
Model-Based Integration Platform for FMI Co-Simulation and Heter-

ogeneous Simulations of Cyber-Physical Systems

Himanshu Neema
1
 Jesse Gohl

2
 Zsolt Lattmann

1

 Janos Sztipanovits1 Gabor Karsai1 Sandeep Neema1

 Ted Bapty
1
 John Batteh

2
 Hubertus Tummescheit

2

1Institute for Software Integrated Systems, Vanderbilt University

1025 16th Avenue South, Suite 102, Nashville, TN 37212, USA
2Modelon, Inc.

2389 Main Street, Glastonbury, CT 06033, USA
himanshu@isis.vanderbilt.edu jesse.gohl@modelon.com lattmann@isis.vanderbilt.edu

sztipaj@isis.vanderbilt.edu gabor@isis.vanderbilt.edu sandeep@isis.vanderbilt.edu

bapty@isis.vanderbilt.edu john.batteh@modelon.com hubertus.tummescheit@modelon.com

Abstract

Virtual evaluation of complex Cyber-Physical Sys-

tems (CPS) with a number of tightly integrated do-

mains such as physical, mechanical, electrical, ther-

mal, cyber, etc. demand the use of heterogeneous

simulation environments. Our previous effort with

C2 Wind Tunnel (C2WT) attempted to solve the

challenges of evaluating these complex systems as-a-

whole, by integrating multiple simulation platforms

with varying semantics and integrating and manag-

ing different simulation models and their interac-

tions. Recently, a great interest has developed to use

Functional Mockup Interface (FMI) for a variety of

dynamics simulation packages, particularly in Com-

mercial Off-The-Shelf (COTS) tools. Leveraging the

C2WT effort on effective integration of different

simulation engines with different Models of Compu-

tation (MoCs), we propose, in this paper, to use the

proven methods of High-Level Architecture (HLA)-

based model and system integration. We identify the

challenges of integrating Functional Mockup Unit

for Co-Simulation (FMU-CS) in general and via
HLA and present a novel model-based approach to

rapidly synthesize an effective integration. The ap-

proach presented provides a unique opportunity to

integrate readily available FMU-CS components

with various specialized simulation packages to rap-

idly synthesize HLA-based integrated simulations

for the overall composed Cyber-Physical Systems.

Keywords: Functional Mockup Interface, Functional

Mock-up Unit for Co-Simulation, Cyber-Physical

Systems, Heterogeneous simulation, Multi-paradigm

modeling, Model-based integration, DSML, Distrib-

uted Simulation, High-Level Architecture

1 Introduction

Cyber-Physical Systems (CPS) [1] are composed

of several collaborating physical and computing

components that interact through embedded commu-

nication capabilities. These systems require ad-

vanced integration of abstractions and techniques

that have been developed over the past years in dis-

parate areas such as cyber systems that rely heavily

on computation and networking and physical sys-

tems that employ various engineering methods in

domains such as mechanical, thermal, electrical,

electronic, hydraulic, thermal, biological, and acous-

tic.

Analysis of Cyber-Physical Systems poses unique

challenges due to the heterogeneity of components

and interactions [2]. The fundamental differences in

the characteristics of these different physical and

computation processes lead to a huge spectrum of

modeling methods. For example, some components

can be easily described by differential equations,

while others like communication networks typically

require Discrete-Event Simulation (DEVS) tech-

niques. As such, several simulation tools and tech-

niques are needed for CPS simulation and analysis.

This further necessitates an over-arching CPS model

and system integration platform that is model-based

and supports rapid synthesis of distributed heteroge-
neous CPS simulations.

Co-Simulation (Co-operative Simulation) is a

simulation method that permits simulating individual

components using different simulation tools simulta-

neously and collaboratively. Individual simulation

tools exchange information such as individual sys-

tem variables and their values, time steps for syn-

chronization, and control signals for orchestrating

the co-operative simulation. In this way, engineers

can use different simulation tools together to create

virtual prototypes of entire Cyber-Physical Systems.

In practice, however, significant challenges remain

with regard to the syntax and semantics of model and

system integration.

