
Proceedings of EMSOFT 2003, LNCS 2855, pp. 290-305

Constraint-Based Design-Space Exploration and Model
Synthesis

Sandeep Neema, Janos Sztipanovits and Gabor Karsai

Institute for Software Integrated Systems, Vanderbilt University, P.O. Box 1829 Sta. B.
Nashville, TN 37235, USA

{sandeep.neema,janos.sztipanovits,gabor.karsai@vanderbilt.edu}

Abstract. An important bottleneck in model-based design of embedded systems
is the cost of constructing models. This cost can be significantly decreased by
increasing the reuse of existing model components in the design process. This
paper describes a tool suite, which has been developed for component-based
model synthesis. The DESERT tool suite can be interfaced to existing modeling
and analysis environments and can be inserted in various, domain specific
design flows. The modeling component of DESERT supports the modeling of
design spaces and the automated search for designs that meet structural
requirements. DESERT has been introduced in automotive applications and
proved to be useful in increasing design productivity.

1 Introduction

Extensive modeling and model analysis is a crucial element of design flows for
embedded systems. The cost of the design process is largely influenced by the cost of
constructing models for detailed analysis and code generation. There is a significant
pressure toward tool manufacturers to decrease this cost by increasing the automation
of the modeling process. A promising approach to achieve this goal is to take
advantage of reusable modeling components and automated model composition. An
exposition of this problem was detailed by Ken Butts and others [8] describing the
need for a model compiler in automotive applications.

Automotive controller modeling is typically done by means of model-based tool
suites, such as MathWorks Simulink® and Stateflow® [2]. According to the authors
[1], building models for powertrain controller assemblies requires selection of 75-100
component models from thousands for each of the 130 vehicle types. The model
components include 1 to 3 sampling contexts (crankshaft position or time) and on the
average 20 inputs and 14 outputs. This means that the complete model has over 100
scheduling connections and 2000 data connections. Components cannot be selected
independently from each other. There are complex compatibility relationships among
model components. Selection of components may require selection of others and the
overall component structure influences or determines basic performance
characteristics of the design.

The goal of our research has been the design of a component-based model
synthesis tool, which given a set of models for subcomponents, composes a system

model m automatically such that a set of design constraints are satisfied. The design
requirements for the tools have been inspired by the practical needs of automotive
control engineers:

1. Model components are Matlab®, Simulink®, Stateflow® models.
2. Model components are characterized by a set of component attributes

(component type like “continuous” and “discrete”, I/O definitions,
essential parameters, solver used in simulation, sampling time, etc.) that
influence composability and capture performance characteristics.

3. Model architectures are described by an abstract, hierarchical, high-level
modeling language, whose leaf nodes refer to model components defined
above.

4. There is a rich set of compatibility relations among model components.
Structural constraints focus on I/O signal types and simulation properties.
Component compatibility relates components via high-level design goals,
such as “fun-to-drive” or “green”.

The challenge is to synthesize integrated models that meet set design goals and
performance targets using the available model components. While the original model
compiler challenge [8] is defined in the context of Simulink® models, we generalized
the method and tools developed and made them independent from the actual domain
specific modeling languages and modeling tools used in a particular design flow.

The primary contribution of the described work is the DEsign Space ExploRation
Tool (DESERT), which starts with carefully constructed design spaces representing
design templates and synthesizes fully specified models that meet selected design
constraints. DESERT is a domain independent tool chain for defining design spaces
and executing constraint-based design space exploration. The DESERT tool chain can
be linked to different domain specific modeling environment via model
transformations. These domain specific modeling environments may include
hardware architecture or software architecture models.

The paper first gives a short summary of relevant concepts. This will be followed
by a discussion on constructing, shaping and aggregating design spaces. The paper
concludes with the description of our constraint-based model synthesis technique,
which is currently based on a symbolic representation of the design space and
symbolic pruning of the design alternatives.

2 Background and Terminology

In model-based design, systems are described by models expressed in domain
specific modeling languages (DSML). Formally, a DSML is a five-tuple of concrete
syntax (C), abstract syntax (A), semantic domain (S) and semantic and syntactic
mappings (MS, and MC) [9]:

L = < C, A, S, MS, MC>
The C concrete syntax defines the specific (textual or graphical) notation used to

express models, which may be graphical, textual or mixed. The A abstract syntax
defines the concepts, relationships, and integrity constraints available in the language.
Thus, the abstract syntax determines all the (syntactically) correct “sentences” (in our

case: models) that can be built. (It is important to note that the abstract syntax
includes semantic elements as well. The integrity constraints, which define well-
formedness rules for the models, are frequently called “static semantics”.) The S
semantic domain is usually defined by means of some mathematical formalism in
terms of which the meaning of the models is explained. The MC : A→C mapping
assigns syntactic constructs (graphical, textual or both) to the elements of the abstract
syntax. The MS: A→S semantic mapping relates syntactic concepts to those of the
semantic domain.

