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Abstract 

Virtual evaluation of complex Cyber-Physical Sys-

tems (CPS) with a number of tightly integrated do-

mains such as physical, mechanical, electrical, ther-

mal, cyber, etc. demand the use of heterogeneous 

simulation environments.  Our previous effort with 

C2 Wind Tunnel (C2WT) attempted to solve the 

challenges of evaluating these complex systems as-a-

whole, by integrating multiple simulation platforms 

with varying semantics and integrating and manag-

ing different simulation models and their interac-

tions. Recently, a great interest has developed to use 

Functional Mockup Interface (FMI) for a variety of 

dynamics simulation packages, particularly in Com-

mercial Off-The-Shelf (COTS) tools. Leveraging the 

C2WT effort on effective integration of different 

simulation engines with different Models of Compu-

tation (MoCs), we propose, in this paper, to use the 

proven methods of High-Level Architecture (HLA)-

based model and system integration. We identify the 

challenges of integrating Functional Mockup Unit 

for Co-Simulation (FMU-CS) in general and via 
HLA and present a novel model-based approach to 

rapidly synthesize an effective integration. The ap-

proach presented provides a unique opportunity to 

integrate readily available FMU-CS components 

with various specialized simulation packages to rap-

idly synthesize HLA-based integrated simulations 

for the overall composed Cyber-Physical Systems. 

Keywords: Functional Mockup Interface, Functional 

Mock-up Unit for Co-Simulation, Cyber-Physical 

Systems, Heterogeneous simulation, Multi-paradigm 

modeling, Model-based integration, DSML, Distrib-

uted Simulation, High-Level Architecture 

1 Introduction 

Cyber-Physical Systems (CPS) [1] are composed 

of several collaborating physical and computing 

components that interact through embedded commu-

nication capabilities. These systems require ad-

vanced integration of abstractions and techniques 

that have been developed over the past years in dis-

parate areas such as cyber systems that rely heavily 

on computation and networking and physical sys-

tems that employ various engineering methods in 

domains such as mechanical, thermal, electrical, 

electronic, hydraulic, thermal, biological, and acous-

tic. 

Analysis of Cyber-Physical Systems poses unique 

challenges due to the heterogeneity of components 

and interactions [2]. The fundamental differences in 

the characteristics of these different physical and 

computation processes lead to a huge spectrum of 

modeling methods. For example, some components 

can be easily described by differential equations, 

while others like communication networks typically 

require Discrete-Event Simulation (DEVS) tech-

niques. As such, several simulation tools and tech-

niques are needed for CPS simulation and analysis. 

This further necessitates an over-arching CPS model 

and system integration platform that is model-based 

and supports rapid synthesis of distributed heteroge-
neous CPS simulations. 

Co-Simulation (Co-operative Simulation) is a 

simulation method that permits simulating individual 

components using different simulation tools simulta-

neously and collaboratively. Individual simulation 

tools exchange information such as individual sys-



tem variables and their values, time steps for syn-

chronization, and control signals for orchestrating 

the co-operative simulation. In this way, engineers 

can use different simulation tools together to create 

virtual prototypes of entire Cyber-Physical Systems. 

In practice, however, significant challenges remain 

with regard to the syntax and semantics of model and 

system integration. 

In the Co-Simulation domain, a recent effort by 

the MODELISAR ITEA2 project that develops a 

tool independent standard called the Functional 

Mock-up Interface (FMI) [3] [4] [5] has gained sig-

nificant influence, more prominently in the automo-

tive industry. The FMI standard provides a well-

defined set of function calls to specify simulation 

components. FMI-compliant simulations pack shared 

libraries that can be executed using the standardized 

function calls and the model execution must adhere 

to the rules of the standard. These function calls span 

all stages of the model execution, viz. initialization, 

configuration, access, modification, and manipula-

tion. 

The strength of FMI lies in the fact that all simu-

lation tools participating in the Co-Simulation follow 

the defined standard and as such provides for stand-

ardized access to model equations. This permits cou-

pling of Continuous-Time and Discrete-Time sys-
tems that are part and parcel of Cyber-Physical Sys-

tems. In some ways, this is also a limitation because 

not all simulation tools are amenable to support all of 

the strictly specified FMI function calls. 