In the Co-Simulation domain, a recent effort by

the MODELISAR ITEA2 project that develops a

tool independent standard called the Functional

Mock-up Interface (FMI) [3] [4] [5] has gained sig-

nificant influence, more prominently in the automo-

tive industry. The FMI standard provides a well-

defined set of function calls to specify simulation

components. FMI-compliant simulations pack shared

libraries that can be executed using the standardized

function calls and the model execution must adhere

to the rules of the standard. These function calls span

all stages of the model execution, viz. initialization,

configuration, access, modification, and manipula-

tion.

The strength of FMI lies in the fact that all simu-

lation tools participating in the Co-Simulation follow

the defined standard and as such provides for stand-

ardized access to model equations. This permits cou-

pling of Continuous-Time and Discrete-Time sys-
tems that are part and parcel of Cyber-Physical Sys-

tems. In some ways, this is also a limitation because

not all simulation tools are amenable to support all of

the strictly specified FMI function calls.

Another key requirement for Co-Simulation via

FMI is to also develop a master algorithm that or-

chestrates the steps of Co-Simulation. Master algo-

rithms must control the data exchange between sub-

systems and synchronize their individual simulations

according to the requirements of the integrated simu-

lation of the overall Cyber-Physical System. Alt-

hough the FMI standard does not describe or limit

the implementation of the master algorithm, the algo-

rithm requirements and features often limit its im-

plementation as a centralized orchestrator that can

communicate effectively with all participating sub-

systems. Centralized nature not only can become a

performance bottleneck, it can also serve as a single

point of failure in the distributed simulation’s com-

putational infrastructure.

Furthermore, as Cyber-Physical Systems involve

vastly different sub-domains and physical processes

that vary greatly in the execution frequency at which

they need to run. This leads to significantly different

dynamic response characteristics in terms of fre-

quencies. For example, mechanical components of a

complex CPS often have much slow frequency re-

sponses compared to fast electronic components.

Single standalone monolithic model of a CPS there-

fore suffers heavily with solver inefficiencies. These

systems are generally highly complex and have a

significant non-linearity and discontinuities, which

further adds to inefficiencies of solvers. Taking sub-

systems apart and using different solver step-sizes

offers a potential solution. However, multirate com-

position also introduces some inefficiencies due to

clock management, composition restrictions, data

exchange, and potential stability issues if the system

is split at the wrong place.

Another effort developed by U.S. Modeling and

Simulation Coordination Office (M&S CO) is the

High Level Architecture (HLA) [6]. The HLA pro-

vides a specification of a common technical architec-

ture for modeling and simulation with a primary goal

to facilitate interoperability among simulations and

to promote re-use of simulations and their compo-

nents. The HLA comprises of three major compo-

nents: HLA rules, HLA interface specification, and

HLA object model template [6]. With these rules, the

HLA standardizes run-time support for various tasks,

such as coordinated time evolution, message passing

and shared object management. The key difference

from FMI is that HLA regards individual simulation

components at the level of processes as opposed to

libraries. This enables broader integration of differ-
ent simulation tools with different Models of Com-

putation. Even Functional Mock-up Units can be

integrated as a participating simulation tool in the

overall integrated simulation of the Cyber-Physical

Systems.

Another key benefit of HLA is that its Distributed

Discrete Event model of computation allows full

flexibility to individual subsystems in using any in-

ternal solver and model of computation. Moreover,

this flexibility permits multirate simulations by de-

sign.

However, the HLA standard also lacks some key

facilities for developing integrated distributed heter-

ogeneous simulations. For example, the HLA stand-

ard does not formalize methods for developing inter-

actions and objects used by HLA federates and it

does not provide facilities for easily moving simula-

tions from one computational node to other. Conse-

quently, HLA-based simulations also require a sig-

nificant amount of tedious and error-prone hand-

developed integration code.

Achieving the integrated simulation of Cyber-

Physical Systems require effective integration of a

huge spectrum of models of physical processes,

communication systems, exchanged information, and

control mechanisms. As detailed above, the ap-

proaches of FMI and HLA both have their ad-

vantages and some key limitations. The approach of

using HLA as a master algorithm enables use of

FMUs in a Co-Simulation environment while also

providing flexibility of using other types of non-

FMU simulations [9]. The resulting framework can

provide a much broader scale of simulation tools that

can be used in the integrated simulation of Cyber-

Physical Systems. However, several gaps need to be

filled in order to develop a platform that enables this

integration in an efficient manner. A single efficient

model-based platform is needed that:

• Enables modeling of interactions and shared

objects between simulation tools

• Enables modeling of integration of systems

with their data exchange mechanisms

• Enables modeling of deployment of simula-

tion tools on computational infrastructure

• Enables a "decentralized" master algorithm

for FMI Co-Simulation

• Enables multirate modeling with dynamic

management of subsystem clock rates

• Provides a set of tools to generate necessary

artifacts for rapid synthesis of simulations

This paper attempts to address these important

challenges in creating a single coherent platform for

developing integrated distributed simulations of

Cyber-Physical Systems. We build upon our previ-
ous work on a model-based integration platform

called the Command and Control Wind Tunnel

(C2WT) [7] [8].

