
 1 

CONSTRAINT-GUIDED SELF-ADAPTATION 
 

Sandeep Neema and Akos Ledeczi 
Institute for Software Integrated Systems, Vanderbilt University 

Nashville, TN 37235, USA 
{neemask, akos}@isis.vanderbilt.edu 

 
 
Abstract. We present an approach to self-adaptive systems utilizing explicit models of the design-space 
of the application. The design-space is captured by allowing the specification of alternatives for any 
component at any level in the model hierarchy. Non-functional requirements and additional knowledge 
about the system are captured in the form of OCL constraints parameterized by operational parameters, 
such as latency, accuracy, error rate, etc, that are measured at run-time. The constraints and the models 
are embedded in the running system forming the operation-space of the application. When changes in the 
monitored parameters trigger a reconfiguration, the operation space is explored utilizing a symbolic 
constraint satisfaction method relying on OBDDs. Once a new configuration that satisfies all the 
constraints is found the reconfiguration takes place. 
 
 
INTRODUCTION 
 
This paper presents an approach to building self-adaptive embedded systems based on Model-Integrated 
Computing (MIC) [2][3]. In MIC, domain-specific, multiple-aspect models represent the application, its 
environment and their relationships. Model interpreters translate the models into the input languages of 
static and dynamic analysis tools, while other model interpreters synthesize software applications running 
in a real-time, dynamic, macro-dataflow execution environment. Making the design-time models 
available at run-time by embedding them in the application makes the system reflective, a key 
requirement for self-adaptivity. [1] presents an Embedded Modeling Infrastructure (EMI) that extends 
MIC into the self-adaptive systems arena. This work builds on the results of that research. 
 
Conventional practices in embedded system development involve working with single-point designs.  
This, in effect, implies elimination of component and system design alternatives in the early stages of the 
development process.  Such elimination, in the absence of adequate system-level contextual information, 
leads to sub-optimal and inflexible designs that are difficult to maintain and evolve as system 
requirements change.  Therefore, capturing the design-space of the application is advantageous even for 
conventional systems. For self-adaptive systems, it is mandatory. It is exactly (a subset of) this design-
space that can be embedded in the running application in the form of embedded models that forms the 
operation-space of the system. The process of adaptation is the transition from one element of this space 
to another. 
 
The key question in self-adaptive systems is how to decide what the new configuration should be. This 
can be considered a search problem in the operation-space. This paper introduces an approach to guide 
this search based on (1) parameterized constraints captured in the models and embedded in the running 
system, and (2) symbolic constraint satisfaction at run-time utilizing Ordered Binary Decision Diagrams 
(OBDD). 
 
The paper is organized as follows. The next section summarizes existing results in embedded model 
representation as well as, design-space and constraint representation methods. Then, we describe our 
constraint-based self-adaptation technique in detail.  
 



 2 

BACKGROUND 
 
Embedded Modeling 
 
The basic structure of embedded model-integrated systems is illustrated in Figure 1. The Embedded 
Modeling Infrastructure (EMI) can be best viewed as a high-level layer at the top of the architecture, 
while a classical embedded systems kernel is located at the bottom. The component that connects these 
two layers is the translator that we call the embedded interpreter. The embedded models provide a simple, 
uniform, paradigm-independent and extensible API (EMI API) to this interpreter [1]. These models 
typically contain application models using some kind of dataflow representation. They may also describe 
available hardware resources and contain other domain-specific information. 

Embedded Modeling
Infrastructure (EMI)

EMI API

Embedded Interpreter

RT Kernel

Embedded Application-Specific Modules

 
Figure 1: Embedded Modeling 

 
Besides the kernel, the modeling system and the embedded interpreter, the fourth major component of the 
computing system is the set of software modules that perform the actual task of the embedded system. 
These are objects executable by the kernel and responsible for the core functionality of the system.  
 
The EMI system provides capabilities for each of the three general tasks essential to self-adaptive 
systems: monitoring, decision-making, and reconfiguration. To facilitate the implementation of 
monitoring algorithms, convenient access to operational parameters such as resource utilization, 
performance values, error rates etc., is required. The embedded models provide uniform representation of 
these parameters. Objects in the model may have designated attributes (monitor attributes) set by the 
underlying modules: either by the embedded kernel (in case of most operation system parameters), or by 
any of the application specific task modules that have information on the operation of the system.  
 
