean result. This sufficdee GME
environment, as OCL is used solely to define and check constraints on models. But in the
pattern processor, we are more interested in getting informatiomrfrodels and printing
this information on a persistent media. The Evaluate method wasiedagiipropriately
to achieve this effect.

Most of the functionality provided by the pattern processor throughQ@GL
parser are a result of “side effects” of executing an OCL statef@ninstance, the OCL
statemenbystem.state->forAll( name <> “init”) returns a Boolean result, which
is true if none of the “state” objects in a “system” have théate “name” set to “init”.
To parse this statement, the OCL parser passes through theiaollet all “state”
objects in a “system” object, and checks the condition for eacmagstal he conjunction
of the results of the comparison for all the instances is themeat as the result of this

statement.
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We use the side effect that the parser evaluates the ampresghin the
parentheses for each instance of the object in the collectidmus, The statement
system.state->forAll( { print(name); }); in the pattern file will cause the parser
to execute the print command on every instance in the collection.eNb&t the syntax
of the statement in the pattern file differs slightly frdmttof a normal OCL statement,
containing semicolons and curly braces.

One important point must be noted here. Inidh@l example above, it suffices
to stop evaluating the expression when the first negative instarreountered. Once
the parser encounters an instance where the condition failg) gafely return “false”
without checking the remaining instances. But this is not desiredh#orpattern
processor. However, the OCL parser can be configured to always evahkiaig@tession
for every instance irrespective of the result of any paldar instance. For the pattern
processor, the OCL parser has been configured in this way.

The Evaluate method is the key to evaluating any statement by the OClepar
The implementation of this method for the new nodes added for thenpattteessor is
discussed below.

The EnumerationNode simply contains a list of nodes. Its Evaluate method simply
calls the Evaluate method of the contained nodes sequentially. Veélerant, it returns
the value returned by the Evaluate method of the last of the nodesnednin the
EnumerationNode. The significance of this return value is discusged with an
example in the next section.

The PrintNode contains an OCL expression, the result of which mystrived.

The Evaluate method for this node calls the Evaluate method for the foodee
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expression it contains. It then attempts to print the result retunt@ the current stream.
Strings and numbers are printed as they are[uadefined]  is printed where the result
is an OCL object.

The TextNode simply contains plain text as a string that must be printeatioer
The Evaluate method for this node prints the string to the curreslidqzted output

stream.
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CHAPTER IV

EXAMPLES AND EVALUATION

This chapter explains the usage and functioning of the pattern pooagsing
some examples. A step-by-step approach is taken to explaioribuction of a pattern
file to achieve a desired output. The complete pattern filése examples here can be

found in the Appendix.

State Chart code generation example

For the first example, we will look at generating C++ code whiiimplement a
state chart as defined in the state chart paradigm for &Mkn in figure 1. The state
chart paradigm for GME is the equivalent of a UML class diagtfaat defines classes
for states, compound states such as OrState and AndState, anthhsbsitween these
states. The transitions have attributes for setting triggaesdg and actions. A sample
state chart model is shown in Figure 13, containing some dtates aand transitions
between them.

The goal is to generate a C program that will implement state machine
defined using this paradigm. A generic tool is required thatat@any model based on
the paradigm, parse the data network and produce a text filevilhabntain C code
appropriate for that model. The pattern processor fits the description gerfectl

The first step is to design a sample output, which will be the template foiotlee m
generic pattern file. For this example, we will use two files. Titsé Will be a C program

calledstate.c that will allow the user to enter a value specifying tigger, which might
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cause the state machine to transition to a different state progeam will then find the

resulting state from the trigger and its current state, retiea valid transition for that

trigger.
| ettt
fers (0.7 to|0.” i
T i T anaGLEC e Reference
GitateBase i 07| 2==Connection==
==Mode|== bt
dstTransitiol 0
Marked : Boolean=false |lfes '
DefauliTransition : String (0.7 i —
' Transition
N ==Connection==
ig5ync : Boolean=false
FrirmitiveState Cornpoundstate Actian ; String
==Atom== ==Model== | U™ Trigger String
Guard : String
n.fni?
+
State Balishi R o
“2AOmEE oee i
nit " OrState ' StateDataRelation
i ==Connection==
==plom== ==Model== 0
7 - o= Color: String="hlack"
T value String
data |0~ n.-
Datavar  |refe DataRef
T ==Atom== tﬂo ==Connection==
0.r ]

Figure 12: UML Meta model for the State Chartgoigm
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Figure 13: Example model for the State Chart ggrad

This is done by calling a function which will be implemented in anofiher
calledstate.h. The state.c file will be a constant for all models. The&dt file must be
generated for each state machine model, to return a finalgit@n the current state and
the trigger value, which will be consistent with that model.

