
Institute for Software Integrated Systems
Vanderbilt University

Nashville Tennessee 37235

__

TECHNICAL REPORT

__

TR #: ISIS-01-203

Title: Design Space Representation and Management for Model-

Based Embedded System Synthesis

Author: Sandeep Neema

Copyright © Vanderbilt University, 2001

Abstract

In the synthesis of embedded systems from models, the designer represents complex
systems with domain-specific, multi-aspect, abstract models. Synthesis of optimal
systems requires consideration of many factors: Algorithmic, environmental,
specifications, target hardware, etc. These are often variables, with specifications and
target platforms evolving. This approach presents a way to capture a system solution in
terms of a design space, encompassing not just a single point design responding to a
single spec/target platform, but a range of designs that can cover an evolving target.
Achieving this is a complex task, requiring the capability to represent flexible design
spaces, and more importantly, manage and navigate the space to find (and synthesize)
feasible target designs.

The tool part of the Model-Integrated Design Environment for Adaptive Computing
Systems. The methods used to capture the design space are reported, as well as unique
Ordered Binary Decision Diagram-based methods for representing and simultaneously
evaluating an entire space.

KEYWORDS
Functional Simulation, Component-Based Design, Interface Synthesis, HW/SW Synthesis,
FPGA, VHDL, Design Environment, Model-Integrated Computing.

ACKNOWLEDGMENTS
This work was sponsored by the Defense Advanced Research Projects Agency, Information
Technology Office, under contract # DABT63-97-C-0020.

INTRODUCTION: SYSTEM MODELING

Developing a model for an industrial-strength software system prior to its

construction or renovation is as essential as having a blueprint for large building [1].
This chapter will focus on the concepts required to provide a modeling environment for
adaptive computing systems. A rigorous modeling paradigm is an essential requirement
of a modeling environment. In a synthesis methodology, the modeling paradigm is
determined primarily by the synthesis goals, the execution semantics of the target system,
the target architecture, and the constraints – operational as well as physical. The chapter
starts out by formally specifying adaptive computing systems addressed by this
dissertation. For an environment to successfully support the modeling of systems, the
environment must faithfully reproduce the domain specific concepts, relations, and
composition principle routinely used by the designers [2][3]. For that reason familiar,
well-understood modeling formalisms are employed for representation of different
aspects of an adaptive computing system. The chapter explores existing modeling
formalisms that can be extended and combined to represent adaptive computing systems.
An important notion relevant to system design and synthesis is the creation of a design
space. Most state-of-the-art design methodologies employ modeling paradigms that
support modeling of point-designs for systems. This chapter develops the concept of
creating flexible design space by modeling design alternatives. The last section of this
chapter puts all the concepts together in a modeling paradigm used in the creation of a
Domain Specific Modeling Environment (DSME) in accordance with the Multi-Graph
Architecture (MGA) [2]. A constraint language for expressing system constraints is also
described.

Multi-modal Structurally Adaptive Computing (MSAC) Systems

The target systems of this research are embedded real-time, adaptive signal and
image processing systems. Specifically, a mode-based structural adaptation of the system
is considered. This section elaborates upon the semantics of mode-based structural
adaptation, and concludes with the requirements for a modeling paradigm.

The target systems operate in a dynamic environment that imposes varying
functional and performance requirements on the system. It is assumed that the
operational space of the system is bounded and can be characterized into finite, discrete
modes of operation. The system reconfigures (adapts), when transitioning from a mode
of operation to another to satisfy the distinct requirements per mode of operation. Mode
transitions are triggered in response to stimulus from the environment in the form of
events. The system adaptation policies are expressed in the transitions and the transition
rules. The modes of operation, transitions, and transition rules together constitute the
operational behavior of the system.

The functional requirements in each mode of operation define the complex
signal/image processing computations that the system has to perform, and the
performance requirements specify the constraints that the computations in a given mode
must satisfy. The computations are implemented as a set of computational components,

concurrently executing over a network of heterogeneous processing elements ranging
from processors (RISC/DSP) to configurable hardware (FPGA), and communicating via
signals or dataflow. The network of heterogeneous processing elements constitutes the
execution resource set of the system. The set of computational components, the
communication topology between the components, and the resource allocation together
define the computational structure of the system. System configuration refers to the
computational structure of the system, and the reconfiguration in transitioning from a
mode of operation to another involves changing the computational structure of the
system, hence the term mode-based structural adaptation.

From the above description four closely-coupled yet distinct aspects can be
identified that factor into the design of an MSAC system. These are:

1. The operational behavior;
2. The execution resources;
3. The computational structure per mode of operation; and

4. The constraints.

In order to design and synthesize systems, all these aspects and their interactions
must be modeled explicitly and formally. There are rich modeling formalisms for
modeling each of these aspects independently. The challenge is to augment these
modeling formalisms and combine them in an integrated modeling environment such that
design engineers working with different aspects can work with formalisms familiar to
them and yet cooperate and meaningfully exchange information with each other.

The sub-sections below formalize the different aspects listed above and identify
the modeling formalisms that will be augmented and used for modeling each of these
aspects in the modeling environment.

Operational Behavior

Formally, the operational behavior of an MSAC system can be expressed as a 5-
tuple.
 { }0,,,, mTCTEM (1)
where,

M is a finite set of modes of operation;
E is a finite set of events;

MMT ×⊆ is the set of transitions;
{ }falsetrueTETC P ,: →× denotes the trigger conditions on transitions, PE

being the power set of E ; and
Mm ∈0 is the initial mode of operation.

The operational semantics can be described with a directed graph known as mode
transition graph. The nodes of this graph represent modes of operation of the system,
and the edges of the graph represent transitions. Edges are labeled with trigger
conditions, a Boolean expression over the events Ee ∈ . Events are Boolean variables
that are set to signify a change in the operating environment. An event is said to occur
when the variable is set. Events may occur asynchronously, and multiple events may
occur simultaneously. At any point of time the system is in some mode of operation

Mm ∈ . A transition is enabled when the system is in a mode of operation represented
by the source node of the arc denoting the transition, and the trigger condition associated
with the transition is satisfied. The operational behavior of the system is deterministic
i.e. at any time no more than one transition is enabled simultaneously. An enabled
transition is taken by the system and the destination of the transition becomes the current
mode of operation. Figure 1 shows a mode transition graph.

41 ee ∧

3m

1m
2m

4m
41 ee ¬∧

2e

3e

124 eee ¬∨∧

41 ee ∧

3m3m

1m1m
2m2m

4m4m
41 ee ¬∧

2e

3e

124 eee ¬∨∧

Figure 1: A mode transition graph

The operational semantics discussed above may be modeled with the Finite State
Machine (FSM) representation, a modeling formalism popular for representing
behavioral specifications. The FSM representation describes behavior in terms of states,
transitions, and events. The modes of an MSAC system map directly to the states in an
FSM representation. However, the FSM representation can be unwieldy for large
systems when the number of modes and transitions are large. Extensions have been
proposed to the FSM representation to introduce hierarchy and concurrency by Harel [7].
In a hierarchical FSM, a state may be further refined into another FSM. Hierarchy
simplifies the visual representation and makes the FSM representation more intuitive.
Further, use of hierarchy promotes top-down design practices and varying levels of
granularity when modeling system behavior. In a concurrent FSM, multiple FSMs, each
of which is sequential may be composed concurrently and the current state of the system
is a tuple defined by the current state of the individual composing FSMs. Concurrent
FSMs may be flattened; however the state space of the flattened FSM is a cross product
of the state spaces of the composing FSMs. Concurrency in the FSM representation is
extremely valuable in capturing fine-grained parallelism. Use of hierarchy and
concurrency together in the FSM representation can modularly capture very large state
spaces.

Execution Resources

Formally, the execution resources may be expressed as a set R of resources
(processing elements) available for system execution. For the purpose of this dissertation
this abstraction is sufficient, however, for the purpose of generating executable artifacts,
the inter-connect topology of the network is of interest. The resource network can be
described with an attributed directed graph known as resource network graph. The nodes
of this graph represent the resources, while the edges of this graph represent a physical
communication channel between the resources. Communication channels are
unidirectional by default; a bi-directional channel is indicated with two edges in opposite
directions between the communicating nodes. Figure 2 depicts a resource network graph.