The rest of the paper is organized as follows. Sec-

tion 2 and 3 give an overview of the C2 Wind Tun-

nel and FMI for Co-Simulation respectively. We pre-

sent our detailed model-based integration approach

in Section 4 and provide a detailed case study with

experimental results in Section 5. Finally, Section 6

concludes the paper.

2 C2 Wind Tunnel

Over the past several years, we have developed a

model-based multi-model integration platform called

the Command and Control Wind Tunnel (C2WT) [7]

[8]. It is an integrated, graphical, multi-model, dis-

tributed simulation environment for the experimental

evaluation of large-scale C2 systems with various

organizational and technical architectures. It enables

a variety of simulation engines to interact and trans-

mit data from one another and log and analyze simu-

lation results. Figure 1 below gives a conceptual ar-

chitecture of C2WT.

The High-Level Architecture is a standardized

framework for distributed computer simulation sys-

tems. Communications between different federates

is managed via the Run-Time Infrastructure (RTI)

layer. The RTI provides a set of services such as

time management, data distribution, message pass-

ing, and ownership management. Other components

of the HLA standard are the Object Model Template

(OMT) and the Federate Interface Specification

(FIS).

Figure 1: Conceptual architecture of C2WT

The HLA standard focuses on three primary are-
as. First is time coordination throughout the federa-

tion. The evolution of time is a key thread through

each of the integrated simulators. Each simulation

platform must slave its progression of time to that of

the overall HLA clock. The HLA standard provides

several methods by which to accomplish this. Sec-

ond is coordination of inter-federate messages and

shared data objects. The HLA standard provides a

publish-and-subscribe mechanism for passing mes-

sages and object updates throughout the federation.

Third, the HLA standard provides for basic simula-

tion execution control. Starting, pausing, and stop-

ping the execution of a simulation is built directly
into the HLA standard. The C2 Wind Tunnel relies

upon all of these services during run-time.

As HLA is an accepted standard, a number of

commercial, academic, and alternate RTI implemen-

tations are available. Currently, we use the Portico

RTI [10] – which provides support for both C++ and

Java clients and is compliant with version 1.3 of the

HLA standard.

The HLA provides a standard for the RTI that

supports the coordinated execution of distributed

simulations. However, designing the model integra-

tion, coding the platform-to-RTI glue-code, and test-

ing and deploying all of the various run-time compo-

nents across multiple platform-specific simulation

tools is a highly challenging task. C2WT provides a

solution to this simulation integration problem. It

provides a holistic modeling and management envi-

ronment built around a custom Domain-Specific

Modeling Language (DSML) [11], implemented in

Generic Modeling Environment (GME) [11], and a

related suite of model interpreters to coordinate be-

tween the integration model and the platform-

specific simulation tools involved in the overall envi-

ronment. It facilitates the rapid development of inte-

gration models and use of these models throughout

the lifecycle of the simulated environment. With

simulation engine specific model configurations and

experiment specific deployment modeling, it enables

significant automation in the development of inte-

grated distributed simulation. With integration mod-

eling support and various sophisticated generation

tools, C2WT provides a robust platform for users to

rapidly model and synthesize complex, heterogene-

ous, command and control simulations.

3 FMI for Co-Simulation

Functional Mock-up Interface (FMI) [3] [4] [5]

was initiated and organized by Daimler AG within
the ITEA2 project MODELISAR [3]. The FMI

standard consists of two main parts. The first part is

FMI for Model Exchange, which standardizes the

distribution of a dynamic system model in the form

of generated C-Code as an input/output block to oth-

er simulation environments. The second part is FMI
for Co-Simulation, which standardizes the mecha-

nisms for coupling of two or more simulation tools

in a co-simulation environment.