Any DSML, which is to be used in the development process of embedded systems,
requires the precise specification (or modeling) of all five components of the language
definition. The languages, which are used for defining components of DSMLs are
called meta-languages and the concrete, formal specifications of DSMLs are called
metamodels [1].

The specification of the abstract syntax of DSMLs requires a meta-language that
can express concepts, relationships, and integrity constraints. In our work in Model-
Integrated Computing (MIC) [4], we adopted UML class diagrams and the Object
Constraint Language (OCL) as meta-language. This selection is consistent with
UML’s four layer meta-modeling architecture [16], which uses UML class diagrams
and OCL as meta-language for the abstract syntax specification of UML.

The semantic domain and semantic mapping defines semantics for a DSML. The
role of semantics is to give a precise interpretation for the meaning of models that we
can create using the modeling language. Naturally, models might have different
interesting properties; therefore a DSML might have a multitude of semantic domains
and semantic mappings associated with it. For example, structural and behavioral
semantics are frequently associated with DSMLs. The structural semantics of a
modeling language describes the meaning of the models in terms of the structure of
model instances: all of the possible sets of components and their relationships, which
are consistent with the well-formedness rules in defined by the abstract syntax
(structural semantics is frequently called instance semantics [16]). Accordingly, the
semantic domain for structural semantics is defined by some form of set-relational
mathematics. The behavioral semantics describes the evolution of the state of the
modeled artifact along some time model. Hence, behavioral semantics is formally
modeled by mathematical structures representing some form of dynamics, such as
discrete transition system [2] or Hybrid Systems [3].

Although specification of semantics is commonly done informally using English
text (see e.g. the specification of UML 1.3 [16]), the desirable solution is explicit,
formal specification. There are two frequently used methods for specifying semantics:
the metamodeling approach and the translational approach (see Figure 1).
• In the meta-modeling approach (see e.g. [5]), the semantics is defined by a meta-

language that already has a well-defined semantics. For example, the UML/OCL
meta-language that we use for defining the abstract syntax of a DSML has a
structural semantics: it describes the possible components and structure of valid,
syntactically correct domain models. The semantics of this meta-language can be
represented by using a formal language, which supports the precise definition of
sets and relations on sets. By providing the formal semantics for UML class
diagrams and OCL - say, in Z [6]- the UML/OCL meta-model of the abstracts

syntax of a DSMLs specifies not only its abstract syntax, but its structural
semantics as well.

• The translational approach defines semantics via specifying the mapping
between a DSML and another modeling language will well-defined semantics.
As it can be seen on the right side of Figure 1, a model translator is a function
T: A1? A2 whose domain and co-domain are the abstract syntax specifications.
By choosing UML class diagrams and OCL as meta-language for the
specification of abstract syntax, the specification of the model translator can be
facilitated using graph transformations between (instance) graphs generatively
specified by the class diagram [7].

1

Concrete
Syntax

Abstract
Syntax

Semantic
Domain

Semantics

parses to

Meta-modeling language
with well-defined semantics

Concrete
Syntax

Abstract
Syntax

Semantic
Domain

Semantics

parses to

Represented by
Meta-model

Semantics

DSML Concrete
Syntax

Abstract
Syntax

Semantic
Domain

Semantics

parses to

Concrete
Syntax

Abstract
Syntax

Semantics

parses to

Semantic
Domain

translator

DSML

Semantics

Modeling language
with well-defined semantics

Semantics via meta-modeling Semantics via translation

Figure 1: Specification of semantics

As it will be shown later, formally specified structural semantics, meta-modeling

and model transformations play essential role in solving the model synthesis problem
in a domain independent manner. Although in this paper we focus on meta-models
representing the abstract syntax of DSMLs (because of their significance in defining
structural semantics and because of the central role of abstract syntax in specifying
model translations), we should mention that meta-models are also used for defining
behavioral semantics. For example, Lee and Sangiovanni-Vincentelli [19] developed
the Tagged Signal Model to compare models of computations. Burch, Passerone and
Sangiovanni-Vincentelly introduced trace algebras as semantic domain for modeling
behaviors in the Metropolis project [20]. These, and other meta-modeling approaches
have important roles in defining different behavioral semantics for DSMLs.