Another key requirement for Co-Simulation via 

FMI is to also develop a master algorithm that or-

chestrates the steps of Co-Simulation. Master algo-

rithms must control the data exchange between sub-

systems and synchronize their individual simulations 

according to the requirements of the integrated simu-

lation of the overall Cyber-Physical System. Alt-

hough the FMI standard does not describe or limit 

the implementation of the master algorithm, the algo-

rithm requirements and features often limit its im-

plementation as a centralized orchestrator that can 

communicate effectively with all participating sub-

systems. Centralized nature not only can become a 

performance bottleneck, it can also serve as a single 

point of failure in the distributed simulation’s com-

putational infrastructure. 

Furthermore, as Cyber-Physical Systems involve 

vastly different sub-domains and physical processes 

that vary greatly in the execution frequency at which 

they need to run. This leads to significantly different 

dynamic response characteristics in terms of fre-

quencies. For example, mechanical components of a 

complex CPS often have much slow frequency re-

sponses compared to fast electronic components. 

Single standalone monolithic model of a CPS there-

fore suffers heavily with solver inefficiencies. These 

systems are generally highly complex and have a 

significant non-linearity and discontinuities, which 

further adds to inefficiencies of solvers. Taking sub-

systems apart and using different solver step-sizes 

offers a potential solution. However, multirate com-

position also introduces some inefficiencies due to 

clock management, composition restrictions, data 

exchange, and potential stability issues if the system 

is split at the wrong place. 

Another effort developed by U.S. Modeling and 

Simulation Coordination Office (M&S CO) is the 

High Level Architecture (HLA) [6]. The HLA pro-

vides a specification of a common technical architec-

ture for modeling and simulation with a primary goal 

to facilitate interoperability among simulations and 

to promote re-use of simulations and their compo-

nents. The HLA comprises of three major compo-

nents: HLA rules, HLA interface specification, and 

HLA object model template [6]. With these rules, the 

HLA standardizes run-time support for various tasks, 

such as coordinated time evolution, message passing 

and shared object management. The key difference 

from FMI is that HLA regards individual simulation 

components at the level of processes as opposed to 

libraries. This enables broader integration of differ-
ent simulation tools with different Models of Com-

putation. Even Functional Mock-up Units can be 

integrated as a participating simulation tool in the 

overall integrated simulation of the Cyber-Physical 

Systems. 

Another key benefit of HLA is that its Distributed 

Discrete Event model of computation allows full 

flexibility to individual subsystems in using any in-

ternal solver and model of computation. Moreover, 

this flexibility permits multirate simulations by de-

sign. 

However, the HLA standard also lacks some key 

facilities for developing integrated distributed heter-

ogeneous simulations. For example, the HLA stand-

ard does not formalize methods for developing inter-

actions and objects used by HLA federates and it 

does not provide facilities for easily moving simula-

tions from one computational node to other. Conse-

quently, HLA-based simulations also require a sig-

nificant amount of tedious and error-prone hand-

developed integration code. 

Achieving the integrated simulation of Cyber-

Physical Systems require effective integration of a 

huge spectrum of models of physical processes, 

communication systems, exchanged information, and 

control mechanisms. As detailed above, the ap-

proaches of FMI and HLA both have their ad-

vantages and some key limitations. The approach of 



using HLA as a master algorithm enables use of 

FMUs in a Co-Simulation environment while also 

providing flexibility of using other types of non-

FMU simulations [9]. The resulting framework can 

provide a much broader scale of simulation tools that 

can be used in the integrated simulation of Cyber-

Physical Systems. However, several gaps need to be 

filled in order to develop a platform that enables this 

integration in an efficient manner. A single efficient 

model-based platform is needed that: 

• Enables modeling of interactions and shared 

objects between simulation tools 

• Enables modeling of integration of systems 

with their data exchange mechanisms 

• Enables modeling of deployment of simula-

tion tools on computational infrastructure 

• Enables a "decentralized" master algorithm 

for FMI Co-Simulation 

• Enables multirate modeling with dynamic 

management of subsystem clock rates 

• Provides a set of tools to generate necessary 

artifacts for rapid synthesis of simulations 

This paper attempts to address these important 

challenges in creating a single coherent platform for 

developing integrated distributed simulations of 

Cyber-Physical Systems. We build upon our previ-
ous work on a model-based integration platform 

called the Command and Control Wind Tunnel 

(C2WT) [7] [8]. 

The rest of the paper is organized as follows. Sec-

tion 2 and 3 give an overview of the C2 Wind Tun-

nel and FMI for Co-Simulation respectively. We pre-

sent our detailed model-based integration approach 

in Section 4 and provide a detailed case study with 

experimental results in Section 5. Finally, Section 6 

concludes the paper. 