The key idea is to have a discrete set of commu-

nication points only, at which times the subsystems

exchange any data. Outside of these points, the sub-

systems are executed independently. The data ex-

change is controlled by a master system that also

manages time synchronization of subsystems.

The FMI Co-simulation master simulator couples

the subsystem simulators through a zip-archive. This

zip-archive contains shared library files (.DLL, .SO)

that conform to the function call specifications given

in the standard. Each zip-archive also contains a

XML file that provides meta-data and further details

of the model such as default start and stop times, var-

iable types, units, tool specific data, parameter and

variable names and attributes. The XML also con-

tains specification for executing the model as a

shared library during a simulation run (CoSimula-

tion_Standalone) or by importing a slave tool wrap-

per and interfacing it with the external tool (CoSimu-

lation_Tool).

4 Model-Based Integration

One of the primary contributions of our effort is

our focus on developing a completely model-based

integration approach. Our efforts leverage the Ge-

neric Modeling Environment (GME) [11] tool suite

for designing the integration model DSML [11] and

HLA [6] to provide run-time support as the “simula-

tion bus”.

4.1 Needs and Challenges

Cyber-Physical Systems [1] [2] are highly com-

plex and their simulation spans a multitude of com-

putational domains and specializations. A large

number of tools exist that have been developed for

specific aspects of CPSs. A variety of tools exist

even for a single aspect of CPSs. For example, many

special purpose simulation tools exist to model and

analyze vehicle dynamics or for switching mecha-

nisms of hybrid drivetrains. As such the integration

platform must be open toward use of any tool that

may be required for some component/aspect of the

CPS simulation.

A subtle problem in using multiple simulation
tools in an integrated simulation is that they tend to

use many different Models of Computation (MoC).

For example, Discrete-Event, Discrete-Time, Con-

tinuous-Time, Synchronous Dataflow, are among the

many MoCs used. Each MoC has a specific mecha-

nism for time progression and event handling. The
integration platform must be able to handle tools that

use different MoCs in highly flexible manner. The

integrated system must respect time synchronization

with other simulation tools as well as the causality of

events must be preserved. In addition to system inte-

gration, the platform must also enable integration of

models by means of capturing the communication

(with any translation that might be needed) that oc-

curs between them.

As a general rule, it is preferable to have a graph-

ical environment that provides well-defined seman-

tics for modeling concepts, their relations, and rules

for composition. Moreover, for rapid synthesis of

simulations, the platform must support tools for

translation of models to executable software that

conform to specified executable semantics. The au-

tomation not only provides efficient development of

simulations, it also significantly minimizes human

errors.

The integration environment should also provide

capabilities for modeling and configuration experi-

mentation and logging.

Furthermore, when FMUs are integrated the rules

of FMI must still be adhered to. Particularly, the

models in the FMUs must be accessed, controlled,

and manipulated using the function calls specified in

the FMI standard.

4.2 Meta-modeling

The Generic Modeling Environment is a meta-

programmable model-integrated computing (MIC)

[11] toolkit that supports the creation of rich domain-

specific modeling and program synthesis environ-

ments. Configuration is accomplished through meta

models, expressed as UML class diagrams, specify-

ing the modeling paradigm of the application do-

main. Meta models characterize the abstract syntax

of the domain-specific modeling language, defining

which objects (i.e. boxes, connections, and attrib-

utes) are permissible in the language. Another way

to envision this is that a DSML [11] is a schema or

data model for all the possible models that can be

expressed by a language. Using finite state machines

as an example, the DSML would consist of states

and transitions. From these elements any state ma-

chine can be realized. The inherent flexibility and

extensibility of the GME [11] via meta models make

it an ideal foundation for the C2 Wind Tunnel envi-

ronment. Alternate meta modeling frameworks have

also been developed in the past, such as AToM3

[12], MetaCase [13], Microsoft DSL [14], and the

Eclipse Modeling Framework [15].

4.3 Model-Based Integration of FMUs in

C2WT

As detailed in section 2, C2WT provides an over-

arching modeling and management environment and

a suite of model interpreters to coordinate the inte-

gration models and platform-specific simulation

tools involved in the overall heterogeneous distribut-

ed simulations. The user is referred to [7] for details

of the meta-modeling language and its executable

semantics. In this section, we further discuss the in-

tegration of FMUs as HLA-federates in the C2WT

platform.