 3 Construction of the Design Space

Model structures for automotive control are specified as refinements of a generic
architecture [8] shown in Figure 2. Each top-level model component, such as
transmission, transmission control T/M, etc., has many alternative realizations with
different parameters and internal structure - arranged in a refinement hierarchy.
Accordingly, components at any level in the refinement hierarchy may have
alternative implementations. We call components with alternative implementations
templates. At the leaf nodes of the refinement hierarchy are the primitive model
components, which may also be templates with alternative (primitive)
implementations. In our specific application context, the primitive model components
are Simulink® models. (The “Bus” concepts on the diagram represent a set of
variables shared among the model components.)

The template concept has a significant impact on the structural semantics of
models. Without templates, each m model is unique, i.e. represents a point design. By
introducing templates in the specification of the modeling language, each model
including templates defines a set of models, MD, which we call design space. An mj∈
MD model instance in the design space is defined by binding the component templates
to one of the alternative implementations and by the binding the parameter values of
the parameterized components to a specific value.

Fig. 2. Top-level Model Architecture in Automotive Systems

Remark 1: The scalability of hierarchically structured alternatives in capturing
large design space can be judged from the following example: With a

alternative implementations per Template, and n Template blocks on
each level of an m -level deep refinement hierarchy, this

representation can define: mka design configurations, where

() nkk mm ×+= − 11 , and nk =1 , using just ()mna × primitives. As an
example, with 4=n , 3=a , and 3=m , a total of 1728 primitives can

represent 843 design configurations!
Remark 2: The design space captures all possible mj∈ MD model instances defined

by the instantiation of templates and model parameters. Therefore, the
essential semantics of a DSML, which is extended with the template
and parameter concepts is structural semantics.

The goal of model synthesis is to find model instances in the design space, which

satisfy design constraints regarding the feasible composition of model components
(see Compatibility Constraints in section 5.3) and satisfy selected structural
characteristics. Structural characteristics can be directly derived from structural
features of the model. For example, let C be the set of all primitive control
components and let Cj={c|c∈C,c∈mj} is the subset of primitive controller
components, which are elements of model mj∈MD. Furthermore, let cost(ci) is a
function, which assigns and estimated implementation cost for each primitive
controller components. Since the overall cost of the controller implementation for mj
is (approximately) the sum of the implementation cost of all controller components:
cost(Cj)=∑i cost(ci|ci∈C,ci∈mj), we can further restrict the design space with a cost
constraint L:

MD,<L={mj∈MD|cost(Cj)<L}
where MD,<L is the set of all models in the design space, whose controller cost is

less then L. The significance of structural constraints is that constraint-based design
space exploration tools can efficiently restrict the design space using computationally
inexpensive techniques.

Remark 3: As opposed structural constraints, behavioral constraints, such as
controller dynamic performance, require behavioral analysis of designs
using simulation or other analysis tools. Since simulation for large
models is expensive, it is a good strategy to restrict the design space
first by means of structural constraints and explore only the
structurally correct designs using simulation.

It is interesting to relate our concept of design space with the concept of platform

in Sangiovanni-Vincentelli’s platform-based design [21]. Applying the definition of
platforms in [22] we can conclude that the set of all designs that can arise from
composing the C set of primitive model components form a platform (we will refer to
this platform as Model Platform, MP). Clearly, the set of all designs, which can be
generated by combining the primitive model components (i.e. the Model Platform) is
not practical for automated model synthesis. The size of this set is unbounded and
includes practically only meaningless configurations, therefore any automated search
in that space would be hopeless. The top-down refinement strategy followed in our
design space construction strategy starts with an application (or a set of applications,

such as automotive controllers) and incrementally refines it to MP. Using the
terminology of platform-based design [21][22], we start by selecting a point or a set
of points in an Application Platform (formed by the interesting set of automotive
controllers) and capture the feasible refinement paths to MP via hierarchically layered
alternative refinements and parametrization. The resulting set of designs MD ⊂ MP
restricts tremendously the number of meaningless configurations. The remaining
meaningless configurations in the top-down refinement strategy are the result of
compatibility violations and neglected interdependences among design decisions.
However, we can express these formally by means of compatibility and
interdependency constraints, which than can be used for further restricting the design
space.

Creation of extensive, well structured design spaces for different category of
applications requires significant effort. However, this effort is not required in the form
of an initial investment, which is to be done before design space exploration can start.
We envision design space construction as byproduct of product development process;
the creation of a structured repository where design experience is accumulated.