2 C2 Wind Tunnel 

Over the past several years, we have developed a 

model-based multi-model integration platform called 

the Command and Control Wind Tunnel (C2WT) [7] 

[8]. It is an integrated, graphical, multi-model, dis-

tributed simulation environment for the experimental 

evaluation of large-scale C2 systems with various 

organizational and technical architectures. It enables 

a variety of simulation engines to interact and trans-

mit data from one another and log and analyze simu-

lation results. Figure 1 below gives a conceptual ar-

chitecture of C2WT. 

The High-Level Architecture is a standardized 

framework for distributed computer simulation sys-

tems.  Communications between different federates 

is managed via the Run-Time Infrastructure (RTI) 

layer.  The RTI provides a set of services such as 

time management, data distribution, message pass-

ing, and ownership management. Other components 

of the HLA standard are the Object Model Template 

(OMT) and the Federate Interface Specification 

(FIS). 

 

 
 

Figure 1: Conceptual architecture of C2WT 

 

The HLA standard focuses on three primary are-
as.  First is time coordination throughout the federa-

tion.  The evolution of time is a key thread through 

each of the integrated simulators.  Each simulation 

platform must slave its progression of time to that of 

the overall HLA clock.  The HLA standard provides 

several methods by which to accomplish this.  Sec-

ond is coordination of inter-federate messages and 

shared data objects.  The HLA standard provides a 

publish-and-subscribe mechanism for passing mes-

sages and object updates throughout the federation.  

Third, the HLA standard provides for basic simula-

tion execution control.  Starting, pausing, and stop-

ping the execution of a simulation is built directly 
into the HLA standard.  The C2 Wind Tunnel relies 

upon all of these services during run-time. 

As HLA is an accepted standard, a number of 

commercial, academic, and alternate RTI implemen-

tations are available. Currently, we use the Portico 

RTI [10] – which provides support for both C++ and 

Java clients and is compliant with version 1.3 of the 

HLA standard. 

The HLA provides a standard for the RTI that 

supports the coordinated execution of distributed 

simulations. However, designing the model integra-

tion, coding the platform-to-RTI glue-code, and test-

ing and deploying all of the various run-time compo-

nents across multiple platform-specific simulation 

tools is a highly challenging task. C2WT provides a 



solution to this simulation integration problem.  It 

provides a holistic modeling and management envi-

ronment built around a custom Domain-Specific 

Modeling Language (DSML) [11], implemented in 

Generic Modeling Environment (GME) [11], and a 

related suite of model interpreters to coordinate be-

tween the integration model and the platform-

specific simulation tools involved in the overall envi-

ronment. It facilitates the rapid development of inte-

gration models and use of these models throughout 

the lifecycle of the simulated environment. With 

simulation engine specific model configurations and 

experiment specific deployment modeling, it enables 

significant automation in the development of inte-

grated distributed simulation. With integration mod-

eling support and various sophisticated generation 

tools, C2WT provides a robust platform for users to 

rapidly model and synthesize complex, heterogene-

ous, command and control simulations. 

3 FMI for Co-Simulation 

Functional Mock-up Interface (FMI) [3] [4] [5] 

was initiated and organized by Daimler AG within 
the ITEA2 project MODELISAR [3]. The FMI 

standard consists of two main parts. The first part is 

FMI for Model Exchange, which standardizes the 

distribution of a dynamic system model in the form 

of generated C-Code as an input/output block to oth-

er simulation environments. The second part is FMI 
for Co-Simulation, which standardizes the mecha-

nisms for coupling of two or more simulation tools 

in a co-simulation environment. 

The key idea is to have a discrete set of commu-

nication points only, at which times the subsystems 

exchange any data. Outside of these points, the sub-

systems are executed independently. The data ex-

change is controlled by a master system that also 

manages time synchronization of subsystems. 

The FMI Co-simulation master simulator couples 

the subsystem simulators through a zip-archive. This 

zip-archive contains shared library files (.DLL, .SO) 

that conform to the function call specifications given 

in the standard. Each zip-archive also contains a 

XML file that provides meta-data and further details 

of the model such as default start and stop times, var-

iable types, units, tool specific data, parameter and 

variable names and attributes. The XML also con-

tains specification for executing the model as a 

shared library during a simulation run (CoSimula-

tion_Standalone) or by importing a slave tool wrap-

per and interfacing it with the external tool (CoSimu-

lation_Tool). 