For simplicity, we will assume that there is only one “OrState” objectaung a
set of states and transitions, with no more levels of hierar@é¥g.will also assume that
the names of the states and triggers are legal C++ identifiers.

Before any output is generated through a pattern file, we must agie for
output, and direct output to that file. The following lines achieve &md,will be the first

lines of our pattern file:

<: open(“state.h”, o, statefile);
switch(statefile); :>

These lines will open a file called “state.h” for output (oveimgitany existing

file with the same name), and directs output to that file. Mwethe file name can be
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any OCL expression that results in a string. Later examylesse this feature to create
files with names taken from the model.
Once this has been done, we are ready to generate the actualtioatputl go

into the file. Let us begin with some plain text that goes verbatim to the file.

/*

* Finite state machine implementation

* Generated by Pattern Processor for UDM
*

#include <stdio.h>

#include <conio.h>

To keep things simple, this example will use numbers to idetrtggers. The
first step is to make a list of states and trigger values) fthe model and assign an
integer value to each, using a series of #define statements.

The required output can be generated using the following statement:

#define <: print(s.name); :> <: print(num); :>\n

where “s” is a state instance and “num” is a number. This must be repeaa#d for

the contained states. The following command will take a cadle of “state” instances

contained in an “OrState”, and print the above statement for each:

<: self.orState->forAll( o | {
o.state->iterate(s; num : ocl::Integer = 1 | {
>#define <: print(s.name); ;> <:print(num); :>\n <: num+1;
b

D

>

This statement declares an iterator, which iterates ovefstte” instances
contained in an OrState “0”. The OrState is contained in the roottphjdich is
represented by “self”. The iteration variable “num” is alided to 1, and incremented

by 1 for each iteration. This is done by the num+1 expressitreiiterator, which must
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always appear as the last expression wherever it is used. For the shodel in Figure

13, the output generated will be as below:

#define S1 1
#define S2 2
#define S3 3
#define S4 4
#define S5 5
#define S6 6

The following statement repeats the same thing for the triggatis,a small

change:
<: self.orState->forAll( o | {
o.transition->collect( t | t.Trigger; ).asSet()->i terate(t; num ;
ocl::Integer =1 | {
>#define <: print(t); ;> <: print(num); :>\n<: n um+1;
b

|k

>

It traverses all the transitions, and lists the triggers. Inctse though, the trigger
values can get repeated. The names of the states are rfaimesngtances of the class
State, and must be unique. The trigger is an attribute of the attsoatlass called
Transition, and can have the same value across different ins@ingesnsition. For
instance, two transitions can have the same trigger value. Sinde ma want these to
get repeated, we first “collect” all the trigger values, andthe€'asSet()” operation on
it. This removes any duplicate elements. We then print a #dstfatement for each
trigger. This defines integers 1, 2 etc. for the triggers.

The next step is generating the actual function which will me@m integer
representing the new state, given integers representing thatcstate and the trigger.

The function heading will be plain text, as below:
int getNextState( int currState, int trigger) {

The function body must be of the form shown below (for the model in Figure 13):
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if( currState = S2 ) {
if( trigger = T2) return S5;
if(trigger = T3) return S4;
return -1;

The final state is returned on a successful transition, or etused indicating an
error. A similar block must be generated for each state imtiul. To achieve this, we
must iterate through all the “state” objects in the model, amdté through all the
transitions from the state for each state object. This f@lla nested iteration. The

following pattern script achieves this:

<: self.orState->forAll(o | {
o.state->forAll( s | {:>\
if( curState == <: print(s.name); :>) {<:
s.transition[srcTransition]->forAll(tr | {:>

if( trigger == <: print(tr.Trigger); :>) return <
print(tr.dstTransition.name); :>; <:
}); >
return -1,
< )
}) >

This code first takes the top level “orState” and iteratesutyir all the “state”
objects that it contains. For each instance, it generatas (@nrrState ==
st at enane) statement. It then iterates through all the transitionsnadigig from this
state, using the s.transition[srcTransition] collection, generatinfy(&igger ==
triggernane) statement for each transition. Plain text is mixed in theepato
insert the semicolons and other statements as necessary. aA thé end of a line
prevents the new-line character from being printed at that point.