The second and most critical component of self-adaptive applications is the one making reconfiguration 
decisions. The constraint-based technique we are introducing in this paper provides an approach to his 
problem. The third task, reconfiguration, is done by the embedded interpreter utilizing the EMI API. 



 3 

Design-Space Representation 
 
Despite their numerous advantages, there is a lack of formalized methods for representing design spaces 
in embedded systems design research.  In general, existing approaches can be grouped into two 
categories: 
 
1. Explicit Enumeration of Alternatives – different design alternatives are explicitly enumerated.  The 
design space is a combinatorial product of the design alternatives.  Characteristically different designs 
may be obtained by selecting different combinations of alternatives.  
2. Parametric – the design variations are abstracted into single or multiple parameters.  The cross-product 
of the domains of the configuration parameters forms a parameterized design space.  Physically different 
designs may be obtained from the parameterized design space by supplying appropriate value for the 
configuration parameters. 
In the rest of this section, we present a review of some research and technologies where explicit 
representation of design space is considered. 
 
Design Space Modeling with Alternatives 
 
The Model-Integrated Design Environment (MIDE) for Adaptive Computing Systems (ACS) introduced 
in [4] targets multi-modal structurally adaptive computing systems. One of the key-features of this model-
integrated framework is its support for explicit representation of design spaces for embedded adaptive 
systems.  Representation of design spaces has special significance to multi-modal adaptive computing 
systems.  The diverse functionality desired in the different modes of operation makes optimization 
decisions extremely difficult.  Mode-level optimization does not imply system-level optimization as the 
reconfiguration cost involved in transitioning from a mode to another may offset any efficiency attained 
by a mode-optimized implementation.  In order to address these challenges, a design flow has been 
developed that involves constructing large design spaces for the targeted system and then using 
constraints to guide the search through the large design space for system synthesis. 
 
In this approach, an adaptive computing system is captured in multi-aspect models.  The different modes 
of operation and the operational behavior of an adaptive system are captured as a hierarchical parallel 
finite state machine in a StateChart-like formalism [5].  The resources available for system execution are 
captured as an architecture flow diagram.  The computations to be performed in the different modes of 
operations are captured as a hierarchical dataflow with alternatives.  The basic dataflow model captures a 
single solution for implementing a particular set of functional requirements.  In this framework the basic 
dataflow representation has been extended to enable representation of design alternatives.  With this 
extension a dataflow block may be decomposed in two different ways.  The first type is hierarchical 
decomposition in which a dataflow block can encapsulate a functionality described as a dataflow diagram.  
The second type is an orthogonal decomposition, in which a dataflow block contains more than one 
dataflow block as alternatives.  In this case, the container block defines only the interface of the block and 
is devoid of any implementation details.  The dataflow blocks contained within the container define 
different implementations of the interface specifications.  With these extensions (i.e. hierarchy and 
alternatives), a dataflow model can modularly capture a large number of different computational 
structures together to form an exponentially large design space. 
 
The alternatives in a dataflow may take many different forms.  Alternatives may be technology 
alternatives that are different technology implementations of a defined functionality—e.g. TI-DSP C40 
(software) implementation vs. a TI-DSP C67 (software) implementation vs. a VIRTEX® FPGA 
(hardware) implementation of a cross-correlation component.  Technology alternatives minimize the 
dependency of the system design on the underlying technology, thereby enabling technology evolution.  
Alternatives may also be algorithmic alternatives that are different algorithms implementing a defined 



 4 

functionality (e.g. spatial vs. spectral correlation of a 2D image).  It is generally accepted that the best 
performance can be obtained by matching the algorithm to the architecture or vice-versa.  When different 
algorithm alternatives are captured, it may be possible to optimize the system design for a range of 
different architectures by choosing from different algorithm alternatives.  Alternatives may also be 
functional alternatives that are different (but related) functions obeying the same interface specifications 
(e.g. a 3x3-kernel convolution vs. a 5x5-kernel convolution).  Often in the design cycle of a system, 
functional requirements change when the system is scaled up, or better precision implementations of a 
function are desired due to improvements in sensor fidelity, availability of more compute power, etc.  
Functional alternatives are valuable in accommodating a large range of functional requirements in a 
design in such situations. 
 