GPP

ASIC

FPGA

A/D

GPP

ASIC

FPGA

A/D

Figure 2: A simple network of resources

Architecture Flow Diagrams (AFD) developed by Hatley and Pirbhai form a
suitable basis for modeling the physical architecture of a system [11]. Architecture Flow
diagrams is a block diagrammatic representation consisting of Architecture Modules, and
Information Flow Channels. An architecture module may be a physical module i.e. a
processing element (DSP, RISC, FPGA, ASIC), a storage element (Memory), a sensor or
an actuator element (AD/DA). An architecture module may also be a composite module
that can be used to create hierarchical architecture descriptions. An information flow
channel represents a physical communication channel between the architecture modules.
This basically captures the as-built topology of the target architecture, along with
parametric information about processing capacities, communication bandwidths, and
storage capacities.

Computational Structure

Formally, the computational structure of the sys tem may be expressed as a 3-tuple
 { }AFP ,, (2)
where,

P is the set of computational processes (components);
PPF ×⊆ is the set of dataflow between processes; and
RPA →: is the resource allocation. Each process is assigned to a processing

element.
The semantics of the computational structure can be described with an attributed

directed graph known as process graph [13]. The nodes of this graph are computational
processes. The edges of this graph represent communication (dataflow) between
processes. Conceptually the processes operate continuously and concurrently
transforming infinite sequence of input data to infinite sequence of output data. The
processes communicate via exchange of data tokens. The communication is
asynchronous and the tokens are buffered in FIFO queues. The processes in the process
graph are distributed and executed over the set of resources R . Owing to the
heterogeneity of the resources, some processes may be implemented as hardware
functions and others may be implemented as software functions. When implementing the
processes as software functions executing on a sequent ial processor, the concurrency is of
a conceptual nature and in reality the processes are scheduled for execution periodically
by a runtime infrastructure. The process is scheduled for execution when all the inputs to
the process are available. An execut ion of the process consumes data tokens on the
inputs and produces data tokens on the outputs. Figure 3 shows a process graph.

2p

1p
3p

4p
2p2p

1p1p
3p3p

4p4p

Figure 3: A simple process graph

The above semantics can be captured as a Dataflow Model, a modeling
formalism, particularly suitable for modeling image and signal processing computations
[13]. The basic dataflow model does not support hierarchical representation. However,
many extensions have been proposed that introduce hierarchy in the dataflow model [14].
In these extensions a dataflow block may be refined to contain another dataflow. The
basic dataflow execution semantics have been extended to hierarchical dataflow.

The basic dataflow model captures a single solution for implementing a particular
set of functional requirements. As emphasized earlier, however, point solutions obtained
by suppressing alternatives lead to sub-optimal and inflexible designs. A need for
capturing design spaces, by modeling alternatives explicitly was demonstrated earlier.
This research extends the dataflow representation to enable representation of design
alternatives. With this extension a dataflow block may be decomposed in two different
ways. The first type of decomposition is a hierarchical decomposition in which a
dataflow block can contain a dataflow model. The second type of decomposition is an
orthogonal decomposition, in which a dataflow block contains more than one dataflow
block as alternatives. In this case the container block defines only the interface of the
block and is devoid of any implementation details. The dataflow blocks contained within
the container define different implementations of the interface specifications. With these
extensions i.e. hierarchy and alternatives, a dataflow model can modularly capture a large
number of different computational structures together to form a configuration space.

Constraints

Constraints play two important roles in this research. Primarily, constraints are
used to: a) establish linkages and describe interactions between the elements of the
different aspects of an MSAC system viz. modes of operation, computational processes,
and resources; and b) express restrictions over the composite properties of a
computational structure.

The different aspects of an MSAC system are closely coupled together, and there
are complex interactions that must be represented and enforced. For example, the
functional and performance requirements are driven by the mode of operation, and hence
the selection of appropriate computational alternatives, and the allocation of resources to
computational processes is typically mode dependent. An English language expression
of such a constraint would be: “when current mode of operation is mode X, then
select alternative A of functionality F, and allocate resource R to
alternative A”. Typically there are consistency and typing restrictions when
composing different alternatives of different functionality e.g. “alternative A1 of
functionality F1 must be composed with alternative A2 of functionality

F2 and a single resource R1 must be allocated to both A1 and A2 ”. These
types of constraints take the form of a relationship between different elements. Complex
relationships can be created by combining primitive relationships with first order logic
connectives.

The second form of constraints express restrictions over the composite properties
of a computational structure. A common example of such a constraint would be a
maximum limit on end-to-end latency of a complex computational structure, or a bound
on the power consumption of a computational structure. These are composite properties,
as they are not inherent to the computational structure, but are composed from the
inherent properties of the basic components of the computational structure. For example,
the end-to-end latency of a complex computational structure is the sum of latencies of the
basic building blocks of the computational structure. This form of constraint restricts the
selection of alternatives and their composition. Typically, the two forms of constraints
are combined together.

Object Constraints Language (OCL), a part of the Universal Modeling Language
(UML) suite, forms a good basis for expressing the type of constraints shown above [15].
OCL is a declarative language, typically used in object modeling to specify invariants
over objects and object properties, pre- and post- conditions on operations, and as a
navigation language. This dissertation extends a subset of OCL to express the type of
constraints referred to above. The extended constraint language is specified later in this
chapter.

The different aspects formalized above can be put together to form a formal

definition of an MSAC system. Formally, an MSAC system can be defined as an 8-tuple:
 { }MCCRmTCTEMD ,,,,,,, 0= (3)
where,

D denotes an adaptive computing system;
C is a set of system configurations (computational structures) specified above;

and
CMMC →: is the mapping function that associates each mode of operation

with a configuration. A mode transition in the operational behavior implies a system
reconfiguration.

This concludes the specification of the adaptive computing systems addressed by

this research. The next section describes a modeling paradigm defined for the creation of
a modeling environment.

Modeling Paradigm

The Multi Graph Architecture (MGA) provides a unified software architecture
and framework for creating a Model Integrated Program Synthesis (MIPS) environment
[5][2]. The core components of the MGA are a customizable Graphical Model Editor for
creation of multi-aspect domain-specific models, Model Databases for storage of the
created models, and a Model Interpretation technology that allows creation of domain-
specific, application-specific model interpreters for transformation of models into
executable/analyzable artifacts. The details of the MGA are presented in Appendix A.

The created environment is domain specific and includes tools and functionality for
creation and storage of system models, and generation of executable/analyzable artifacts
from system models.

The customization and creation of a domain specific MIPS environment involves
a careful analysis of the needs of the domain engineers, the components and the
composition principles used in the domain, and the target applications. For an
environment to successfully support the creation of systems, the environment must
faithfully reproduce the concepts employed by design engineers. The previous section
addressed the requirements of an adaptive computing system design environment and
identified the modeling formalisms that must be employed for modeling and designing
adaptive computing systems. This section addresses the instantiation of the modeling
concepts and formalisms in an MGA based MIPS environment.

In the MGA technology, the modeling concepts to be instantiated in the MIPS
environment are specified in a meta-modeling language. A metamodel of the modeling
paradigm is constructed that specifies the syntax, static semantics, and the presentation
semantics of the domain specific modeling paradigm. The metamodel captures
information about the objects that are needed to represent the system information and the
inter-relationship between different objects as a UML class diagram. The meta-modeling
language also provides for the specification of visual presentation of the objects in the
MGA graphical model editor.

The MGA based Adaptive Computing System design environment divides the
modeling process into four categories in accordance with the aspects of an MSAC system
identified earlier:
Operational Behavioral Modeling – In this first category, the operational behavior of an
MSAC system is modeled. The designer can specify the operating modes of the system
M , the legal transitions between modes T , the conditions for transition TC , and system
events E in an extended Finite State Machine formalism. The modeling category also
enables association of a mode of operation with a computational structure.
a. Computational Structure Modeling – In this category, the computational

structures set C of the system is modeled. Multiple dataflow models may be
created, each customized for a particular mode. Alternately, a single dataflow
model may encapsulate multiple structures using alternatives.

b. Execution Resource Modeling – In this category, the set of resources R
available for system execution are modeled. Along with the physical
processors, configurable hardware (FPGA), I/O, memory devices, the
interconnection topology is also modeled.

c. Constraint Modeling – A textual constraint language has been provided that
allows for expression of interactions and linkages between modeling objects in
same or different categories, and expression of performance constraint over
computations. The constraint language is derived from OCL as specified
earlier.