4 Overview of the DESERT design flow

Our goal with DESERT has been to provide a model synthesis tool suite, which
can represent large design spaces and can manipulate them by means of structural
constraints. The place of these steps in the overall design flow is shown in Figure 3.
The input to the DESERT tool suite are models and model components used for
behavioral modeling and analysis (in our case Simulink® models). DESERT does not
require all details of Simulink models, only those, which are required to specify the
basic structure of designs.

1. The Component Abstraction tool maps Simulink® model components into
Abstract Components by executing the TA model transformation. The
Abstract Components preserve the structure of I/O interfaces (using
interface types) and configurable parameters.

2. The Design Space Modeling tool supports the construction of MD design
spaces using Abstract Components. Templates and parameters are the
added language constructs that enable modelers define design spaces
instead of point designs.

3. The Design Space Encoding tool maps the MD design space into a
representation form, which is suitable for manipulating/changing the
space by restricting it with various design constraints.

4. The Design Space Pruning tool performs the design space manipulation
and enables the user to select a design, which meets all structural design
constraints.

5. The Design Decoding tool reconstructs the selected design from its
encoded version.

6. The Component Reconstruction tool takes the design with abstracted
components and reconstructs the detailed design suitable for behavioral
analysis (i.e. it synthesizes the detailed Simulink model in our example).

Fig. 3. DESERT Design flow

In the following sections we describe the key principles we used in implementing the
system.

5 Specification of DSMLs in the DESERT Design Flow

As we discussed earlier, the domain and codomain of model transformations in the
design flow are represented through meta-models specifying the abstract syntax of the
modeling languages. The DESERT design flow includes several transformations on
the models. These transformations decouple the complex design space exploration
tools (Design Space Encoding and Design Space Pruning) from the domain (and tool)
specific detailed Simulink component models and from the Design Space Modeling
tool, which still uses a modeling language with domain specific flavor (although uses
abstracted components). In this section we show some of the important components of
the design flow focusing more on the approach rather then the technical details.

5.1 Component Abstraction

The TA model transformation receives Simulink® model components and generates
abstract components for Design Space Modeling. The domain of TA is represented by
the meta-model of the Simulink models, which is shown in Figure 4. (Detailed
description of the Simulink® meta-model can be found in [10].) In short, the System
class encapsulates a system model in Simulink. It serves as a container for the block
diagram that models a dynamical system. It contains Block objects and connections
(Line objects) between the Block objects. Some of these Block objects may be
Subsystem objects. A Subsystem can be composed as a block diagram. The
composition is indirect through a System object i.e. every Subsystem object contains
a single System object. This enables hierarchical representation of a complex system.

Component
Abstraction (TA)

Component
Reconstruction

Design Space
Modeler

Design Space
Modeling (MD)

Design Space
Encoding (TE)

Design Space
Pruning

Design
Decoding

Behavioral
Models
And
Model
Components

Behavioral
Design Flow

Every Model/Subsystem object contains a single System object. A System object
may also contain Annotation objects that are used to add documentary
information/user comments to the system models. The System class has a small set of
attributes that capture various visual preferences, printing preferences, and system
information.

-Name : String

Model

BlockDefaults
AnnotationDefault

s LineDefaults

-Name : String

System

-Name : String

Block

Subsystem Reference Primitive

1

1

1 *

1

1

Port

Masked Normal

Line

InputPort OutputPort

1

*

1*

1

-dstPort

1

1

-srcPort 1

1
1

1

1

Annotation

11

1*

Branch

DirectLineBranchedLine

DirectBranch NestedBranch

1

1..*

11..*

1

-dstPort

1

-Name : String

Parameter

-Value : String

Text

-Value : Boolean

Boolean

-Value : String

Enumeration

-Value : Integer

Integer

-Value : Double

Double

-Value : Variant

Vector

-Value : Variant

Type

1

0..*

Fig.4. Meta-model of Simulink®

The codomain of the TA model transformation is represented by the meta-model of
the Design Space Modeling tool. The meta-model is shown in Figure 5.

Similarly to the Simulink meta-model, the Design Space meta-model specifies also
a hierarchical block diagram language with object types Compound, Template and
SimulinkSystem. The SimulinkSystem objects refer to the abstracted components
imported from the Simulink environment. The Simulink and Design Space meta-
models in Figures 4 and 5 clearly show role of the TA (Component Abstraction)
transformation: internal details of the Simulink model objects are suppressed, only the
name (Name attribute in the System object) I/O interfaces (InputPort and OutputPort)
and parameters (Parameter object) are preserved in the Design Space Modeling
environment. The specific new constructs added to the meta-model for modeling
Design Spaces are the Template-s (see our earlier discussion on templates) and
Constraint-s. In DESERT’s Design Space Modeling environment the constraints are
described as OCL expressions [13].