4 Model-Based Integration 

One of the primary contributions of our effort is 

our focus on developing a completely model-based 

integration approach.  Our efforts leverage the Ge-

neric Modeling Environment (GME) [11] tool suite 

for designing the integration model DSML [11] and 

HLA [6] to provide run-time support as the “simula-

tion bus”. 

4.1 Needs and Challenges 

Cyber-Physical Systems [1] [2] are highly com-

plex and their simulation spans a multitude of com-

putational domains and specializations. A large 

number of tools exist that have been developed for 

specific aspects of CPSs. A variety of tools exist 

even for a single aspect of CPSs. For example, many 

special purpose simulation tools exist to model and 

analyze vehicle dynamics or for switching mecha-

nisms of hybrid drivetrains. As such the integration 

platform must be open toward use of any tool that 

may be required for some component/aspect of the 

CPS simulation. 

A subtle problem in using multiple simulation 
tools in an integrated simulation is that they tend to 

use many different Models of Computation (MoC). 

For example, Discrete-Event, Discrete-Time, Con-

tinuous-Time, Synchronous Dataflow, are among the 

many MoCs used. Each MoC has a specific mecha-

nism for time progression and event handling. The 
integration platform must be able to handle tools that 

use different MoCs in highly flexible manner. The 

integrated system must respect time synchronization 

with other simulation tools as well as the causality of 

events must be preserved. In addition to system inte-

gration, the platform must also enable integration of 

models by means of capturing the communication 

(with any translation that might be needed) that oc-

curs between them. 

As a general rule, it is preferable to have a graph-

ical environment that provides well-defined seman-

tics for modeling concepts, their relations, and rules 

for composition. Moreover, for rapid synthesis of 

simulations, the platform must support tools for 

translation of models to executable software that 

conform to specified executable semantics. The au-

tomation not only provides efficient development of 

simulations, it also significantly minimizes human 

errors. 

The integration environment should also provide 

capabilities for modeling and configuration experi-

mentation and logging.  

Furthermore, when FMUs are integrated the rules 

of FMI must still be adhered to. Particularly, the 



models in the FMUs must be accessed, controlled, 

and manipulated using the function calls specified in 

the FMI standard. 

4.2 Meta-modeling 

The Generic Modeling Environment is a meta-

programmable model-integrated computing (MIC) 

[11] toolkit that supports the creation of rich domain-

specific modeling and program synthesis environ-

ments.  Configuration is accomplished through meta 

models, expressed as UML class diagrams, specify-

ing the modeling paradigm of the application do-

main.  Meta models characterize the abstract syntax 

of the domain-specific modeling language, defining 

which objects (i.e. boxes, connections, and attrib-

utes) are permissible in the language.  Another way 

to envision this is that a DSML [11] is a schema or 

data model for all the possible models that can be 

expressed by a language.  Using finite state machines 

as an example, the DSML would consist of states 

and transitions.  From these elements any state ma-

chine can be realized.  The inherent flexibility and 

extensibility of the GME [11] via meta models make 

it an ideal foundation for the C2 Wind Tunnel envi-

ronment.  Alternate meta modeling frameworks have 

also been developed in the past, such as AToM3 

[12], MetaCase [13], Microsoft DSL [14], and the 

Eclipse Modeling Framework [15]. 

4.3 Model-Based Integration of FMUs in 

C2WT 

As detailed in section 2, C2WT provides an over-

arching modeling and management environment and 

a suite of model interpreters to coordinate the inte-

gration models and platform-specific simulation 

tools involved in the overall heterogeneous distribut-

ed simulations. The user is referred to [7] for details 

of the meta-modeling language and its executable 

semantics. In this section, we further discuss the in-

tegration of FMUs as HLA-federates in the C2WT 

platform. 

In this work, the C2WT metamodel was further 

customized to enable FMU specific federate specifi-

cations. Although the original C2WT metamodel is 

sufficient to support integration of newer types of 

federates, having simulation tool/technique specific 

first-class objects in the modeling language makes 

reasoning about such entities more flexible and can 

support extensive automation. The FMU-federate 

model specifies the location of the zip archive, 

whether to log variable values during simulation, 

additional variables (other than input and output) to 

log, and ratio of macro and micro steps for multirate 

simulations. 

Figure 2 below shows the extension to the origi-

nal C2WT architecture to incorporate FMU federates 

in the platform. 