The metamodel of these modeling categories, and the constraint language is
described below.

Operational Behavior Modeling

Behavioral models capture the operational behavior of the system. As identified
earlier a Discrete Finite State Machine representation, extended with hierarchy and
concurrency, is selected for modeling the dynamic behavior of the system. This
representation has been selected due to its scalability, universal acceptability, and ease-
of-use in modeling. Figure 4 illustrates the behavior modeling aspect of the metamodel
of the modeling paradigm. The objects used for creating a hierarchical, parallel, finite
state machine representation and their inter-relationships are expressed as a UML class
diagram in this figure.

The primary object in a finite state machine representation is a state. States define
operational modes of the system. Hierarchy is enabled in the representation by allowing
States to contain other States. Attribute of this object defines the decomposition of the
state. The State may be an AND state, when the state machine contained within the State
is a concurrent state machine. The State is an OR state, when the state machine contained
within the State is a sequential state machine. If the State does not contain child States
then it is specified as a LEAF state. In MGA there are two kinds of modeling objects,
models and atoms. Models are compound objects that may contain other objects. Atoms
are atomic objects that have no internal decomposition. States are complex object with
an internal decomposition and hence States are mapped to MGA models.

In addition to states in a finite state machine representation, transitions define the
potential conditions required for the system to change states and the destination state.
Transition objects in the modeling environment are used to model a transition from one
mode to another. The attributes of the transition object define the trigger and the guard
condition. The trigger and guard are Boolean expressions. When these Boolean
expressions are satisfied the transition is enabled and mode change accompanied with
system reconfiguration can take place. Transitions are mapped to MGA atom, as they
have no internal decomposition. To denote a transition between two States two
connections have to be made, one from the source State to a Transition object, and
another from the Transition object to the destination State. Unfortunately MGA does not
support direct connect between MGA models. Connection in MGA can be made only
between atoms or ports. Ports are atomic object contained in a model and used as a link
part. Thus, in order to enable transition connections between States, port objects have to
be inserted in the State. The InputTransition object and the OutputTransition object have
been provided for this reason. Sometimes, transition between two States at different
levels of the hierarchy has to be specified. This is enabled in the MGA by referencing the
OutputTransition object of source State or the InputTransition object of the destination
State. Reference is an MGA modeling artifact that is used to create a pointer- like link to
models or atomic objects. In the metamodel a reference is represented as an association
class. In the FSM formalism, the initial state is denoted by drawing an arrow without
source to a state. In the MGA technology connections without a source cannot be
specified. Therefore, a connection is made from an InitialTransition object to an
InputTransition port of a State to denote the initial state.

In addition to states and transitions, the FSM representation includes events.
These can be directly sampled external signals or complex computational results. In the
modeling paradigm Event objects capture the event variables. Events are mapped to
MGA atoms.

-Description : String
-Decomposition : Integer

State

-Trigger : String
-Guard : String

Transition
InitialTransition

1

-transitions 0..*

InputTransition

OutputTransition

1 -states 0..*

1

-inputTransition0..1

1

-outputTransition 1

1

-initial 0..1

Event

1

-localEvents0..*

StateReference
1

-stateHookup 0..1

StateHUReference

0..*0..*

-stateHURefs

EventReference

0..*0..*

-eventRefs

InputTransReference

0..*0..*

-inputTransRef

OutputTransReference

0..*0..*

-outputTransRef

-Expression : String

Constraint

ProcessingReference

0..*

0..1-procRef

1

-constraints 0..*

TransitionObjects TransitionConnection

-src 1

-dst

1

-Description : String

ProcessingObjects

Figure 4: Metamodel of operational behavior modeling

The computation to be executed in a mode of operation is defined by associating a
mode with a computational structure. In the modeling environment this association is
expressed by referencing a processing object (described later) in a State. The references
allow a single computational structure to be applied to any number of modes, or allow all
modes to have separate computational structures.

In addition to the above objects a State may also contain Constraint objects. A
constraint object is an atomic object with a textua l attribute that is used to specify a
constraint expression in the constraint language specified later.

Computational Structure Modeling

This modeling category is used to describe the computational structure. A
dataflow representation with extensions for hierarchy and alternatives has been selected
for modeling computational structure. This representation describes computations in
terms of computational processes and their data interactions. To manage system
complexity, the concept of hierarchy is used to structure computation definition. The
representation is extended to enable capturing explicit design alternatives. This extension
allows a designer to represent extremely large configuration spaces in a highly modular
and scalable manner. Figure 5 illustrates the computational structure modeling aspect of
the metamodel of the modeling paradigm. The different objects and their inter-
relationship are described below.

The computational structure is modeled with the following classes of objects:
Compounds, Primitives, and Templates. These objects represent a computational process
in a dataflow representation. DataPorts are used to define the interface of these
processes, through which the processes exchange information. DataPorts are specialized
into InputPorts that represent inputs to a computation, or OutputPorts that represent the
outputs from a computation. The attributes of the DataPort objects characterize the data
that can be exchanged with the component. Attributes specify data type, data rate, data
format, and data size.

-Description : String

ProcessingObjects

-PortNumber : Integer
-DataRate : Double
-DataType : Integer
-DataFormat : Integer
-DataPathWidth : Integer
-FlowControl : Integer

DataPorts

InputPorts OutputPorts

Template

1

-dataInputs 0..*

1

-dataOutputs 0..*

-Expression : String

Constraint

1

-constraints

0..*

ResourceReference

0..*

0..1

-resourceRefResourceReference

0..*

0..1-resourceRef

Compound

-ScriptName : String
-FileName : String
-Throughput : Integer
-Latency : Integer
-Area : Integer
-ResourceType : Integer

Primitive

-Description : String

Resource

-src

1

-dst

1

DataFlowConnection

1

-components

1..*

1

-alternatives

1..*

Figure 5: Metamodel of computational structure modeling

A Primitive is a basic element representing the lowest level of processing that is
modeled. A Primitive maps directly to a processing function that will be implemented as
either a hardware macro or a software function. Primitive objects are annotated with
attributes. These attributes capture measured performance, resource (memory/area)
requirements, and other user-defined properties. Specifically, Latency attribute captures
the pre-determined latency of the primitive, Area attribute captures the gate count when

the primitive is a hardware macro, and code size when the primitive is a software module,
and Throughput attribute captures the pre-computed data processing throughput of the
component. The ScriptName and FileName store the name and the location of the
module, and the ResourceType attribute specifies the implementation technology of the
primitive i.e. RISC CPU, or DSP, or FPGA, or ASIC, etc.

A Compound is a composite object that may contain Primitives, other
Compounds, and/or Templates. These objects can be connected within the compound to
define the dataflow structure. Compounds provide the hierarchy in the structural
description that is necessary for managing the complexity of large designs.

A design alternative is used in the modeling process to allow the specification of
multiple algorithm/architecture alternatives for a given process. The Template object is
used to capture the design alternatives. Templates have a well defined interface
represented with the Ports and can contain one or more alternative. These alternatives
can be either Compounds or Templates or Primitives, thus allowing hybrid hierarchies of
alternatives and subsystems. When alternatives are used, the algorithm structural models
describe a huge number of potential design implementations. The selection of
appropriate alternative for design implementation is left to the design space explo ration
and synthesis tool.

When implementing a design a computation must be mapped to a physical
resource. The designer can provide the mapping specifications by referencing a resource
within a processing object. It must be noted that mapping specifications are not
mandatory. A designer may leave these unspecified, in which case the resource
allocation is considered another dimension of the design space flexibility and is resolved
by the design space exploration tool.

The processing objects may also contain Constraint objects to express user-
defined constraints in accordance with the constraint language specifications.

Execution Resource Modeling

This category models the resources available for the system execution. The
resources are modeled in terms of physical hardware components and the physical
connections among them. Figure 6 shows the resource modeling aspect of the metamodel
of the modeling paradigm.