Abstracted Simulink
Model Components

Fig.5. Design Space meta-model

5.2 Design Space Modeling

As we described earlier, the MD design space is constructed manually by Design
Space Modelers (see Figure 3). The DESERT tool suit uses Vanderbilt/ISIS
Graphical Modeling Environment (GME) as Design Space Modeling tool. GME is a
metaprogrammable graphical model builder [11], which can be customized to a
DSML via abstract syntax and concrete syntax specification in terms of meta-models.
The latest public release of GME3 is downloadable from the ISIS web site [12].

Design space modeling is essentially creating product line model architectures:
modelers incrementally build, expand the MD space by adding new primitive model
components (abstracted from Simulink models), and compose them into new versions
of plant and controller models. Note that this process is not the enumeration of all
possible designs; the designer merely specifies alternatives on various levels of the
hierarchy. While adding new implementation alternatives to plant and controller
models on various levels of the refinement hierarchy, the rapidly expanding design
space can be restricted by new compatibility and other structural constraints. To

remain consistent with the selected meta-modeling language (UML class diagrams
and OCL), we use OCL-based constraints [13] to “shape” the design space. While the
meaning of these constraints is domain-specific, there are typical constraint categories
that are suitable to demonstrate the method.

1. Compatibility constraints – Matching interfaces are not sufficient conditions
for composability. In fact, in many situations selection of implementation
alternatives are not orthogonal due to the lack of semantic compatibility. A
simple example for a semantic compatibility constraint for a design space
defined in a signal processing domain is shown in Figure 6. The meaning of
the constraint is that “Spectral domain correlation composes only with
Spectral domain filters and Spatial domain correlation composes only with
Spatial domain filters”.

Fig.6. Example for semantic composability constraints

2. Inter-aspect constraints – Inter-aspect constraints express interdependencies
among design spaces defined for capturing different aspects of designs. For
example, plant models and controller models can be represented in two
separate design spaces. Naturally, a large number of inter-dependencies exist
between the plant model configurations and controller configurations.
Composing an end-to-end system requires evaluating these inter-aspect
constraints. Inter-aspect constraints can be used to explicate these
dependencies and relations as a constraint network, which can then be
subsequently utilized in the design space exploration to systematically
synthesize a point-design for the aggregate system.

5.3 Design Space Encoding and Pruning

Up to this point, we identified constructs and methods for defining, aggregating and
constraining design spaces. The roles of the next two steps in the DESERT design
flow (see Figure 3) Design Space Encoding and Design Space Pruning are the
followings:

1. understand whether or not we have created inconsistency during design
space modeling (meaning that the design space is ‘empty’), and

2. find models that meet the required structural constraints.

Since we are focusing on structural semantics of the design space and intend to
compute with structural constraints, manipulation of design-spaces can be reduced to
set operations: calculating product spaces (composition of design spaces) and finding
subspaces that satisfy various (structural) constraints. Since the size of design-spaces
is frequently huge, execution of these set manipulation operations with enumerating
all elements is hopeless. Therefore, we choose to perform the manipulation operations
symbolically. Two problems had to be solved: 1) symbolic representation of design-
spaces, and 2) symbolic representation of constraints.

If we restrict the parameters of model objects to finite domains, the design space
will be also finite. By introducing a binary encoding of the elements in a finite set, all
operations involving the set and its subsets can be represented as Boolean functions
[15]. These can then be symbolically manipulated with Ordered Binary Decision
Diagrams (OBDD-s), a powerful tool for representing, and performing operations
involving Boolean function. The choice of encoding scheme has a strong impact on
the scalability of the symbolic manipulation algorithms, as it determines the number
of binary variables required for representing the sets. The details of our encoding
scheme has been described in [16], here we only demonstrate the approach.

Figure (7) shows the encoding of a simple design space formed by hierarchically
structured alternatives. In this example, s, the top-level node in the design space is a
template, which has three alternative implementations: s1 or s2 or s3. s1 is also a
template with three alternative implementations: s11 or s12 or s13. s2’s
implementation requires three components, s21 and s22 and s23. Out of these
components, s21 and s23 are templates with two-two alternative implementations,
s211 or s212 and s231 or s232, respectively. The prefix-based binary encoding
scheme [14] assigns binary code to each element such that each configuration
receives a unique encoding value. In the example, four Boolean variables, [ν0, ν1, ν2,
ν3] are required for the encoding of the structure. Figure (8) shows the symbolic
Boolean representation of this design space, given the encoding. For example, the
binary code of node s2 in the design space is S2=¬ν0ν1. As it can be seen, s2
represents a subspace in the design space with four alternative configurations.