In summary, a design space composed by capturing alternatives can encapsulate a large number of 
characteristically different solutions for an end-to-end system specification.  While large design spaces 
are valuable in improving design flexibility and optimization opportunities, determining the best solution 
for a given set of performance requirements and hardware architecture can be a major challenge.  [4] 
describes a constraint-based design space exploration method that meets this challenge. This paper 
advocates extending this approach to run-time for dynamic self-adaptation. 
 
Generative Modeling 
 
Modeling design alternatives explicitly provides much more flexibility than capturing a single point 
solution. However, it still requires the user to pre-design all the components and their possible 
interconnection topologies. The user (or an automatic tool) can pick and choose which alternative to 
select from a fixed set. A complementary approach, called generative modeling, is a combination of 
parametric and algorithmic modeling [1]. With this technique, the elementary components are modeled as 
before, but their number and interconnection topology are specified algorithmically in the form of a 
generator script. Generator scripts can refer to the values of architectural (numerical) parameters 
contained in the models. This approach is very similar to the VHDL generate statement; they both support 
the concise modeling of repetitive structures. 
 
Generative modeling inherently supports dynamic reconfiguration. The generator scripts can be compiled 
as part of the runtime system. Runtime events can change the values of architectural parameters triggering 
the generator scripts. Note, however, that an extra level of indirection is needed here; the generators 
should not reconfigure the runtime system directly. Instead they should reconfigure a representation of the 
running system, the embedded models in order to be able to analyze the system before the actual 
reconfiguration takes place [1]. 
 
Constraint Representation 
 
Constraints are integral to any design activity.  Typically, in an embedded system design constraints 
express SWEPT (size, weight, energy, performance, time) requirements.  Additionally, they may also 
express relations, complex interactions and dependencies between different elements of an embedded 
system viz. hardware, middleware, and application components.  Ideally, a correct design must satisfy all 
the system constraints.  In practice, however, not all constraints are considered critical.  Often trade-offs 
have to be made and some constraints have to be relaxed in favor of others.  Constraint management is a 
cumbersome task that has been inadequately emphasized in embedded systems research.  Most embedded 
system design practices place very little emphasis on constraints and treat them on an ad-hoc basis, which 
means either testing after the implementation is complete, or an over-design with respect to critical 
parameters.  Both of these situations can be avoided by elevating constraints to a higher level in the 
design process.  Two important steps in that direction are a) formal representation of constraints; and b) 
verification/pre-verification of the system design with respect to the specified constraints.  



 5 

  
Principally, three basic types of design constraints are common to embedded systems: (a) performance 
constraints, (b) resource constraints, and (c) compositional constraints.  More complex constraints are 
typically combinations of one or more of these basic types joined by first order logic connectives. 
 
Performance constraints – Performance constraints express non-functional requirements that a 
synthesized system must obey.  These may be in the form of size, weight, energy, latency, throughput, 
frequency, jitter, noise, response-time, real-time deadlines, etc.  When an embedded computational 
system is expressed in a dataflow description, these constraints express bounds over the composite 
properties of the computational structure.  Following are some common examples: 
· Timing – expresses end-to-end latency constraints, specified over the entire system, or may be specified 
over a subsystem e.g. (latency < 20). 
· Power – expresses bound over the maximum power consumption of a system or a subsystem e.g. (power 
< 100). 
 
Resource constraints – Resource constraints are commonly present in embedded systems in the form of 
dependencies of computational components over specific hardware components.  These constraints may 
be imperative in that they may express a direct assignment directive, or they may be conditionalized with 
other computational components.  Following is an example of a resource constraint in plain English: 
· Imperative – component FFT must be assigned to resource DSP-1 
· Conditional – if component FFT is assigned to resource DSP-1 then component IFFT must be assigned 
to resource DSP-2  
 
Compositional constraints – Compositional constraints are logic expressions that restrict the composition 
of alternative computational blocks.  They express relationships between alternative implementations of 
different components.  These are essentially compatibility directives and are similar to the type 
equivalence specifications of a type system.  Therefore, compositional constraints are also referred to as 
typing constraints. For example, the constraint below expresses a compatibility directive between two 
computational blocks FFT and IFFT that have multiple alternate implementations: {if component FFT is 
implemented by component FFT-HW then implement component IFFT with component IFFT-HW}. 
 