Finally, the function can be ended by returning -1 when all the atsopa fail.

This follows as plain text at the end of the pattern file:

return -1;
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The first example showed the usage of nested iterationsjatesadriables, and
simple mixing of plain text and pattern scripts. The next examyll show the

generation of output to multiple files and more nested iterations.

State Chart HTML example

This example will use the same state chart paradigm akghexample. The
model however is a little more complicated. The model will corgaveral “orState”
objects, each of which will contain a state machine. Our aintoi generate an
implementation for each of the sate machines in the model. Thenmaptation will be
an interactive system written in HTML and Java-Script.

An example model for this discussion is shown in figure 3. Wegeillerate a
separate HTML file for each system in the model, and fingdgerate an “index” file
which will link all the other files. The first statement waist look at is opening the
appropriate files for output. Unlike the previous example, the fileesams time come

from the model itself. The following script statements perform this task:

<: self.orState->forAll( oo | {
00.compoundState->forAll( o | {
open(o.name + ".html", "0", stateFile);
switch(stateFile);

This script opens the top level “orState”, and iterates throughcdméained
“orStates” (one for each contained state machine). It then opens a bigpot, with the
name of the state machine. The file name is derived fnen©CL expression.name
+ “html” . A new file is opened in each iteration, and the output for thatieris

directed to that file.
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Figure 14: State Chart Model for example 2

Figure 15: State Chart model for example 2 (Tiea/y
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Figure 16: State machine for System 1in Figure 14
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Figure 17: State machine for System 2 in Figure 14
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Figure 18: State machine for System 3 in Figure 14

In this example we generate a separate html file for eax®tdte” model. The
html files will contain buttons for the available triggers, anckahg on a button will call
a java-script function which will change the state. Buttons figgdrs that are not

available from a certain state will be disabled for thdaestahis is done by first calling a
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function that disables all the buttons, and then the “setCurStatdidinrnvehich enables

the relevant buttons. The code for the setCurState function is shown below:

function setCurState(state)

disableAll();
curState = state;
dl.innerText = state;
<:0.0clAsType(OrState).state->forAll( s | {
>\tif( curState == "<: print(s.name); :>" ) {\n<:
s.transition[srcTransition]->forAll(tr | {
S\t\tfrmTriggers.<:print(tr. Trigger);:>.disabled = false;\n<:

S\n<:

P>\
}

The script iterates through all the states contained in thater®”. This also
demonstrates the usage of the oclAsType method. The top leradlonefinds all
“compoundState” objects contained in the top level “orState”, follgwie containment
relationship shown in the UML diagram of the meta model in Figur&'ti@ generated
JavaScript function first calls the disableAll() function which disablesudtons. Then it
sets the current state using the innerText property of the BMeat in the HTML page
[13]. The remaining portion of the generated code will enable thensufbr the triggers
available from this state.

The rest of the HTML is generated in a similar way (thle gattern file can be
found in the appendix). Once the output has been generated for alitthenschines in
the model, a final “index.html!” file must be generated whicHl Wimk to all the

previously generated files. This is done by opening a new file as shown below:

<: open(“"statedemo.html", "0", main); :>
<: switch(main); :>

This is followed by the code which will generate the links, as shown below:
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self.orState->forAll( oo | {
0o0.compoundState->forAll( o | { :>
<a href="<: print(o.name); :>.html"><; print(o.na me);
><fa><br>\n<:

h;
D;

This iterates through all the “orState” objects and creat&arhref>" link for
each iteration. The file name is generated similar to thessan before for opening the
files for output, using<: print(o.name); :> “html” . A screen shot of the
HTML for System 3 inError! Reference source not found. is shown below in Figure

19.