S

S1 S2 S3

S11 S12 S13 S21 S22 S23

S211 S212 S231 S232

 _ _ _ _

 _ _ 0 0 _ _ 1 0 _ _ 0 1

 0 0 0 0 1 0 0 0 0 1 0 0

 _ 0 1 0 _ 1 1 0 0 _ 1 0 1 _ 1 0

S

S1 S2 S3

S11 S12 S13 S21 S22 S23

S211 S212 S231 S232

 _ _ _ _

 _ _ 0 0 _ _ 1 0 _ _ 0 1

 0 0 0 0 1 0 0 0 0 1 0 0

 _ 0 1 0 _ 1 1 0 0 _ 1 0 1 _ 1 0

Fig. 7. Encoding abstracted design-spaces

S=S1∨S2∨S3
S1=S11∨S12∨S13
S2=S21∧S22∧S23
S21=S211∨S212
S23=S231∨S232

S11=¬v0¬v1¬v2¬v3
S12=¬v0¬v1¬v2v3
S13=¬v0¬v1v2¬v3
S22=¬v0v1
S3=v0¬ v1

S211=¬v0v1¬v2
S212=¬v0v1v2
S231=¬v0v1¬v3
S232=¬v0v1v3

S=S1∨S2∨S3
S1=S11∨S12∨S13
S2=S21∧S22∧S23
S21=S211∨S212
S23=S231∨S232

S11=¬v0¬v1¬v2¬v3
S12=¬v0¬v1¬v2v3
S13=¬v0¬v1v2¬v3
S22=¬v0v1
S3=v0¬ v1

S211=¬v0v1¬v2
S212=¬v0v1v2
S231=¬v0v1¬v3
S232=¬v0v1v3

Fig. 8. Symbolic Boolean representation of abstracted design-spaces

In addition to encoding the structure of the design-space, the encoding scheme has
to encode the parameters of the parameterized model components. Subsequent to
encoding, and deciding the variable ordering, the symbolic Boolean representation is
mapped to an OBDD representation in a straightforward manner [14].

Earlier we listed some basic categories of structural constraints. Symbolic
representation of each of these categories of constraints is summarized below.

1. Compatibility and Inter-aspect constraints – These constraints specify
relations among subspaces in the overall design space. Symbolically, the
constraints can be represented as a Boolean expression over the Boolean
representation of the design-space. Figure (9) shows an example of a
compatibility constraint, and its symbolic Boolean representation. The
compatibility constraint in the example expresses interdependency between
implementation decisions. Specifically, selection of implementation s211 for
template s21 implies that s231 must be the selected implementation for
template s23. In the Boolean space, this constraint is expressed by the
following Boolean expression:
 cc= S211 ⇒ S231=S211∧ S231∨ ¬S211

2. Resource constraints – Resource constraints specify bounds on the resource
needs of a composed system. These may be in the form of size, weight,
energy, cost, etc. As we described earlier, the important limitations for the
resource constraints, which DESERT is able to manage is that they are

derived from structural characteristics of designs. In general, resource
constraints are more challenging to represent symbolically, than
composability or inter-aspect constraints. Different resource attributes
compose differently, e.g. cost can be composed additively, reliability can be
composed multiplicatively, latency can be composed as additively for
pipelined components, and as maximum for parallel components, etc.
DESERT provides some built-in composition functions (addition, maximum,
minimum, etc.), and has a well-defined interface for creating custom
composition functions.