The Object Constraint Language (OCL), a part of the Universal Modeling Language (UML) suite, forms 
a good basis for expressing the type of constraints shown above.  OCL is a declarative language, typically 
used in object modeling to specify invariance over objects and object properties, pre- and post- conditions 
on operations, and as a navigation language [8].  [6] advocates an extended OCL to express the type of 
constraints specified above. The constraints are specified in the context of an object. A constraint 
expression can refer to the context object and to other objects associated with the context object and their 
properties.  The OCL keyword self refers to the context object. Role names are used to navigate and 
access associated objects.  For example, the expression self.parent evaluates to the parent object of the 
context object, similarly self.children evaluates to a set of children object of the context object. 
 
A constraint expression can either express direct relation between the objects by using relational or 
logical operators, or express performance constraints by specifying bounds over object properties.  Object 
properties can be referred to in a manner similar to associations.  Property constructs supported in the 
derived constraint language include latency, power, resource assignment, etc. 
 
 



 6 

SELF-ADAPTIVE SYSTEM ARCHITECTURE 
 
Figure 2 shows the overall architecture of a self-adaptive system under our approach.  It should be noted 
that this architecture builds upon the EMI discussed earlier in the background section and in [1].  We 
improve upon the existing architecture by introducing a new reconfiguration controller that employs a 
constraint-based operation space exploration for determining the next configuration. Parameterized 
constraints and a symbolic constraint-based operation space exploration form the essence of this new 
reconfiguration controller. Constraints in this approach provide a way of mapping operational 
requirements to reconfiguration decisions. The modeling paradigm, elaborated later in this section allows 
capturing a large design space for the system implementation, along with constraints.  The paradigm 
supports capturing both design-time as well as runtime constraints.  The system design space is pruned 
using the design-time constraints, and a small subset of the design space is retained at runtime as the 
operation-space of the system.  It is this reduced space that is explored at runtime using the parameterized 
runtime constraints.  In the rest of this section, we elaborate upon the modeling paradigm for the 
embedded model representation, the constraint-based operation space exploration method, and the 
functioning of the reconfiguration controller. 
 

Embedded Modeling
Infrastructure (EMI)

EMI API

constraints
pa

ra
m

et
er

s

Decoder/Encoder

Embedded Interpreter

RT Kernel

Embedded Application-Specific Modules

XML

Monitor

Op-Space Explorer

Design-Time MIC Environment

Controller

 
 

Figure 2: System Architecture 
 
 
Modeling Paradigm 
 
The modeling paradigm, i.e. the modeling language, that supports designing embedded self-adaptive 
systems using constraint-based adaptation methods is a derivative of the one presented in [4] described 
previously. It has three primary components:  
 



 7 

-  application models that represent the desired functionality of the system using hierarchical signal 
flow diagrams with explicit alternatives, thereby capturing the design-space of the application, 

-  resource models that capture the available hardware resources and their interconnection topology,  
-  constraints that describe non-functional requirements, resource constraints and other information 

about the system and are parameterized by operational variables of the running system. 
 
The novel idea is the concept of parameterized constraints. Each constraint can be associated with one or 
more parameters that capture values that are continuously measured during the operation of the system. 
These parameters also have multiple thresholds specified. Whenever a value crosses a threshold, the 
controller is triggered which, in turn, starts the operation-space exploration. 
 
Constraints are also prioritized. Constraints capturing critical requirements get the highest priority. These 
will always have to be satisfied. However, the system needs to have the flexibility to relax non-critical 
constraints in case there are no solutions in the operation space that satisfies all the constraints. Priorities 
specify the order of automatic constraint relaxation. 
 
Note that currently generative modeling is not considered in our constrained-based approach to self-
adaptivity. The main reason for this is the difficulty with symbolic constraint satisfaction.  If the generator 
language is Turing complete, which is highly desirable for the expressive power, symbolic representation 
of the generator script is a very hard problem. A possible approach is to constrain the values of generative 
parameters and analyze the restricted (now finite) design space. This would diminish the advantages of 
generative modeling itself—the flexibility and the infinite design space. The only alternative is analyzing 
a single instance of the generative models that corresponds to a particular instantiation of the parameter 
set. However, the search for the new configuration in the parameter space needs to consider many such 
instances. Regenerating and analyzing every candidate would be computationally prohibitively expensive. 
 