<} State Machine Implementation - Syste O] x|
File  Edit “iew Favorites Toolz  Help .1.’
SystemJ3

Current State:

S2

Available Triggers:

o) i} o] Jefo

I

2] Dore |_|_|_| ¢ My Computer

Figure 19: Sample output for example 2
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Evaluation

In this section, we will compare the generation of a text fdenfa data network
using other provided APIs, and see how it compares with using thenpptteessor.
For this study, we will rework the first example in this chapter.

The Generic Modeling Environment provides ways to write “integpsétfor the
data networks created using GME. Interpreters are componentaréhdbaded and
executed by GME upon a user’s request. GME offers a netwd@i¢-efobjects called
the Builder Object Network (BON), which provide read/write ascts the objects’
properties, attributes and associations [9]. The GME User's Manuaddes the details
of using the BON.

Executing an interpreter from the GME GUI calls the “InvokeEethod of that
component. The implementation for this method in order to create aprate for the
StateChart paradigm in Figure 12, which will generate an ouimitas to the one
generated by the pattern file in Example 1 in this chapter, can be found in the Appendix.

This can be compared to the pattern file for Example 1 (the ctenpddtern file
can be found in the Appendix). A quick glance shows that the interpederis about
58 lines long, while the pattern file is about 33 lines. The pattiermsfalmost half the
size of the interpreter code, not counting the other files necessacpmpile the
interpreter file (which usually requires a set of header and fibgp to create the
component). This shows that even for a simple application, the patéeeprdvides a
much more concise way of representing the required output.

In addition to the greater size, the interpreter code usesabelasses defined in

the BON such as CBuilderAtom, and several methods such as Getetdion etc.
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These require the user to study the BON API and its usage, before attetomonstruct
the interpreter. These are difficult to learn for a user Witlke C++ experience.
Moreover, these APIs are very specific to GME, and the infoomadearnt here cannot
be applied elsewhere. OCL on the other hand, is very easgrtg bnd there are several
books commonly available for learning OCL at various levels. niegrOCL will also
by useful to any user involved in modeling, as OCL is becoming ameimhpart of
UML.

Finally, the interpreter must first be compiled and registérefdre it can be
executed from the GME interface. When small changes areedési the output, the
C++ code must be changed, which requires the interpreter to be commiledgistered
again. This becomes cumbersome when small corrections are tadbamthe desired

output.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

Conclusions

Model based programming is becoming increasingly popular, withmegeling
tools and support applications being developed constantly. Modeling pasadig
developed very specifically for people who have specific domain knowledgéttle
programming knowledge. One of the main tasks in model-based applicetitins
generation of a text output from a network of models. Therenised for an easy-to-
learn and easy-to-use application designed for this purpose.

The pattern processor developed in this study provides a simpladatéof users
for generating a text output from any UDM data network. It i'ege and can be used
with any kind of data network, based on any kind of meta-model. It aisesple
method of separating plain text and special script instructiongjggusers a lot of
control over spacing and layout in the desired output. OCL wasrclagsthe scripting
language. Being tightly coupled with UML, OCL is very poweérfior an application
such as this. It is also very easy to learn, and has a hagttioet for users involved in
modeling. Moreover, the navigation is done by directly using tasschames in the
domain, which provides an intuitive interface to the user. The exaraptv that it can
be used to produce a wide range of outputs, such as C/C++ code, HéMbrf XML
files.

Using a pattern processor and a simple pattern file offgesaeadvantages over

hand coding an interpreter in C++ or any other programming languddfgle a C++

49



API for a modeling application can be very powerful, the simple @®rface in the
pattern processor offers all the constructs necessary to wawvatata network, retrieve
data, and generate textual output. It is also a better alterriat a domain specialist
who may not have an in depth knowledge of C++.

The pattern language described here separates the printirgjrofegdt and data.
This makes formatting the output an easier task, as the usdtecaltylformat it in a text
editor, instead of adding escape sequences within C++ statentealso Imakes the
maintenance of the pattern files an easy task, as comparedntaimag a C++ project
with several files, several thousand lines of code, and a large noifrréntf statements
used purely to output constant text. The pattern script is intedovehen the pattern
processor is executed. This takes away the need to compildetiferfievery small
change. When generating textual output, small changes areafteddo tweak small
features in the output. Not having to compile the file for suchlsshahges speeds up
the development and eases maintenance. It has also been demortsitatesl dutput
can be directed to multiple files easily, as can be done using C++.