The top- level object in a Resource model is a Network of components. A
Network may contain: 1) General-purpose processor elements (such as DSPs or standard
RISC/CISC processors) represented by a Processor object; 2) Programmable logic
components (such as FPGAs) represented by a FPGA object; 3) Dedicated hardware
components for fixed functions (ASICs) represented by an ASIC object; 4) Memory
devices represented by a Memory object; 5) Sensors that are hardware acquisition devices
represented by a Sensor object; and 6) Actuators for hardware effectation interface
represented by an Actuator object. Networks have a hierarchical decomposition i.e.
Networks may contain other Networks.

-Description : String

Resource

-Expression : String

Constraint

-PortNumber : Integer
-Protocol : Integer

PhysicalPort

1

-ports 0..*

1

1

PhysicalConnection

1

-constraints

0..*

Network

-ProcessorType : Integer
-ClockSpeed : Integer
-Memory : Integer

Processor

-FPGAType : Integer
-ClockSpeed : Integer
-GateCount : Integer

FPGA

ASIC

-Size : Integer
-Width : Integer

Memory

SensorActuator

1

-resources

1..*

Figure 6: Metamodel of execution resource modeling

Networks and components have ports. These are represented with a PhysicalPort
object in the modeling environment. A PhysicalPort represents a physical
communication port that can be attached to a communication channel. The attributes of
the PhysicalPort object define the specifics of the communication protocol associated
with the communication channel. Communication links between components are
represented by connecting the PhysicalPorts of components.

The attributes of the components capture the inherent performance attribute of the
processing element. For example, Processor attributes include processor type, clock
speed, memory and other resources; FPGA attributes include FPGA type, clock speed,
and the programmable gate (logic block) count; Memory attributes include memory size,
and memory width. The resource models capture the “as-built” topology of the network
of resources.

Constraint Modeling

The Constraint objects mentioned earlier have a text attribute for specification of
constraints. Constraints are specified in a language that is an extended subset of OCL.
The specified constraint operates in the context of the object that contains the Constraint
object. A constraint expression can refer to the context object and to other objects
associated with the context object and their properties. The context object can be referred
to by the OCL keyword self. Associated objects can be referred to by navigation, an
OCL concept. Role names are used to navigate and access associated objects. For
example, the expression self.parent evaluates to the parent object of the context
object, similarly self.children evaluates to a set of children object of the context
object. The following associations are enabled for navigation in the derived constraint
language:
• parent – evaluates to the parent of the context object in the hierarchy.

• children – evaluates to a set of children objects of the context object in the object

hierarchy. When invoked with the name of a child as an argument the expression

evaluates to a specific child object e.g. self.children(“childX”) evaluates to

an object with the name childX contained in the context object. The modeling

environment enforces unique names for all objects in a single context.

• project – evaluates to a project object that is the root container of all the objects in the

system model.

• resources – evaluates to a set of resource objects contained in the system model.

• modes – evaluates to a set of the operational modes of the system.

• processes – evaluates to a set of the processing objects of the system

A constraint expression can either express direct relation between the objects by
using relational or logical operators, or express performance constraints by specifying
bounds over object properties. Object properties can be referred to in a manner similar to
associations. The following property constructs are enabled in the derived constraint
language for expression of constraints:
• latency – evaluates to the latency attribute of a processing object

• area – evaluates to the area attribute of a processing object

• power – evaluates to the power consumption of a processing object

• implementedBy – evaluates to an alternative of a template processing object selected

for implementation

• assignedTo – evaluates to the resource that a processing object is assigned or mapped

to.

There are four basic flavors of design constraints that can be expressed in the
modeling environment using the derived constraint language: (a) compositional
constraints, (b) resource constraints, (c) performance constraints, and (d) operational
constraints. More complex constraints can be expressed by combining these basic
categories of constraint with first order logic connectives.

Compositional constraints

Compositional constraints are logic expressions that restrict the composition of
alternative computational blocks. They express relationships between alternative
implementations of different components. These are essentially compatibility directives
and are similar to the type equivalence specifications of a type system. Therefore,
compositional constraints are also referred to as typing constraints. The compositional
constraints are specified with the implementedBy property of a template object. For
example,

constraint compositional() {

(self.children(“FFT”).implementedBy =

self.children(“FFT”).children(“FFT_HW”))

implies

(self.children(“IFFT”).implementedBy =

self.children(“IFFT”).children(“IFFT_HW”))

}
expresses a compatibility directive between two alternative processing blocks FFT and
IFFT. The compositional constraint can also take an imperative form, when the
implementedBy property of a template object is assigned to a particular implementation
alternative e.g. {self.implementedBy = self.children(“FFT_HW”)} (the constraint
is expressed in context of the FFT template object).

Resource constraints

Resource constraints relate computational blocks to resources. These are
basically assignment directives that assign a resource to a processing object. The
resource constraints are specified with the assignedTo property of a processing object.
For example, {self.assignedTo = project.resources(“FPGA_1”)} is an imperative
resource constraint. More complex resource constraints may be formed by combining
resource and compositional constraints e.g.

constraint resource() {

((self.children(“FFT”).implementedBy =

self.children(“FFT”).children(“FFT_HW”))

implies

self.children(“IFFT”).implementedBy =

self.children(“IFFT”).children(“IFFT_HW”))

and

(self.children(“FFT”).assignedTo = project.resources(“FPGA_1”))

and

(self.children(“IFFT”).assignedTo = project.resources(“FPGA_2”))

}

Performance constraints

Performance constraints express non-functional requirements that the synthesized
system must obey. These are expressed as bounds over the composite properties of
computational blocks. The following performance attributes have been considered for
constraint specification.

o Timing – expresses end-to-end latency constraints, specified over the
entire system, or may be specified over a subsystem e.g. (self.latency
< 20).

o Area – expresses bound over the area of a system or a subsystem
(self.area < 105). The area is defined for a hardware component to be
the logic block count and for a software component to be the code size.

o Power – expresses bound over the maximum power consumption of a
system or a subsystem e.g. (self.children(“Multiplier_32”).power
< 100).

Operational constraints

These constraints express conditions relating design configurations to operational
modes. Mode-specific design requirements, composition preferences and allocation
restrictions can be specified with these constraints. The previously specified constraints
are applicable in all modes of operation. The operational constraints conditionalize these
constraints with a mode of operation e.g. {(systemMode() =
project.modes(“TerminalTracking”)) implies (self.latency < 10)}.

Modeling Summary

The previous sections reviewed the key concepts required in modeling multi-
model structurally adaptive computing systems and demonstrated an instantiation of these
concepts in an MGA based Model-Integrated Design Environment. Specifically,
modeling formalisms for modeling the operational behavior, modeling the computational
structure, and modeling the resources were reviewed. An instantiation of these
formalisms, extended to the specific needs of MSAC systems, in the MGA based Model
Integrated Environment was specified as a metamodel. A constraint language extended

from a subset of OCL has been presented for the expression of user-defined operational
and performance constraints.

An important contribution of this dissertation is in modeling of design spaces by
explicit modeling of alternatives. The dataflow modeling formalism was extended with a
template object, that defines an interface along with multiple potential implementations
of a functionality. Templates can be used to capture algorithm alternatives, architectural
alternatives, and technology alternatives. With templates it is possible to create
application designs that are not specifically tied to any particular architecture, or
technology, thus enabling the issue of application and technology evolution, at least from
a system integration perspective. The design spaces created by capturing
characteristically different design alternatives, gives the environment and the designer,
the freedom to explore and search for the “best” design that satisfies a given set of
constraints. A tool for exploring these design spaces is discussed in the next chapter.

CONSTRAINT BASED DESIGN SPACE EXPLORATION

The objective of design space exploration for system synthesis is to find a single

design, or a set of designs from the design space that satisfies the system constraints and
maximizes (minimizes) an objective (cost) function. The exact exploration strategy
depends upon the synthesis objectives and the nature of the design space in terms of the
dimensionality of the space, continuity of the space, and other defining characteristics of
the design space. In general, the design space exploration methods can be primarily
grouped into two categories: a) exhaustive search based, and b) heuristics based. Some
representative approaches from each category were reviewed in Chapter 2. It was
observed that when design spaces are large none of the reviewed methods is effective.