 

 
 

Figure 2: C2WT extended for FMI-CS 

 

Our model interpreters can read the models with 

specified input and output relationships with other 

simulation tools and even other FMUs and can au-

tomatically generate all the executable code that can 
be deployed on different nodes in the available com-

putational infrastructure for the simulation. As pre-

viously mentioned, C2WT supports simple modeling 

of computational infrastructure and assignment of 

federates on its nodes. 

Following the rules of FMU access, modification, 
and manipulation as described in the FMI standard 

[3] [4], we developed a simplified procedure for 

FMU-federate execution as given below: 

 

Initialization phase (before simulation start): 
 

1: Load FMU zip archive, read model description 

2: Load shared libraries in the FMU 

3: Instantiate the FMU slave 

4: Setup input/output and HLA-interaction maps 

5: Setup up logging 

 

Execution phase (during simulation): 
 

1: Synchronize start of simulation with all tools 

2: Request RTI to proceed to step-size and wait 

3: Update input variables with HLA updates 

4: Call doStep in step-size/#micro-steps chunks 

5: Continue #4 until full step-size is executed 

6: Update HLA with output variables 

7: Go to #2 



Please note that above is rather simplified proce-

dure of FMU integration mechanism in C2WT. The 

actual implementation also involves setting up statis-

tical and database logging, micro-step management 

to avoid overlaps, error-handling, efficient federate 

code execution, reliable & reusable time advancing 

facilities, and model state and HLA interaction syn-

chronization. 

5 Case Study 

To illustrate our model-based approach for FMU 

integration in C2WT we present a high-fidelity mod-

el of a representation of a Vehicle Thermal Man-

agement (VTM) system which is intended for study-

ing interactions of thermal management systems 

within a vehicle. 

5.1 Model description 

This particular example is a conventional four 

wheel chassis and drivetrain architecture with a 

spark ignition engine and standard transmission. 

These mechanical systems are created using compo-

nents from the Vehicle Dynamics Library (VDL) 

from Modelon [16]. The model also includes a repre-
sentation of the coolant loop for the engine and 

transmission oil loop in conjunction with a four heat 

exchanger stack for the thermal domain. These por-

tions of the model are constructed from components 

of the Liquid Cooling Library (LCL) from Modelon. 

A snapshot of the overall model is shown in the fol-
lowing Figure 3 below. 

The key component models of the system are: 

Driver, Vehicle (Engine, Transmission, Driveline, 

Chassis, Aerodynamics, External loads, and Brakes), 

Lumped engine thermal mass, Lumped transmission 

thermal mass, Engine coolant fluid circuit, Transmis-

sion oil cooling circuit, Heat exchanger stack, Low 

voltage battery, Alternator, Cooling fan and control-

ler, and Grill shutters and controller. Table 1 below 

provides key features of these component models. 

Since the purpose of this model is to study vehi-

cle thermal dynamics, a simplified 1D longitudinal 

dynamics chassis model is used rather than a full 3D 

body model. This allows for faster simulations of the 

typically long duration drive cycles. 

During the simulation, heat that is generated by 

the engine is stored within the engine thermal mass 

and then rejected to the coolant-to-air heat exchanger 

(radiator) through a coolant fluid loop. A similar 

loop and heat exchanger also exists for the transmis-

sion. 

 

 
 

Figure 3: Overall system model 

 

 
Table 1: Key features of component models 

 

The model is well suited to thermal management 

controller design, studying tradeoffs between thermal 

management energy demands and fuel economy, 

heat exchanger efficiency and sizing, and coolant 

fluid flow dynamics. 

For this paper, the model was partitioned into 

separate executables by dividing the model along 

domain boundaries. In this case the vehicle mechan-

ics, electrical, and driver were grouped into one 

model while the fluid and thermal portions of the 

model were grouped into another. This partitioning 

allows for execution of Driver vehicle and Thermal 



management parts at different rates. Owing to the 

inclusion of fluid portions in the Thermal manage-

ment part, this part needed to run with a much lower 

step-size than the Driver vehicle part to maintain 

system stability. 

In order to do this the physical connections that 

are bisected by the boundaries must be converted to 

causal signals. As an example for the engine, the 

heat is generated within the mechanical portion of 

the model. The heat is directed to the lumped thermal 

model, within the thermal portion of the model, 

which determines the thermal mass temperature. Im-

ages of these two systems are shown in Figures 4 and 

5 below. 

 

 

 
 

Figure 4: Driver vehicle model 

 

 
 

Figure 5: Thermal management model 

5.2 Simulation architecture 

The simulation setup consisted of mainly three 
federates, viz. Driver vehicle, Thermal management, 

and the Manager federate. Manager federate is an 

auto-generated external federate, which is used 

mainly as a front-end controller of the overall heter-

ogeneous simulation. The simulation architecture is 

illustrated in the Figure 6 below. 