Thus the new pattern processor developed in this project offers several gdsanta

in accomplishing the task of generating textual output from models.

Future Work
Though the pattern processor is fully functional and can be usedndst
applications requiring generation of text output, there are dewmranues for
improvement. In the short run, the OCL parser needs to be updasegdort some

important OCL methods. For instance, the OCL parser used witlagplgation does
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not support thesortedBy() method. The power of the pattern processor is largely
decided by the power of the OCL parser it uses. Improvements {DGheparser will
definitely improve the pattern processor. Improvements may be imgiementation of
special functions which can enable a user to accomplish sespzeific tasks, or an
improvement in the performance of the parser.

The next step is to couple this pattern processor with other modebisy It
currently runs as a command line application and can interpret moaeig of the back-
ends supported by UDM. Integration with a popular modeling applicaticim & GME
will make its usage easier.

The pattern processor takes a data network and a pattern file, andegradiext
output file, which may contain data retrieved from the data netwarkather avenue for
research is achieving the inverse. This involves taking a itextwhich may contain
arbitrary data, and a pattern file containing some rules based oh avdata network can

be generated, by retrieving data from the text file.
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APPENDIX A

Pattern File for Example 1 (C++ Code Generation from State Chart model)

<: open(“state.h”, o, statefile);
switch(statefile); :>
/*

* Finite state machine implementation
* Generated by Pattern Processor for UDM
*/
#include <stdio.h>
#include <conio.h>
<
self.orState->forAll( o | {
o.state->iterate(s; num : ocl::Integer = 1 | {

>#define <: print(s.name); :> <: print(num); :>\ n<: num+1;
i
o.transition->collect( t | t.Trigger; ).asSet()->i terate(t; num ;
ocl::Integer =1 | {
>#define <: print(t); ;> <: print(num); :>\n<: n um+1;
i

D;
>\

int getNextState(int curState, int event)

<
self.orState->forAll(o | { :>\n<:
o.state->forAll( s | { :>\
if( curState == <: print(s.name); :>) {<:
s.transition[srcTransition]->forAll(tr | { :>
if( event == <: print(tr.Trigger); :>) return <
print(tr.dstTransition.name); :>; <:

;>
return -1,
<}
b
>
return -1;
}
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Sample Output generated by the Pattern File Above

/*

* Finite state machine implementation
* Generated by Pattern Processor for UDM

*/

#include <stdio.h>
#include <conio.h>

#define S1 1
#define S2 2
#define S3 3
#define S4 4
#define S5 5
#define S6 6

#define T1 1
#define T2 2
#define T3 3
#define T5 4
#define T6 5
#define T7 6

int getNextState(int curState, int event)

if( curState == S6) {

if( event == T3) return S6;
return -1,

i}f( curState == S5) {

if( event == T7) return S5;
return -1,

i}f( curState == S4) {

if( event == T2) return S4;
return -1;

i}f( curState == S3) {

if( event == T5) return S3;
return -1,

i}f( curState == S2) {

if( event == T6) return S2;
if( event == T3) return S2;
return -1;

i}f( curState == S1) {

return -1;

if( event == T2) return S1,;
return -1,
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Code for InvokeEx Method for GME Interpreter Equivalent to Pattern File in Exdmple

void CComponent::InvokeEx(CBuilder &builder,CBuilde rObject *focus,
CBuilderObijectList &selected, long param)

{
const CBuilderFolderList *folds = builder.GetFold ers();
POSITION foldPos = folds->GetHeadPosition();
while(foldPos) {
ofstream outfile("state.h");
outfile << "/*\n";
outfile << "* Finite state machine implementat ion\n";
outfile << "™* Generated by Pattern Processor f or UDM \n*A\n *;
outfile << "#include <stdio.h>\n";
outfile << "#include <conio.h>\n";
CBuilderFolder *fold = folds->GetNext(foldPos);
const CBuilderModelList *roots = fold->GetRootM odels();
POSITION rootPos = roots->GetHeadPosition();
while(rootPos) {
CBuilderModel *root = roots->GetNext(rootPos) ;
const CBuilderAtomList *atoms = root->GetAtom s("State");

POSITION pos = atoms->GetHeadPosition();
inti=100;
while(pos) {
CBuilderAtom *atom = BUILDER_CAST(CBuilderA tom,
atoms->GetNext(pos));
outfile << "#define " << atom->GetName() << "< i+ << "\n"