Metaphorically, searching for a single design in a large design space is akin to the
proverbial “needle in a hay stack”, and the complexity of search in such design spaces is
dominated by the size of the design space. This dissertation develops a novel approach to
the design space exploration in large design spaces. There are two core concepts in the
developed approach:

a) Progressive pruning of the design space by constraint satisfaction, and
b) Symbolic methods for constraint satisfaction

The main idea behind progressive pruning is to avoid a single stage search in a
large design space. Instead, the design space is iteratively pruned through the application
of constraints. The granularity of the constraints is progressively improved. In the early
stages of design space pruning, when the design space is extremely large, coarse-
granularity constraints are applied. In subsequent stages, when the design space is much
smaller fine-granularity constraints are applied. This technique is based on the
assumption that coarse-granularity constraints can be easily evaluated and a fast
constraint satisfaction procedure can be developed for satisfying coarse constraints. The
fine-granularity constraints, on the other hand have to be evaluated by a more intensive
constraint satisfaction procedure such as performance simulation or embedded testing.
Figure 7 illustrates the idea of design space exploration by progressive pruning.

Logical + Coarse
Performance Constraints

~1010 Options
Symbolic
Constraint
Satisfaction

~100-1000 Options High-Level
Simulation

Fine Performance
Constraints

Final Performance
Estimation

5-10 Options
Low-Level
(Device)
Simulation

Embedded
Testing

Physical
Measurements1-2 Options

Logical + Coarse
Performance Constraints

~1010 Options
Symbolic
Constraint
Satisfaction

~100-1000 Options High-Level
Simulation

Fine Performance
Constraints

Final Performance
Estimation

5-10 Options
Low-Level
(Device)
Simulation

Embedded
Testing

Physical
Measurements1-2 Options

Figure 7: Progressive design space pruning

While a single coarse-granularity constraint may be easy to evaluate against a
single design, verifying all the designs against a coarse-granularity constraint in a large
design space can still be highly compute- intensive. This complexity is inherent due to
the enumeration of an exponentially large design space. To overcome this challenge a
symbolic constraint satisfaction method was developed. The highlight of the symbolic
constraint satisfaction method is the ability to apply constraints to the entire design space
without enumerating individual designs. Symbolic analysis methods represent the
problem domain implicitly as mathematical formulae and the operations over the domain
are performed by symbolic manipulation of mathematical formulae. Recently, symbolic
analysis methods based on Ordered Binary Decision Diagrams (OBDD) [16][17] have
found much success in solving a large number of problems in digital system design, finite
state system analysis, combinatorial optimization, artificial intelligence, and
mathematical logic [18]. These symbolic analysis methods employ Boolean algebra as
the underlying mathematical formalism. The symbolic constraint satisfaction method
developed in this dissertation is based on OBDDs. OBDDs are basically a data structure
for symbolically representing Boolean functions. A powerful suite of graph algorithms
accompanies the OBDD data structure, and provides for fast symbolic manipulation of
Boolean functions. OBDDs are further described in Appendix B.

The rest of this chapter describes in detail the symbolic constraint satisfaction
method and a design space exploration tool that enables interactive and iterative design
space exploration through symbolic constraint satisfaction.

Symbolic Constraint Satisfaction

The symbolic constraint satisfaction problem considered here is a finite set
manipulation problem. The design space for MSAC systems, as can be seen from the
definition in Chapter 3, is a finite set that is primarily a cross product of mode space and
configuration space. The mode space and configuration space in turn are finite sets
composed of their respective constituent elements. Constraints are relations in this
product space. Constraint satisfaction is restriction of the design space with the
constraints. This can be summarized as follows:

• CM × – design space
• ()cmO , – constraints

• () () () (){ }cmOcmCcMmcmCM r ,,,,, ∈∈∈=× – constraint satisfaction
Solving this finite set manipulation problem symbolically requires the solution of

two key problems:
1. Symbolic representation of design space, and
2. Symbolic representation of design constraints.

Mode Space
(Hier. Par. FSM)

Config Space
(Hier. Alt. Dataflow)

Constraints

Binary
Encoding

Binary
Encoding

BDD
Representation

BDD
Representation

BDD
Representation

Symbolic
Design Space

Pruned
Design Space

Symbolic
Constraint
Satisfaction

Re-encoding/Iterative Pruning

Symbolic Design Space Representation

Parsing/
Composing

Symbolic Constraint Representation

Mode Space
(Hier. Par. FSM)

Config Space
(Hier. Alt. Dataflow)

Constraints

Binary
Encoding

Binary
Encoding

BDD
Representation

BDD
Representation

BDD
Representation

Symbolic
Design Space

Pruned
Design Space

Symbolic
Constraint
Satisfaction

Re-encoding/Iterative Pruning

Symbolic Design Space Representation

Parsing/
Composing

Symbolic Constraint Representation

Figure 8: Symbolic Constraint Satisfaction

The symbolic constraint satisfaction is simply the logical conjunction of the
symbolic representation of design space with the symbolic representation of design
constraints. Figure 8 illustrates symbolic constraint satisfaction. The next sections
describe the symbolic representation of design space, and symbolic representation of
constraints.

Symbolic Representation of Design Space

The key to exploit the power of symbolic Boolean manipulation is to express a
problem in a form where all of the objects are represented as Boolean functions [17]. By
introducing a binary encoding of the elements in a finite set all operations involving the
set and its subsets can be represented as Boolean functions. Consider a finite set D . An
element Dd ∈ can be uniquely encoded as a vector of n binary values, where

 Dn 2log= . The encoding is denoted by a function { }nD 1,0: →σ , mapping each

element of D to a distinct n -bit binary vector. The function () ()∏
≤≤

⊕=
ni

ii dvdf
1

σ ,

where niv i ≤≤1: are Boolean variables, ()diσ is the i -th bit in the encoding, and the
product operator denotes logical conjunction, represents the element Dd ∈ symbolically.
The set D may be symbolically represented as ()U

Dd

df
∈∀

, where the union operator

denotes logical disjunction. This forms the general approach towards representing finite
sets symbolically. A fixed-length encoding scheme has been used above to encode the
elements of the set. However, when sets are hierarchically composed a variable length
prefix-based encoding scheme may be preferable.

In order to represent the design space symbolically, the elements of the design
space had to be encoded as binary vectors. An encoding scheme was developed after a
careful analysis of the problem domain, taking into consideration the hierarchical
structure of the design space. The choice of encoding scheme has a strong impact on the
scalability of the symbolic manipulation algorithms [17][18]. The design space as
mentioned earlier is a product of the mode space and the configuration space. The two
spaces can be encoded separately and represented symbolically and the design space can
be symbolically composed. The following sections describe the encoding and symbolic
representation of the two spaces.

Encoding and symbolic representation of the mode space

The mode space captures the behavior of the system and is constructed as a
Hierarchical Parallel Finite State Machine (HPFSM) as described in Chapter 3. The
structure of a HPFSM can be shown as an AND-OR-LEAF tree. In this tree the leaf
nodes represent the LEAF-states of the system and the intermediate nodes represent the
AND-states and OR-states. The distinction between an AND-state and an OR-state is
made by using visually different branching shapes. Figure 9 below depicts a HPFSM and
its structure in an AND-OR-LEAF tree representation.

Unlike a finite state machine, where a system is in a single state at any given point
of time, the current state of the system in a HPFSM is a configuration of states that
includes exactly one sub-state of an OR-state and all sub-states of an AND-state. The
state configuration should not be confused with the system configurations in the
configuration space. A state configuration is essentially a well- formed path in the AND-
OR-LEAF tree representation of the state machine from the root to leaf (leaves) in the
tree. A well- formed path originates from the root and consists of a unique trail branching
from an OR-node and multiple simultaneous trails branching from an AND-node. For
example, {S, S2, S21, S211, S22, S23, S232} is a well- formed path, and so is {S, S1,

S11} in Figure 9 shown above. The basic goal of the encoding scheme is to assign a
unique encoding value to each configuration, which translates to a unique encoding value
for each well- formed path in the tree. A similar approach is used for encoding HPFSM in
[19]

S

S11

S12

S13S1
S3

S22

S2
S211

S212

S21 S231

S232

S23

S

S1 S2 S3

S11 S12 S13 S21 S22 S23

S211 S212 S231 S232

S

S11

S12

S13S1
S3

S22

S2
S211

S212

S21 S231

S232

S23

S

S11

S12

S13S1
S11

S12

S13S1
S3

S22

S2
S211

S212

S21 S231

S232

S23S22

S2
S211

S212

S21 S211

S212

S21 S231

S232

S23 S231

S232

S23

S

S1 S2 S3

S11 S12 S13 S21 S22 S23

S211 S212 S231 S232

S

S1 S2 S3

S11 S12 S13 S21 S22 S23

S211 S212 S231 S232

Figure 9: An HPFSM and its AND-OR-LEAF tree representation

This is accomplished by assigning an encoding value to a node that uniquely
identifies the choices made in traversing a well- formed path from the root to the node.
Since the path to a node contains the path to its parent, encoding of every node is prefixed
by its parent’s encoding. When the parent of a node is an OR-node then  n2log
additional bits are required to distinguish the node from its 1−n siblings. When the
parent of a node is an AND-node no such distinction is required as a well- formed path
contains the node along with all its siblings. However, it must be noted that a well-
formed path splits into multiple trails from an AND-node, and different group of bits are
required to identify choices made when traversing each of these trails independently.