 

 
 

Figure 6: Simulation architecture 

 

5.3 Data and Integration model 

The actual data and integration model are given 

in the Figures 7 and 8 below. These show the input 

and variables from the Driver vehicle and Thermal 

management federates. These two models are exe-

cuted as FMUs in the C2WT. 

 

 
 

Figure 7: Data model 



 
 

Figure 8: Integration model 

5.4 Experimental Results 

For the experiment, the Driver vehicle and Ther-

mal management FMUs were exported from Dymola 

[16] models by Modelon, Inc. [16]. We used a JFMI 

Ptolemy APIs [17] to connect the FMUs to our Java 

based C2WT platform. All federates were running in 

a single Ubuntu 32 virtual machine. The Run-Time 

Infrastructure (RTI) used was Portico [10]. Total 

simulation time for the experiment was 50 seconds. 

The simulation was setup as a multirate simula-
tion with different step-sizes for the three federates: 

Driver vehicle (10 ms), Thermal management 

(5 ms), and Federation Manager (100 ms). The entire 

simulation ran in about ~9 minutes. The Figures 9 

and 10 above show the experimental results for the 

total 50 seconds of simulation time. It should be not-

ed though that the VTM models used were currently 

not optimized for efficiency. 

From the experimental results, we found closely 

matching plots with same peak and trough values 

that were in the equivalent single monolithic (com-

bined Driver vehicle and Thermal management) 

model. The overall runtime (~9 minutes) was also 
comparable to standalone single model simulation 

time in Dymola (~6 minutes) despite the use of a 

third federate (viz. Manager federate) in the simula-

tion and delays due to inter-process communications. 

The models were developed with a variable step 

solver as requirement. However, they could still run 

with a fixed step solver (with a maximum step-size 

of 1.5 ms). However, with our setup of separating the 

Driver vehicle and Thermal management compo-

nents as separate FMUs and executing them through 

C2WT platform, we could even execute these com-

ponents at 10 ms and 5 ms step-sizes respectively. 

 

 
 

Figure 9: Vehicle speed and crankshaft angular velocity 

 

 
 

Figure 10: Gear selection and Liner heat flux 

  



Yet another experiment we have performed is the 

one where we placed a network simulator for the 

CAN bus that must be placed between the above two 

components. We used the OMNeT++ simulator [18] 

to model that. In this experiment, we varied the rates 

of the FMUs to initially match the rate at which net-

work simulator was run, viz. 0.5 ms, and then in the 

second setup we increased the step-size of Driver 

vehicle and Thermal management to 1 ms. We found 

that the results still matched while in the second set-

up they executed in about one-third the overall wall-

clock time. We omit here further details of experi-

ment setup for brevity. 

6 Conclusions 

In this paper, we have successfully demonstrated 

a model-based integration approach to rapidly syn-

thesize multi-model distributed simulation that may 

also involve co-simulation FMUs as component 

models. The FMUs are automatically wrapped as 

HLA-federates that can be executed in the C2WT 

platform. 

We also illustrated that different federates can be 
run with different clocks and their synchronization in 

C2WT is managed using HLA time management 

facilities. We have also integrated FMU-CS in simu-

lations that also use other simulation tools such as a 

network simulator or a 3D terrain simulator. The in-

tegration of other federates in C2WT has been previ-
ously demonstrated in [7]. Thus C2WT provides a 

broader range of simulation tool integration that in-

volves FMI and non-FMI simulations to enable de-

velopment of System-of-System (SOS) simulations. 

C2WT supports real-time and as-fast-as-possible 

modes of simulation execution. However, currently 

the real-time simulation requires that the individual 

component simulations can run faster than real-time. 

C2WT also supports human-in-the-loop simula-

tions with real-time simulations. In this case human 

interaction with running simulations (e.g. in military 

training exercises) is performed using HLA-

interaction mappings. 

One of the key benefits of C2WT platform is its 

support for extensive experimentation, message log-

ging, state variables logging, and analysis support. 

The research at our institute is currently ongoing 

with the applications of FMI Co-Simulation using 

HLA-based integrations. We anticipate novel meth-

ods for FMI Co-Simulations that are rapidly synthe-

sized and may perform faster than single monolithic 

simulations. 

We are also working on extending the C2WT 

platform to support other simulation techniques and 

tools such as SystemC. 
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