}

const CBuilderConnectionList *transitions =
root->GetConnections("Transition");

pos = transitions->GetHeadPosition();

i = 200;
CString tr;
while(pos) {
CBuilderConnection *transition =
BUILDER_CAST(CBuilderConnection, transitions->GetN ext(pos));
transition->GetAttribute("Trigger", tr);
outfile << "#define " << tr<<"" << i++ < <"\n";
}  outfile << "int getNextState(int curSt ate, int event)\n";

outfile << "{\n";
pos = atoms->GetHeadPosition();

while(pos) {
CBuilderAtom *atom = BUILDER_CAST(CBuilderA tom,
atoms->GetNext(pos));
outfile << "\tif( curState == " << atom->Ge tName() <<™) {\n";

const CBuilderConnectionList *transitions =
atom->GetOutConnections("Transition");
POSITION pos2 = transitions->GetHeadPositio n();
while(pos?2) {
CBuilderConnection *transition =

BUILDER_CAST(CBuilderConnection, transitions->GetN ext(pos2));
transition->GetAttribute("Trigger", tr);
outfile << "\t\tif( event == " << tr << " ) return "

<< atom->GetName() << ";\n";

outfile << "\t\treturn -1;\n";
outfile << "\t\n";

outfile << "\treturn -1;\n";
outfile << "}";

}
}
AfxMessageBox("File state.h has been created”, MB _OK | MB_ICONSTOP);
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Pattern File for Example 2 (HTML Code Generation from State Chart model)

<

self.orState->forAll( oo | {
00.compoundState->forAll( o | {
open(o.name + ".html", "0", stateFile);
switch(stateFile);

>

<l--

Interactive HTML system generated from state chart

using UdmOclPat

Author : Ananth
Date 7 Nov, 2003

* * * * * * * *

>

<html>

<title>State Machine Implementation - <: print(o.na
<script language="javascript">

var curState ="";

function disableAll()

{
< 0.0clAsType(OrState).transition->collect( t | {
).asSet()->forAll(t | {
>\tfrmTriggers.<: print(t); :>.disabled = true;
D
>\
}
function setCurState(state)
{
disableAll();
curState = state;
dl.innerText = state;
<
0.0clAsType(OrState).state->forAll( s | {
>\tif( curState == "<: print(s.name); :>" ) {\n<:
s.transition[srcTransition]->forAll(tr | {
>\t\tfrmTriggers.<: print(tr.Trigger); :>.disab
false;\n<:
D
>\thn<:
i
>\

function activateTrigger(trigger)

{
<
0.0clAsType(OrState).state->forAll( s | {
>\tif( curState == "<: print(s.name); :>" ) {\n<:
s.transition[srcTransition]->forAll(tr | {
S\t\tif(trigger == "<: print(tr. Trigger); :>")
setCurState("<: print(tr.dstTransition.name); :>");
>\thn<:
i

>\

</script>

*kkk

model

*kkk

me); :></title>

t.Trigger; }

\n<:

led =

\n<:
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Pattern File for Example 2 (continued)

<body onload="javascript: setCurState('S1');">
<h2><; print(o.name); :></h2>

<b>Current State:

<hl><div id="d1"></div></h1>

<br>

<form name="frmTriggers">

Available Triggers:<br>

<

0.0clAsType(OrState).transition->collect( t | { t.
).asSet()->forAll(t | {
:><input type="button" name="<: print(t); :>" val
print(t); :>" disabled=true onclick="activateTrigge
>">\n<:

h;
>\

</form>

</b><br>

<br>

<a href="statedemo.html|">back</a>
<body>

</html>

<: open("statedemo.html", "0", main); :>

<: switch(main); :>

<l--

Interactive HTML system generated from state chart
using UdmOclPat

Author : Ananth

Date 7 Nov, 2003

-->

<html>

<title>State Machine Implementation</title>
<body>

<h3>Select OR state: </h3>

<
self.orState->forAll( oo | {
00.compoundState->forAll( o | {

><a
href="<:print(o.name);:>.html"><:print(o0.name);:></
D
>
</body>
</html>

Trigger; }

r('<: print(t);

*kkk

model

*kkk

a><br>\n<:

ue="<:
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