A notion of orthogonality may be defined here. Two nodes in the tree are said to
be orthogonal to each other when the nearest common ancestor is an OR-node, otherwise
the nodes are said to be non-orthogonal. For example, S11 and S21 in Figure 9 are
orthogonal. Orthogonal nodes do not exist together in any well- formed path and
therefore they may share/reuse the same group of bits in the binary vector for encoding
(with different values). Non-orthogonal nodes may not share the same bits.

The total number of bits used when nodes are encoded as above can be
determined as follows. Let ()dtotalm be the number of bits required to encode a node
d and the sub-tree rooted at it, and let ()dχ denote the children of node d . Then,

 () ()
()

()
()() () 














+

=

∈

∈
∑

ORlogmax

AND

LEAF0

2 d?xtotal

xtotaldtotal

md?x

dx
mm

χ

 (4)

and,
 ()mmm totalN ℜ= (5)

where, mN is the total number of bits required for encoding the mode space, and mℜ is
the root state in the HPFSM. Figure 10 shows the AND-OR-LEAF tree of Figure 9
annotated with encoding values. An underscore in the encoding value denotes that the
particular bit is a ‘don’t care’ for the node.

S

S1 S2 S3

S11 S12 S13 S21 S22 S23

S211 S212 S231 S232

 _ _ _ _

 _ _ 0 0 _ _ 1 0 _ _ 0 1

 0 0 0 0 1 0 0 0 0 1 0 0

 _ 0 1 0 _ 1 1 0 0 _ 1 0 1 _ 1 0

S

S1 S2 S3

S11 S12 S13 S21 S22 S23

S211 S212 S231 S232

 _ _ _ _

 _ _ 0 0 _ _ 1 0 _ _ 0 1

 0 0 0 0 1 0 0 0 0 1 0 0

 _ 0 1 0 _ 1 1 0 0 _ 1 0 1 _ 1 0

Figure 10: Encoding of the HPFSM of Figure 9

The mode space when represented as an HPFSM can be defined as the set of all
state configurations in the HPFSM. This set can be composed recursively in the
following manner: Let, ()dgsStateConfi be the set of all configurations that include a
state d , ()dpath be the path to state d in the tree, and ()dχ be the set of children of d .
Then,

 ()

(){ }

()
()

()
()













=

∈

∈
∏

OR

AND

LEAF

U
dx

dx

xgsStateConfi

xgsStateConfi

dpath

dgsStateConfi

χ

χ

 (6)

and ()mgsStateConfi ℜ is the set of all configurations that include the root state, which in
fact is the mode space.

The symbolic representation of the mode space represents the set
()mgsStateConfi ℜ as a Boolean function. Given the binary encoding for the nodes this

set may be composed symbolically using mN Boolean variables. Let, ()dgsStateConfi

be the Boolean function denoting the set ()dgsStateConfi , ()dσ denote the encoding of
d with () { }×∈ ,1,0diσ being the i -th bit in the encoding, and × denoting don’t care, and

mi Nim ≤≤1: be Boolean variables. Then,

 ()

()
{ } (){ }

()
()

()
()












⊕

=

∈

∈

≠×∩≤≤

∏
∏

OR

AND

LEAF
1

U
dx

dx

dNi
ii

xgsStateConfi

xgsStateConfi

dm

dgsStateConfi
im

χ

χ

σ

σ

 (7)

The Boolean variables im are referred to as mode variables in the later sections. The

Boolean function ()mgsStateConfi ℜ is the symbolical representation of the mode space.

Encoding and symbolically representing the configuration space

The configuration space captures the computational structure and is constructed as
a hierarchical dataflow graph with alternatives, as described in Chapter 3. The dataflow
is associated with a network of resources in defining the computational structure. The
hierarchical dataflow with alternatives together with the resource network can define
modularly a very large configuration space. The scalability of this representation in
capturing large design space can be estimated through the following expressions. With a
alternatives per template, and n templates per compound, composed in a m -level deep
hierarchy this representation can define: mka design configurations, where

() nkk mm ×+= − 11 , and nk =1 , using just ()mna × primitives. As an example, with

4=n , 3=a , and 3=m , a total of 1728 primitives can represent 843 design
configurations!

The structure of the hierarchical dataflow with alternatives is similar to the
structure of the HPFSM and can be represented as an AND-OR-LEAF tree. A compound
in the hierarchical dataflow implies inclusion of all its children in a configuration and is
therefore represented as an AND-node. The template component on the other hand
implies selection of exactly one of its children in a configuration and is therefore
represented as an OR-node. The primitive component has no internal decomposition and
is represented as a LEAF-node. Figure 11 shows a hierarchical dataflow with alternatives
and its equivalent AND-OR-LEAF tree representation.
C

P11

P12

P13

T1 P21

P22

P23

C2
C

T1 C2 T3

P11 P12 P13 P21 P22 P23P31

P32

T3
P31 P32

C

P11

P12

P13

T1 P21

P22

P23

C2
C

T1 C2 T3

P11 P12 P13 P21 P22 P23P31

P32

T3 P31

P32

T3
P31 P32

Figure 11: Hierarchical dataflow and its AND-OR-LEAF tree representation

The encoding of the configuration space basically follows the same argument as
forwarded for the encoding of the mode space. However, a configuration in the
configuration space in addition to being a well- formed path in the tree representation of
the dataflow also includes resource assignments of primitives. The encoding scheme
therefore must uniquely identify the resource assignments. Moreover, each primitive is
characterized with performance attributes such as latency, area, power, cost, etc.
Therefore, the encoding scheme must also include performance attributes in order to
uniquely characterize a configuration. The encoding of the configuration space thus has
three parts: a) structure (well- formed paths), b) resource assignments, and c) performance
attributes. The following sections elaborate upon these individually.

a. Encoding the structure – This encoding is exactly the same as that of the mode
space. The total number of bits required to encode the structure are

()sss totalN ℜ= , where sℜ is the root of the dataflow hierarchy, and the function

stotal is defined similar to function mtotal above i.e.

 () ()
()

()
()() () 














+

=

∈

∈
∑

ORlogmax

AND

LEAF0

2 d?xtotal

xtotaldtotal

sd?x

dx
ss

χ

 (8)

Figure 12 shows the AND-OR-LEAF tree of Figure 11 annotated with the
encoding values under the structure encoding.

C

T1 C2 T3

P11 P12 P13 P21 P22 P23

_ _ _

_ 0 0 _ 1 0 _ 0 1

_ _ _

P31 P32

0 _ _ 1 _ _

_ _ _

C

T1 C2 T3

P11 P12 P13 P21 P22 P23

_ _ _

_ 0 0 _ 1 0 _ 0 1

_ _ _

P31 P32

0 _ _ 1 _ _

_ _ _

Figure 12: AND-OR-LEAF tree of Figure 11 annotated with structure encoding

b. Encoding the resource assignments – Let, R be the set of resources available for
system execution, and ()pγ be the set of resources that can be potentially
assigned to a primitive p , then () Rp ⊆γ and () φγ ≠p . In order to uniquely

identify the resource assignment of a primitive () pγ2log bits are required for
each primitive. The total number of bits required to encode the resource
assignments are ()srr totalN ℜ= , where the function ()dtotalr is as follows:

 ()

() 
()

()

()
()()














=

∈

∈
∑

ORmax

AND

LEAFlog 2

xtotal

xtotal

d

dtotal

rd?x

dx
rr

χ

γ

 (9)

It must be noted here that by using exactly () pγ2log -bits to encode the
potential resource set of a primitive, the encoding value of a resource is made
specific to the primitive, and may be different for different primitives. In contrast
by using  R2log -bits for encoding the potential resource set the encoding value
of a resource can be made unique over all primitives. The trade-off is in the
number of bits used against the encoding effort. Figure 13 shows the AND-OR-
LEAF tree of Figure 11 partially annotated with the encoding of the resource
assignment of the primitives. The boxes represent resources, and the dashed
arrows indicate potential assignments.