Operation Space Exploration 
 
The objective of the operation space exploration is to find a single feasible solution from the space that 
satisfies all the critical constraints and maximally satisfies the non-critical constraints.  The challenge of 
operation-space exploration emerges from the size of the space, complexity of the requirements and 
criteria expressed as constraints, and the strict resource and time bounds over the exploration process.  
This paper proposes the use of symbolic methods based on Ordered Binary Decision Diagrams (OBDD-s) 
for constraint satisfaction. The highlight of the symbolic constraint satisfaction method is the ability to 
apply constraints to the entire space without enumerating point solutions, whereas an exhaustive search 
by enumeration through the space is generally exponential time complexity.  Symbolic analysis methods 
represent the problem domain implicitly as mathematical formulae and the operations over the domain are 
performed by symbolic manipulation of mathematical formulae. 
  
The symbolic constraint satisfaction problem considered here is a finite set manipulation problem.  The 
operation-space is a finite set.  Constraints specify relations in this space.  Constraint satisfaction is a 
restriction of the solution space with the constraints.  Solving this finite set manipulation problem 
symbolically requires the solution of two key problems: (a) symbolic representation of the space, and (b) 
symbolic representation of the constraints. 
 
Symbolic constraint satisfaction is simply the logical conjunction of the symbolic representation of the 
space with the symbolic representation of the constraints. Figure 3 illustrates the process of symbolic 
constraint satisfaction. 
 



 8 

Symbolic Representation of the Operation Space 
 
The key to exploit the power of symbolic Boolean manipulation is to express a problem in a form where 
all of the objects are represented as Boolean functions [7].  By introducing a binary encoding of the 
elements in a finite set all operations involving the set and its subsets can be represented as Boolean 
functions.  In order to represent the operation space symbolically, the elements of the operation space 
have to be encoded as binary vectors.  The choice of encoding scheme has a strong impact on the 
scalability of the symbolic manipulation algorithms [7].  An encoding scheme has been developed in [6] 
after a careful analysis of the problem domain, taking into consideration the hierarchical structure of the 
solution space. 
 
The operation space captures feasible configurations for implementing the system functionality, and is 
represented as a hierarchical dataflow graph with alternatives, as described earlier.  The dataflow is 
associated with a network of resources in defining the system configurations.  This representation can 
modularly define a very large space.  The complete operation space is a set of possible system 
configurations.  The encoding scheme assigns encoding values to each node in the hierarchy such that 
each configuration receives a unique encoding value.  Additionally, the encoding scheme must also 
encode the resource assignments of components along with performance attributes such as latency, 
throughput, power, etc.  The performance attributes take numeric values from a continuous finite domain.  
However, for the purpose of encoding the domains of the attributes are discretized.  The total number of 
binary variables required to encode the operational space is primarily dependent upon on the domain size 
and the quantization levels in the domain [6].  With this encoding the operation space is symbolically 
composed as a Boolean function from the symbolic Boolean representation of components.  After 
deciding the variable ordering this Boolean representation is mapped to an OBDD representation in a 
straightforward manner. 

Op-Space 

Constraints

Binary 
Encoding

Parsing/
Composing

OBDD 
Representation

OBDD 
Representation

Symbolic
Design Space

Pruned
Design
Space

Discretize
Parameters

Map to
OBDD

Apply

Re-encoding / Iterative Pruning / Constraint Relaxation

 
Figure 3: Symbolic Constraint Satisfaction 

 
 



 9 

Symbolic Representation of Constraints 
 
Three basic categories of constraints are considered.  Symbolic representation of each of these categories 
of constraints is summarized below. 
 
Compositional constraints – Compositional constraints express logical relations between processing 
blocks in the hierarchical dataflow representation. Symbolically the constraint can be represented as a 
logical relation over the OBDD representation of the processing blocks trivially. 
  