S

S1 S2 S3

S11 S12 S13 S21 S22 S23

S211 S212 S231 S232

 _ _ _ _

 _ _ 0 0 _ _ 1 0 _ _ 0 1

 0 0 0 0 1 0 0 0 0 1 0 0

 _ 0 1 0 _ 1 1 0 0 _ 1 0 1 _ 1 0

cc=S211⇒S231
cc=S211∧S231∨¬S211
cc=¬v0v1¬v2¬v3∨v0∨¬v1∨v2

S

S1 S2 S3

S11 S12 S13 S21 S22 S23

S211 S212 S231 S232

 _ _ _ _

 _ _ 0 0 _ _ 1 0 _ _ 0 1

 0 0 0 0 1 0 0 0 0 1 0 0

 _ 0 1 0 _ 1 1 0 0 _ 1 0 1 _ 1 0

S

S1 S2 S3

S11 S12 S13 S21 S22 S23

S211 S212 S231 S232

 _ _ _ _

 _ _ 0 0 _ _ 1 0 _ _ 0 1

 0 0 0 0 1 0 0 0 0 1 0 0

 _ 0 1 0 _ 1 1 0 0 _ 1 0 1 _ 1 0

cc=S211⇒S231
cc=S211∧S231∨¬S211
cc=¬v0v1¬v2¬v3∨v0∨¬v1∨v2

Fig. 9. Symbolic representation of a compatibility constraint

In addition to these basic categories of constraints, complex constraints may be
expressed by combining one or more of these constraints with first order logic
connectives. The symbolic representation of the complex constraints can be
accomplished simply by composing the symbolic representation of the basic
constraints.

The symbolic pruning of the design-space, as observed earlier, in essence, is a set
manipulation problem. Constraint-based pruning is a restriction of the aggregate space
with the constraints. Symbolic pruning is simply the logical conjunction of the
symbolic representation of the space with the symbolic representation of the
constraints. It is worth emphasizing that during the pruning process all of the
(potentially very large) design spaces are evaluated simultaneously. Figure 9
illustrates the process of symbolic design-space pruning. As the figure shows, the
Design Space Pruning tool is prepared for applying constraints on the Design Space.
According to our experience, OBDD based representations scale well for representing
the structure of the design space (nested AND/OR expressions). The critical challenge
in scalability occurs during the design-space pruning step. Automatic application of
complex constraints to large spaces may result in explosion of the OBDD-s therefore
DESERT has an interactive user interface to influence this process. Users can control
the importance of constraints and select the sequence order of their application. We
are experimenting with re-encoding the design-space after each pruning steps, which
usually results in a drastic decrease in the number of binary variables (see Figure 10).

The primary advantage of the symbolic design space pruning approach is that it is
exhaustive: the pruned space includes all of the designs, which meet the applied
design constraints. As experience with scalability in real-life industrial applications at
Ford Research accumulate, we will be able to see the limitations of the method.

A significantly simpler, but still useful alternative approach to design space
pruning is to find a single design configuration (not all), which satisfies the selected
design constraints. We currently experiment with various constraint solvers and
languages, such as Oz [17] to develop solution for this approach.

Design Space
1 (Hier. Alt)

Constraints

Binary
Encoding

OBDD
Representation

OBDD
Representation

Symbolic
Design
Space

Pruned
Design
Space

Apply

Re-encoding/Iterative Pruning

Parsing/
Composing

Design Space
2 (Hier. Alt)

Binary
Encoding

OBDD
Representation

Design Space
n (Hier. Alt)

Binary
Encoding

OBDD
Representation

…

Design Space
1 (Hier. Alt)

Constraints

Binary
Encoding

OBDD
Representation

OBDD
Representation

Symbolic
Design
Space

Pruned
Design
Space

Apply

Re-encoding/Iterative Pruning

Parsing/
Composing

Design Space
2 (Hier. Alt)

Binary
Encoding

OBDD
Representation

Design Space
n (Hier. Alt)

Binary
Encoding

OBDD
Representation

…

Fig. 10. Symbolic design space pruning

5.4 Reconstructing Detailed Design

The concluding steps of the DESERT design flow (see Figure 3) are the decoding
of the selected abstract design from its binary code and reconstructing the detailed
models from the abstract design. The decoding process involves reconstructing a data
structure from the encoded form, where the data structure is an abstracted
representation of the actual design. The design space encoder and decoder
components operate on a shared “dictionary”, which captures what specific design
space model elements correspond to what codes. The resulting data structure is a
specific, point design (i.e. a single model m), which can be looked at in the modeling
tool. Naturally, it does not have any templates (i.e. no alternatives).

The final step is the creation of the actual design model in Simulink. The design
model created in the design decoding step is follows the Design Space metamodel
(from Figure 5), and from it a model is constructed that follows the Simulink
metamodel (from Figure 4). This construction is mostly straightforward, the only
complication arises because of the connections: the blocks in the final design have to
be “wired-up” as required. However, this wiring can be algorithmically generated
from the (higher-level) buses and wires captured in the design space models.

6. Conclusions and Future Work

Design space modeling and model synthesis are important part of the design flow
for embedded systems. Automated tools can offer major productivity advantages for
practicing engineers. During the development of the DESERT tool suite the
Vanderbilt/ISIS team has been in close interaction with Ford Research, which was
essential in identifying the crucial challenges engineers face. At this point, the
prototype tool is field tested in real-life vehicle development programs.