In this work, the C2WT metamodel was further

customized to enable FMU specific federate specifi-

cations. Although the original C2WT metamodel is

sufficient to support integration of newer types of

federates, having simulation tool/technique specific

first-class objects in the modeling language makes

reasoning about such entities more flexible and can

support extensive automation. The FMU-federate

model specifies the location of the zip archive,

whether to log variable values during simulation,

additional variables (other than input and output) to

log, and ratio of macro and micro steps for multirate

simulations.

Figure 2 below shows the extension to the origi-

nal C2WT architecture to incorporate FMU federates

in the platform.

Figure 2: C2WT extended for FMI-CS

Our model interpreters can read the models with

specified input and output relationships with other

simulation tools and even other FMUs and can au-

tomatically generate all the executable code that can
be deployed on different nodes in the available com-

putational infrastructure for the simulation. As pre-

viously mentioned, C2WT supports simple modeling

of computational infrastructure and assignment of

federates on its nodes.

Following the rules of FMU access, modification,
and manipulation as described in the FMI standard

[3] [4], we developed a simplified procedure for

FMU-federate execution as given below:

Initialization phase (before simulation start):

1: Load FMU zip archive, read model description

2: Load shared libraries in the FMU

3: Instantiate the FMU slave

4: Setup input/output and HLA-interaction maps

5: Setup up logging

Execution phase (during simulation):

1: Synchronize start of simulation with all tools

2: Request RTI to proceed to step-size and wait

3: Update input variables with HLA updates

4: Call doStep in step-size/#micro-steps chunks

5: Continue #4 until full step-size is executed

6: Update HLA with output variables

7: Go to #2

Please note that above is rather simplified proce-

dure of FMU integration mechanism in C2WT. The

actual implementation also involves setting up statis-

tical and database logging, micro-step management

to avoid overlaps, error-handling, efficient federate

code execution, reliable & reusable time advancing

facilities, and model state and HLA interaction syn-

chronization.

5 Case Study

To illustrate our model-based approach for FMU

integration in C2WT we present a high-fidelity mod-

el of a representation of a Vehicle Thermal Man-

agement (VTM) system which is intended for study-

ing interactions of thermal management systems

within a vehicle.

5.1 Model description

This particular example is a conventional four

wheel chassis and drivetrain architecture with a

spark ignition engine and standard transmission.

These mechanical systems are created using compo-

nents from the Vehicle Dynamics Library (VDL)

from Modelon [16]. The model also includes a repre-
sentation of the coolant loop for the engine and

transmission oil loop in conjunction with a four heat

exchanger stack for the thermal domain. These por-

tions of the model are constructed from components

of the Liquid Cooling Library (LCL) from Modelon.

A snapshot of the overall model is shown in the fol-
lowing Figure 3 below.

The key component models of the system are:

Driver, Vehicle (Engine, Transmission, Driveline,

Chassis, Aerodynamics, External loads, and Brakes),

Lumped engine thermal mass, Lumped transmission

thermal mass, Engine coolant fluid circuit, Transmis-

sion oil cooling circuit, Heat exchanger stack, Low

voltage battery, Alternator, Cooling fan and control-

ler, and Grill shutters and controller. Table 1 below

provides key features of these component models.

Since the purpose of this model is to study vehi-

cle thermal dynamics, a simplified 1D longitudinal

dynamics chassis model is used rather than a full 3D

body model. This allows for faster simulations of the

typically long duration drive cycles.

During the simulation, heat that is generated by

the engine is stored within the engine thermal mass

and then rejected to the coolant-to-air heat exchanger

(radiator) through a coolant fluid loop. A similar

loop and heat exchanger also exists for the transmis-

sion.

Figure 3: Overall system model

Table 1: Key features of component models

The model is well suited to thermal management

controller design, studying tradeoffs between thermal

management energy demands and fuel economy,

heat exchanger efficiency and sizing, and coolant

fluid flow dynamics.

For this paper, the model was partitioned into

separate executables by dividing the model along

domain boundaries. In this case the vehicle mechan-

ics, electrical, and driver were grouped into one

model while the fluid and thermal portions of the

model were grouped into another. This partitioning

allows for execution of Driver vehicle and Thermal

management parts at different rates. Owing to the

inclusion of fluid portions in the Thermal manage-

ment part, this part needed to run with a much lower

step-size than the Driver vehicle part to maintain

system stability.