C

T1 C2 T3

P11 P12 P13 P21 P22 P23 P31 P32

_ _ _ _ _ 1

R1 R2 R1 R3 R1 R3 R2 R3 R2R1

_ _ _ _ _ 0

R2

_ _ _ 0 0 _ _ _ _ 1 0 _ _ _ _ 0 1 _

C

T1 C2 T3

P11 P12 P13 P21 P22 P23 P31 P32

_ _ _ _ _ 1

R1 R2 R1 R3 R1 R3 R2 R3 R2R1

_ _ _ _ _ 0

R2

_ _ _ 0 0 _ _ _ _ 1 0 _ _ _ _ 0 1 _

Figure 13: AND-OR-LEAF tree of Figure 11 annotated with resource encoding

c. Encoding the performance attributes – Various attributes characterize the
performance of a processing primitive. These attributes assume numeric values
from a finite domain. The domains may be continuous; however, for the purpose
of encoding the domains must be discretized. By choosing a large number of
quantization levels, quantization errors may be minimized. The tradeoff is in the
number of bits required for encoding the domain. For the purpose of illustration
only latency attributes are being considered, however the encoding may be
similarly extended for other performance attributes. When the domain of latency
attributes is quantized into L levels, then  L2log -size binary vector is required
to encode the latency attribute of each primitive. The total number of binary
vectors required for encoding the latency attributes are ()slvec vecN ℜ= , where

()dvecl is defined as follows:

 () ()
()

()
()()














=

∈

∈
∑

ORmax

AND

LEAF1

xvec

xvecdvec

ld?x

dx
ll

χ

 (10)

Note that the orthogonal nodes share the same binary vector for encoding their
latency attributes. The total number of bits required for encoding the latency
attributes is the number of binary vector times the size of each vector i.e.

() ()vecvecl NLNN ××= 2log . Note that the size of the bit vectors representing
latency attributes is increased to prevent overflow when adding the latency
attributes. At most vecN attributes are added.
Thus, the total number of bits required to completely encode the configuration

space are lrsc NNNN ++= . sN depends on the structure of the hierarchical dataflow
representation and is generally small; rN depends primarily on the number of resources
and is generally small; lN however depends primarily on the domain size of the latency
attribute and can be large. The impact of vecN and lN on the scalability of the approach
is considered in a subsequent section.

The configuration space is a set of all configurations. This set may be constructed
recursively in the following manner: Let, ()dConfigs be the set of all configurations
including a node d , and ()dl be the latency of d (defined for leaf nodes only). Then,

 ()

(){ } () (){ }

()
()

()
()












××

=

∈

∈
∏

OR

AND

LEAF

U

l

dx

dx

xConfigs

xConfigs

dd?dpath

dConfigs

χ

χ

 (11)

Note that the definition of a configuration has been extended to includes resource
assignments as well as performance attributes. Only latency attribute is being shown here
for convenience. The set ()sConfigs ℜ is a set of all configurations that include the root
of the dataflow hierarchy, and thus represents the configuration space.

The symbolic representation of the configuration space represents the set
()sConfigs ℜ as a Boolean function. Given the binary encoding for the nodes this set

may be composed symbolically using cN Boolean variables. Let ()dConfigs be the

Boolean function denoting the set ()dConfigs . Let)(dsσ denote the encoding of d

under the structure encoding, ()drr ,σ denote the encoding of resource ()dr γ∈ under

the resource encoding, ()dlσ denote the encoding of d under the latency encoding, and
each of the encoding function above subscripted with i denote the i -th bit in the
respective encoding. Also let si Nis ≤≤1: , ri Nir ≤≤1: , and li Nil ≤≤1: be Boolean
variables. Then,

()

()
{ } (){ }

()
{ } (){ }()

()
{ } (){ }

()
()

()
()

























⊕∧










⊕∧










⊕

=

∈

∈

×≠∩≤≤∈ ×≠∩≤≤×≠∩≤≤

∏

∏∏∏

OR

AND

LEAF,
1,11

U

U

dx

dx

dNi

l
ii

da daNi
ii

dNi

s
ii

xConfigs

xConfigs

dldards

dConfigs

l
il

r
ir

s
is

χ

χ

σγ σ

γ

σ

σσσ

(12)

The Boolean variables is are referred to as structure variables, ir are referred to as
resource variables, and il are referred to as latency variables, and collectively these are

referred to as configuration variables. The Boolean function ()sConfigs ℜ is the
symbolic representation of the configuration space.

OBDD representation of the design space

The Boolean function () ()sm ConfigsgsStateConfiDesigns ℜ∧ℜ= represents the
design space symbolically. The first step in representing this function as an OBDD is to
determine the ordering of the introduced Boolean variables. The size, and hence the
scalability, of the OBDD representation is highly dependent upon the variable ordering.

Determining an optimal ordering for an OBDD representation is an unsolved
problem [18]. However, heuristics are generally effective in most problem domains. The
general rule of thumb applied here is to use a notion of dependency. For example,
selection of mode determines the usable configurations; therefore, mode variables are
ordered before configuration variables in the ordering. With this ordering mode variables
are evaluated before configuration variables, and when mode variables are bound this
rules out large parts of the configuration space in the decision diagram. Among the
configuration variables, the structure variables are interleaved with the resource variables,
and latency variables are ordered after these. Within both the mode variables and the
structure variables, lower index is given to the variables introduced with the nodes higher
in the hierarchy. This follows the same argument of being able to rule out larger parts of
the space formed by the hierarchy instead of maintaining and propagating the alternatives
to a deep level. The latency variables can basically be grouped into vecN ,

() vecNL×2log -bit binary vectors. Within each vector the most significant bit receives
the lowest index in the ordering. Further, the bits of all the vectors are interleaved
together e.g. the most significant bit of all the vectors is grouped together and is ordered
before the next most significant bit of all the vectors grouped together. Once the variable
ordering is fixed, the Boolean function representing the design space is mapped to an
OBDD representation in a straightforward manner.

The next step in symbolic constraint satisfaction is to represent the design
constraints symbolically. The next section describes the symbolic representation of
constraints.

Symbolic Representation of Constraints

Recall from Chapter 3, four basic categories of design constraints may be
expressed in the modeling environment. Symbolic representation of each of these basic
categories of constraints is described below.

Compositional constraints

Compositional constraints express logical relations between processing blocks in
the hierarchical dataflow representation. Let, 21: ddc ∇ℑ be a constraint over processing
blocks 1d and 1d relating them under relation ∇ , which is one of conjunction,
disjunction, implication, or equivalence. Symbolically the constraint can be represented
as a relation over the symbolic representation of the processing blocks. Thus, the
Boolean function () ()21 dConfigsdConfigsc ∇=ℑ represents the constraint cℑ
symbolically.

Figure 14 below shows a compositional constraint expressed on the hierarchical
dataflow graph of Figure 11 and its symbolic representation.

C

T1 C2 T3

P11 P12 P13 P21 P22 P23

_ _ _

_ 0 0 _ 1 0 _ 0 1

_ _ _

P31 P32
0 _ _ 1 _ _

_ _ _ ()
()

() ()
21321

3

21

3111

31

11

3111:

sssss

PConfigsPConfigs

sPConfigs

ssPConfigs

PP

c

c

c

∨∨¬∧¬∧¬=ℑ

⇒=ℑ

¬=

¬∧¬=

⇒ℑ

C

T1 C2 T3

P11 P12 P13 P21 P22 P23

_ _ _

_ 0 0 _ 1 0 _ 0 1

_ _ _

P31 P32
0 _ _ 1 _ _

_ _ _ ()
()

() ()
21321

3

21

3111

31

11

3111:

sssss

PConfigsPConfigs

sPConfigs

ssPConfigs

PP

c

c

c

∨∨¬∧¬∧¬=ℑ

⇒=ℑ

¬=

¬∧¬=

⇒ℑ

Figure 14: Compositional constraint

Resource constraint

Resource constraints relate processing blocks to resources. Symbolic
representation of resource constraints is accomplished by expressing the relation over the
symbolic representation of the processing block and resource. Thus, a resource constraint

rdr ∇ℑ : over processing blocks d and resource ()dr γ∈ can be symbolically
represented with the Boolean function () ()drfdConfigsr ,∇=ℑ , where

() ()
()

∏
×≠∧≤≤

⊕=
drNi

r
ii

ir

drrdrf
,1

,,
σ

σ . rℑ represents the constraint rℑ symbolically.