The method described has been based on the structural semantics of models. The
role of model synthesis based on structural constraints is to prune the design space
before the computationally more expensive behavioral analysis methods are used for
finding optimal design solutions. Since structural semantics is defined for all domain
specific modeling languages, the tool suite can be interfaced to many design flows
(independently from the behavioral semantics of the languages). We have been using
this opportunity extensively in other domains, such as modeling environment for
power-aware computing [18].

References

[1] Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: “Model-Integrated
Development of Embedded Software”, Proceedings of the IEEE, Vol. 91, No.1.,
pp.145-164, January, 2003

[2] D. Harel and M. Politi, Modeling Reactive Systems with Statecharts: The
STATEMATE Approach, McGraw-Hill, 1998

[3] Thomas A. Henzinger. The theory of hybrid automata. Proceedings of the 11th
Annual Symposium on Logic in Computer Science (LICS), IEEE Computer
Society Press, 1996, pp. 278-292

[4] J. Sztipanovits and G. Karsai: “Model-Integrated Computing,” IEEE Computer,
April, 1997 (1997) 110-112

[5] Clark, T., Evans, A., Kent, S.: “Engineering Modeling Languages: A Precise
Metamodeling Approach,” R.-D. Kutsche and H. Weber (Eds.): FASE 2000,
LNCS 2306, pp. 159-173, 2002

[6] Evans, A., France, R., Lano, K., Rumpe, B. : « Developing UML as a Formal
Modeling Notation,”LNCS 1357, pp. 145-150, Springer Verlag Berlin, 1997

[7] Levendovszky, T., Karsai G.: “Model reuse with metamodel based-
transformations,” ICSR, LNCS, Austin, TX, April 18, 2002.

[8] Butts, K., Bostic, D., Chutinan, A., Cook, J., Milam, B., Wand, Y.: “Usage
Scenarios for an Automated Model Compiler,” EMSOFT 2001, LNCS 2211,
Springer. (2001) 66-79

[9] T. Clark, A. Evans, S. Kent, P. Sammut: “The MMF Approach to Engineering
Object-Oriented Design Languages,” Workshop on Language Descriptions, Tools
and Applications (LDTA2001), April, 2001

[10] Neema, S.: “Simulink and Stateflow Data Model”, see www.isis.vanderbilt.edu.

[11] Nordstrom G., Sztipanovits J., Karsai G., Ledeczi, A.: "Metamodeling - Rapid
Design and Evolution of Domain-Specific Modeling Environments", Proceedings
of the IEEE ECBS'99, Nashville, TN, April, 1999. (1999) 68-75

[12] Generic Modeling Environment documents,
http://www.isis.vanderbilt.edu/projects/gme/Doc.html

[13]Object Constraint Language Specification, ver. 1.1, Rational Software
Corporation, et al., Sept. 1997. (1997)

[14] Neema, S., “Design Space Representation and Management for Embedded
Systems Synthesis,” Technical Report, ISIS-01-203, February 2001.
http://www.isis.vanderbilt.edu/publications/archive/Neema_S_2_0_2003_Design_
Spa.pdf

[15] Bryant R., “Symbolic Manipulation with Ordered Binary Decision Diagrams,”
School of Computer Science, Carnegie Mellon University, Technical Report
CMU-CS-92-160, July 1992

[16] UML Semantics, Ver. 1.1., Rational Software Corporation, 1997.
[17] http://www.mozart-oz.org/
[18] Ledeczi A., Davis J., Neema S., Eames B., Nordstrom G., Prasanna V.,

Raghavendra, C., Bakshi A., Mohanty S., Mathur V., Singh M.: Overview of the
Model-based Integrated Simulation Framework, Tech. Report, ISIS-01-201,
January 30, 2001.

[19] Lee, E.A., Sangiobanni-Vincentelli, A.L.: “A framework for comparing models
of computations,” IEEE Transactions on Computer Aided Design Integrated
Circuits, 17(12):1217-1229, Dec. 1998.

[20] Burch, J.R., Passerone, R., Sangiovanni-Vincentelli, A.L.: “Modeling
Techniques in Design-by-Refinement Methodologies, Proc. of IDPT-2002, June,
2002

[21] Sangiovanni-Vincentelli, A.L.: “ Defining platform-based design,” EEDesign,
February, 2002

[22] Lee, E.A., Neuendorffer, S., Wirthlin, M.J.: “Actor-Oriented Design of Hardware
and Software Systems,“ (to be published in Journal of Circuits, Systems and
Computers) Technical Memorandum UCB/ERL M02/13, University of California,
Berkeley, CA 94720, May 1, 2002