In order to do this the physical connections that

are bisected by the boundaries must be converted to

causal signals. As an example for the engine, the

heat is generated within the mechanical portion of

the model. The heat is directed to the lumped thermal

model, within the thermal portion of the model,

which determines the thermal mass temperature. Im-

ages of these two systems are shown in Figures 4 and

5 below.

Figure 4: Driver vehicle model

Figure 5: Thermal management model

5.2 Simulation architecture

The simulation setup consisted of mainly three
federates, viz. Driver vehicle, Thermal management,

and the Manager federate. Manager federate is an

auto-generated external federate, which is used

mainly as a front-end controller of the overall heter-

ogeneous simulation. The simulation architecture is

illustrated in the Figure 6 below.

Figure 6: Simulation architecture

5.3 Data and Integration model

The actual data and integration model are given

in the Figures 7 and 8 below. These show the input

and variables from the Driver vehicle and Thermal

management federates. These two models are exe-

cuted as FMUs in the C2WT.

Figure 7: Data model

Figure 8: Integration model

5.4 Experimental Results

For the experiment, the Driver vehicle and Ther-

mal management FMUs were exported from Dymola

[16] models by Modelon, Inc. [16]. We used a JFMI

Ptolemy APIs [17] to connect the FMUs to our Java

based C2WT platform. All federates were running in

a single Ubuntu 32 virtual machine. The Run-Time

Infrastructure (RTI) used was Portico [10]. Total

simulation time for the experiment was 50 seconds.

The simulation was setup as a multirate simula-
tion with different step-sizes for the three federates:

Driver vehicle (10 ms), Thermal management

(5 ms), and Federation Manager (100 ms). The entire

simulation ran in about ~9 minutes. The Figures 9

and 10 above show the experimental results for the

total 50 seconds of simulation time. It should be not-

ed though that the VTM models used were currently

not optimized for efficiency.

From the experimental results, we found closely

matching plots with same peak and trough values

that were in the equivalent single monolithic (com-

bined Driver vehicle and Thermal management)

model. The overall runtime (~9 minutes) was also
comparable to standalone single model simulation

time in Dymola (~6 minutes) despite the use of a

third federate (viz. Manager federate) in the simula-

tion and delays due to inter-process communications.

The models were developed with a variable step

solver as requirement. However, they could still run

with a fixed step solver (with a maximum step-size

of 1.5 ms). However, with our setup of separating the

Driver vehicle and Thermal management compo-

nents as separate FMUs and executing them through

C2WT platform, we could even execute these com-

ponents at 10 ms and 5 ms step-sizes respectively.

Figure 9: Vehicle speed and crankshaft angular velocity

Figure 10: Gear selection and Liner heat flux

Yet another experiment we have performed is the

one where we placed a network simulator for the

CAN bus that must be placed between the above two

components. We used the OMNeT++ simulator [18]

to model that. In this experiment, we varied the rates

of the FMUs to initially match the rate at which net-

work simulator was run, viz. 0.5 ms, and then in the

second setup we increased the step-size of Driver

vehicle and Thermal management to 1 ms. We found

that the results still matched while in the second set-

up they executed in about one-third the overall wall-

clock time. We omit here further details of experi-

ment setup for brevity.

6 Conclusions

In this paper, we have successfully demonstrated

a model-based integration approach to rapidly syn-

thesize multi-model distributed simulation that may

also involve co-simulation FMUs as component

models. The FMUs are automatically wrapped as

HLA-federates that can be executed in the C2WT

platform.

We also illustrated that different federates can be
run with different clocks and their synchronization in

C2WT is managed using HLA time management

facilities. We have also integrated FMU-CS in simu-

lations that also use other simulation tools such as a

network simulator or a 3D terrain simulator. The in-

tegration of other federates in C2WT has been previ-
ously demonstrated in [7]. Thus C2WT provides a

broader range of simulation tool integration that in-

volves FMI and non-FMI simulations to enable de-

velopment of System-of-System (SOS) simulations.

C2WT supports real-time and as-fast-as-possible

modes of simulation execution. However, currently

the real-time simulation requires that the individual

component simulations can run faster than real-time.

C2WT also supports human-in-the-loop simula-

tions with real-time simulations. In this case human

interaction with running simulations (e.g. in military

training exercises) is performed using HLA-

interaction mappings.