Resource constraint – Resource constraints relate processing blocks to resources.  Symbolic 
representation of resource constraints is accomplished by expressing the relation over the OBDD 
representation of the processing block and resource. 
  
Performance constraints – Performance constraints are more challenging to solve symbolically than the 
previously specified categories of constraints.  There are two primary drivers of the complexity: 1) A 
system-level property has to be composed from component-level properties in a large design space, and 2) 
The property being composed is numeric, and may admit a potentially very large domain.  Representing a 
large numeric domain symbolically as a Boolean function and performing arithmetic operations 
symbolically is a challenging problem with serious scalability concerns.  In general different performance 
attributes compose differently.  An approach for expressing constraints over additive attribute 
symbolically has been detailed in [6].  The basic approach involves expressing linear arithmetic 
constraints over a group of binary vectors, each binary vector representing an integer variable, as a 
Boolean function.  This function is then conjuncted with the representation of the operation space that 
encodes performance attributes of components as integer values for different binary vectors.  The binary 
vectors are then quantified out from the resulting function.  Thus, in effect a relation over the attributes of 
components is composed into a relation over the components of the operation space.  Building on this 
basic approach more complex composition of system-level properties, and symbolic representation of 
different performance constraints has been shown in [6]. 
 
In addition to these basic categories of constraints, complex constraints may be expressed by combining 
one or more of these constraints with first order logic connectives.  The symbolic representation of the 
complex constraints can be accomplished by composing the symbolic representation of the basic 
constraints. 
 
Embedding Symbolic Constraint Satisfaction 
 
The key issues in embedding the symbolic constraint satisfaction methodology outlined above are to 
manage the memory footprint of the OBDD data structures, and to control the potential non-deterministic 
exponential blow-up of OBDD-s. In the presented approach we have a rudimentary technique to manage 
both the memory footprint and the exponential blow-up by limiting the maximum node count in the 
OBDD data structure.  Doing this forces the OBDD algorithms to throw an exception whenever the data-
structure grows beyond the limit. Such an exception is handled by asserting the target constraint 
unsatisfiable within the given resource and time budget. 
 
An additional optimization for embedding symbolic constraint satisfaction enables incremental constraint 
satisfaction.  Thus, when a single or a small set of constraints is activated by a change in an operation 
parameter, and the change further constrains the operation space, then it does not necessitates re-
exploration/re-application of all the constraints.  Only the affected constraints are expressed symbolically 
as OBDD-s and re-applied.  However, this approach does not work when the parameter change relaxes 
the constraint.  In this case, it may be possible to avoid re-application of all the constraints by caching 
intermediate symbolic representation of the pruned operation.  Caching, however, increases the memory 



 10

requirements.  Thus, a trade-off has to be made between the memory bounds and the time bounds of the 
exploration. 
 
Reconfiguration Controller 
 
The controller continuously monitors the operational parameters of the system.  The embedded models 
capture the dependencies between the specified constraints and the operational parameters. The 
dependency specifications include multiple threshold levels for the operational parameters. Whenever any 
one of these parameters crosses any of the threshold levels, an operation space exploration is invoked 
with the affected constraints. Additional critical and non-critical constraints are also passed to the 
operation space exploration for satisfaction.  The exploration process is time-bounded by specifying a 
maximum OBDD node count. The exploration process may result in an exception (for exceeding the 
maximum node count) or zero, one, or more possible configurations for the system implementation. The 
four scenarios are individually considered below: 
 
Exception – In the event of an exception due to a non-critical constraint, the exploration continues with 
the specified non-critical constraint dropped from the constraint store. If the exception is due to a critical 
constraint then the system execution continues with the current system configuration, however, the 
system re-attempts exploration with an increased maximum OBDD node count. A number of re-tries 
limited by a pre-determined constant are made, until the exploration results in one or more configuration 
that satisfies all the critical constraints, and maximally satisfies non-critical constraints. The system 
continues to operate with the current configuration until a new configuration is found. 
 
Zero – In this case the relaxation of non-critical constraints is attempted progressively.  The progression 
continues until one or more configurations are found.  If no configuration is found even after relaxing all 
non-critical constraints, no further attempts for exploration are made and the system continues to execute 
with the current configuration.  It must be noted here that by progressively relaxing non-critical 
constraints and accepting the first configuration that emerges by relaxing constraints does not guarantee 
maximal satisfaction of non-critical constraints.  The system sacrifices maximality in favor of finding at 
least one working configuration. 
 
One – This is an ideal scenario, when the operation space exploration results in exactly one valid 
configuration.  The system simply accepts the resulting configuration as the next configuration. 
 
Multiple – The system can be compiled with several different strategies to handle this scenario.  A simple 
strategy is to pick the first configuration from the result set, as they are all equally fit from a constraint 
satisfaction perspective.  A more complex strategy attempts to evaluate the difference between the current 
configuration and the configurations in the result set.  Configuration with the least difference is accepted 
as the next configuration. 
 
Once the next configuration has been accepted, the reconfiguration controller passes the control to the 
system reconfiguration manager that performs the reinterpretation and reconfiguration process. 
 
CONCLUSIONS 
 
This paper presented an approach for constraint-guided self-adaptation of embedded systems.  Embedded 
models of the system contain multiple potential system configurations captured as alternatives in an 
operation space. Parameterized constraints provide a way of capturing changing operational requirements. 
An embedded operation space exploration, triggered by changes in operational parameters, rapidly finds 
next system configuration that satisfies the current operational constraints, which is then instantiated and 
deployed through our Embedded Modeling Infrastructure. 



 11

The main contribution of the work is the systematic approach to the reconfiguration controller, the key 
component of any self-adaptive system. The OBDD-based symbolic satisfaction of constraints 
parameterized by monitored operational variables makes the controller reusable across applications and 
even application domains.  It can potentially replace the ad-hoc, highly application-specific, hand-crafted 
reconfiguration controllers of the past. Another principal benefit of this approach is that the every system 
configuration that is deployed is correct by design, i.e. it already satisfies all the correctness criteria 
specified by the constraints.  
 
An ideal application area for our approach is the domain of robust, fault-tolerant embedded systems.  The 
operation space can contain various system configurations that are tailored for different system failure 
modes. Constraints capture the complex relationships between different failure modes and system 
configurations. The system can quickly find a new configuration and adapt after a component failure. 
 
There are numerous open research issues associated with the approach and a lot of work remains to be 
done. The most difficult problem is the operation-space exploration within strict time bounds and utilizing 
possibly limited computational resources. A systematic approach to over- or under-constrained systems 
needs to be developed. Finally, the technique needs to be implemented and tested in real-world scenarios. 
 
 
ACKNOWLEDGEMENT 
 
The research presented here was made possible by the generous sponsorship of the Defense Advanced 
Research Projects Agency (DARPA) under contracts F30602-96-2-0227 and DABT63-97-C-0020. 
 
 
REFERENCES 
 
[1] Ledeczi A., Bakay A., Maroti M.: “Model-Integrated Embedded Systems,” in Robertson, Shrobe, 

Laddaga (eds): Self Adaptive Software, Springer-Verlag Lecture Notes in Computer Science, 
#1936, February, 2001 

[2] J. Sztipanovits, G. Karsai, “Model-Integrated Computing,” IEEE Computer, pp. 110-112, April, 
1997. 

[3] Ledeczi A., Maroti M., Karsai G., Nordstrom G.: “Metaprogrammable Toolkit for Model-
Integrated Computing,” Engineering of Computer Based Systems (ECBS-99) , pp. 311-317, 
Nashville, TN, March, 1999. 

[4] Bapty T., Neema S., Scott J., Sztipanovits J., Asaad S.: “Model-Integrated Tools for the Design of 
Dynamically Reconfigurable Systems”, ISIS Technical Report/Vanderbilt University, 2000.  

[5] Harel, D., “Statecharts: A Visual Formalism for Complex Systems”, Science of Computer 
Programming 8, 1987, pp.231-274. 

[6] Neema S., “Design Space Representation and Management for Model-Based Embedded System 
Synthesis”, Technical Report ISIS-01-203, February 2001. 

[7] Bryant R., “Symbolic Manipulation with Ordered Binary Decision Diagrams,” School of 
Computer Science, Carnegie Mellon University, Technical Report CMU-CS-92-160, July 1992. 

[8] Object Constraint Language Specification, Version 1.1, Object Management Group, September 
1997. 

 