One of the key benefits of C2WT platform is its

support for extensive experimentation, message log-

ging, state variables logging, and analysis support.

The research at our institute is currently ongoing

with the applications of FMI Co-Simulation using

HLA-based integrations. We anticipate novel meth-

ods for FMI Co-Simulations that are rapidly synthe-

sized and may perform faster than single monolithic

simulations.

We are also working on extending the C2WT

platform to support other simulation techniques and

tools such as SystemC.

7 Acknowledgements

The authors acknowledge financial support from

the US DoD’s Defense Advanced Research Projects

Agency under the project “Adaptive Vehicle Make”

[19]. We also acknowledge the invaluable contribu-

tions for the efforts in this paper from our collabora-

tors at Modelon, Inc. [16].

References

[1] J. Sztipanovits, “Composition of cyber-

physical systems,” in Proc. of the 14th An-

nual IEEE Int’l. Conference and Workshops

on the Engineering of Computer-Based Sys-

tems (ECBS ’07). Washington, DC, USA:

IEEE Computer Society, 2007, pp. 3–6.

[2] E. Lee, “Cyber physical systems: Design
challenges,” in Proc. of the 11th IEEE Int’l.

Symposium on Object Oriented Real-Time

Distributed Computing (ISORC’08), May

2008, pp. 363–369.

[3] Functional Mock-up Interface – www.fmi-

standard.org

[4] T. Blochwitz, M. Otter, M. Arnold, C.

Bausch, C. Clauß, H.Elmqvist, A. Junghanns,

J. Mauss, M. Monteiro, T. Neidhold, D.

Neumerkel, H. Olsson, J. V. Peetz, S. Wolf,

"The Functional Mockup Interface for Tool

independent Exchange of Simulation Mod-

els", in 8th International Modelica Confer-

ence, Dresden, 2011, pp. 20-22.

[5] Modelica Association: Modelica – A Unified

Object-Oriented Language for Physical Sys-

tems Modeling. Language Specification,

Version 3.2, March 24, 2010:

www.modelica.org/documentas/ModelicaSpe

c32.pdf

[6] HLA standard – IEEE standard for modeling

and simulation (M&S) high-level architec-

ture (HLA) – framework and rules ieeex-

plore.ieee.org/servlet/opac?punumber=7179.

[7] Graham Hemingway, Himanshu Neema,

Harmon Nine, Janos Sztipanovits, Gabor

Karsai, “Rapid synthesis of high-level archi-

tecture-based heterogeneous simulation: a

model-based integration approach”, Simula-

tion 88(2), 217-232 (2012)

[8] C2WT community wiki –

wiki.isis.vanderbilt.edu/OpenC2WT

[9] Awais, M.U.; Palensky, P.; Elsheikh, A.;

Widl, E.; Matthias, S., "The high level archi-

tecture RTI as a master to the functional

mock-up interface components," Computing,

Networking and Communications (ICNC),

2013 International Conference on , vol., no.,

pp.315,320, 28-31 Jan. 2013

doi: 10.1109/ICCNC.2013.6504102

[10] Portico RTI - www.porticoproject.org

[11] Sztipanovits, J., and Karsai, G. 1997.

“Model-Integrated Computing”, IEEE Com-

puter, 30(110-112)

[12] de Laura, J., and Vangheluwe, H., 2002.

“AToM3: A Tool for Multi-formalism and

Meta-Modeling”, Lecture Notes in Computer

Science, 2306 (174-188).

[13] Tolvanen, J.P., and Lyytinen, K. 1993.

“Flexible Method Adaptation in CASE. The

Metamodeling Approach”, Scandinavian

Journal of Information Science, v5 n1 (71-
77).

[14] Cook, S., Jones, G., Kent, S., and Wills, A.
2007. “Domain-specific Development with

Visual Studio DSL Tools”, Addison-Wesley

Professional

[15] The Eclipse Foundation – www.eclipse.org

[16] Modelon, Inc. – www.modelon.com

[17] JFMI: A Java wrapper for the Functional

Mockup Interface –

www.ptolemy.eecs.berkeley.edu/java/jfmi

[18] OMNeT++ - www.omnetpp.org

[19] DARPA Adaptive Vehicle Make Program –

www.darpa.mil/Our_Work/TTO/Programs/A

daptive_Vehicle_Make__(AVM).aspx