Figure 15 below shows a resource constraint expressed on the hierarchical
dataflow graph of Figure 11 and its symbolic representation.

C

T1 C2 T3

P11 P12 P13 P21 P22 P23 P31 P32

_ _ _ _ _ 1

R1 R2 R1 R3 R1 R3 R2 R3 R2R1

_ _ _ _ _ 0

R2

_ _ _ 0 0 _ _ _ _ 1 0 _ _ _ _ 0 1 _

()
()

() ()
121

1

21

11,111

11,1

11

111:

rss

PRfPConfigs

rPRf

ssPConfigs

RP

r

r

r

¬∧¬∧¬=ℑ

⇒=ℑ

¬=

¬∧¬=

∧ℑ

C

T1 C2 T3

P11 P12 P13 P21 P22 P23 P31 P32

_ _ _ _ _ 1

R1 R2 R1 R3 R1 R3 R2 R3 R2R1

_ _ _ _ _ 0

R2

_ _ _ 0 0 _ _ _ _ 1 0 _ _ _ _ 0 1 _

()
()

() ()
121

1

21

11,111

11,1

11

111:

rss

PRfPConfigs

rPRf

ssPConfigs

RP

r

r

r

¬∧¬∧¬=ℑ

⇒=ℑ

¬=

¬∧¬=

∧ℑ

Figure 15: Resource constraint

Performance constraints

Performance constraints are more challenging to solve symbolically than the
previously specified categories of constraints. There are two primary drivers of the
complexity: 1) A system-level property has to be composed from component- level
properties in a large design space, and 2) The property being composed is numeric, and
may admit a potentially very large domain. Representing a large numeric domain
symbolically as a Boolean function and performing arithmetic operations symbolically is
a challenging problem with serious scalability concerns.

Different performance attributes may compose differently. The next section
elaborates upon the general approach in solving constraints on simple additive attributes.
Additive attribute refers to those attributes that can simply be added together to compose
the system-level attribute from components. Subsequent sections discuss specific
performance attributes that are the focus of this dissertation.

Basic approach

Recall that while encoding the configuration space binary vectors are assigned to
primitives to encode their attributes. It was noted earlier that orthogonal nodes might
share the same binary vector. This is reasonable because orthogonal components are
exclusive and are not simultaneously present in a configuration.

Consider the Boolean expression
vecNvvvf +++= L21 where, f and

veci Niv ≤≤1: are  vecNn 2log+ -bit binary vectors, and ‘+’ denotes Boolean
representation of arithmetic sum over binary encoded numbers. Then let,

 () ()()
vecNiiv

vec sN Configsvvvfh
≤≤
∃

ℜ∧+++==
1:

21 L (13)

The function h is satisfiable when each configuration denoted by a particular assignment
of the configuration variable is uniquely paired with an assignment to f that is a binary
representation of the sum of the attribute of all primitives contained in that configuration.
This is so because ()sConfigs ℜ , encodes the attribute value of the primitives in
appropriate binary vector, conditionalized with appropriate configuration. Forming the
conjunction of the arithmetic expression with the configuration representation restricts
the arithmetic expression to only those values that represents the sum of the values
encoded in the configuration representation. The variables of the binary vectors are
existentially quantified out from this expression.

The function h can be restricted further by constraining f i.e.

 ()()
f

fhh ∃≤∧= κ' (14)

The restricted function 'h is satisfiable only for those configurations for which the sum of
the attribute of all primitives contained in that configuration is less than or equal to κ .
Thus 'h is a restriction on the configuration set and serves to constrain the configuration
space. Further, with f and veci Niv ≤≤1: variables existentially quantified 'h is a
function exclusively over the structure variables in the symbolic representation of the
configuration space. Thus, a relation over the attributes of primitives is effectively
composed into a relation over the elements of the configuration space.

Representing linear arithmetic constraints

The basic approach presented here relies on a scalable symbolic Boolean
representation of linear arithmetic constraints of the form mba +++≥ Lκ , where κ is
a constant and mba ,,, K are non-negative integer variables. In the following section an
approach for symbolically representing linear arithmetic constraints of the form shown
above is presented. A approach presented below was originally developed in [20].

First let naaaa K21= , nbbbb K21= , ncccc K21= , be unsigned n -bit binary
representation of three non-negative integer variables, with each of ia , ib , ic as a
Boolean variable. The linear arithmetic constraint bac += over these variables can be
represented as a Boolean function in the following manner. Define ()kcr0 and ()kcr1 as
the predicates for the carry-bit from nknk bbaa KK + being 0 and 1 respectively. Then,

() () () () ()



≤∧∧∧+∨∧∧∨⊕∧∧+
>

=
nkcbakcrcbacbakcr
nk

kcr
kkkkkkkkk 11

1

10
0

(15)
and,

() () () () ()



≤∧∧∨⊕∧∧+∨∧∧∧+
>

=
nkcbacbakcrcbakcr
nk

kcr
kkkkkkkkk 11

0

10
1

(16)
The function ()10crf sum = represents the linear arithmetic constraint bac += as a
Boolean function. The size of the OBDD representing f is shown to be n10≤ in [20]
when the variables are ordered highest bit first and interleaved kkk bac ,, at each bit thus.
Thus, the representation is highly scalable. The linear arithmetic constraint can be
extended to more variables by using temporary variables. For example, the linear
arithmetic constraint cbadC ++=: can be represented as two separate constraints

batempC +=:1 and ctempdC +=:2 . Let nttttemp K21= ,
1Cf be the Boolean

function representing 1C , and
2Cf be the Boolean function representing 2C , then

()
nitCCC

i
fff

≤≤∃
∧=

1:21
 represents C . It should be noted that there may be an overflow in

representing the arithmetic sum. In order to avoid the overflow, each n -bit variable must
be extended and represented as  vNn 2log+ -bit number, where vN is the number of
variables in the sum. Experimental results indicate that the size of the OBDD
representing the complete linear arithmetic constraint is ()ρ

vnNO , where n is the number
of bits in the binary representation of each non-negative integer variable, vN is the
number of non-negative integer variables, and ρ is a constant such that 21 ≤≤ ρ .

Next consider linear arithmetic constraint of the form ba ≥ . This can be
represented symbolically as a Boolean function in the following manner. Define
predicate ()keq to denote equality of two 1+− kn bit numbers nknkk bbaaa KK =+1 ,
and ()kgt to denote nknkk bbaaa KK >+1 . Then,

 () ()



≤+∧⊕
>

=
nkkeqba
nk

keq
kk 1

1
 (17)

and,

 () ()



≤∧∨+∧⊕
>

=
nkbakgtba
nk

kgt
kkkk 1

0
 (18)

The function () ()11 gteqf ge ∨= represents the constraint ba ≥ as a Boolean function.
The size of the OBDD representing f can be shown to be n10≤ . In the above Boolean
representation, a can be substituted with a constant and the size of the resulting OBDD is
even smaller. The overall linear arithmetic constraint of the form mba +++≥ Lκ , can
be represented symbolically by forming Boolean representation of

mbatempC +++= L:1 and tempC ≥κ:2 separately and then taking the conjunction
of the two, and quantifying the binary variables representing temp i.e.

()
nitCCC

i
fff

≤≤∃
∧=

1:21
.

Latency constraints

The basic approach presented above demonstrates composition of system level
properties from the properties of primitives when these properties compose additively.
Composition of system-level latency from the components is not so straightforward.
When the components are connected to form a pipeline, latencies of all the components
can be added up to form the system level latency. However, when the components are
connected to form multiple parallel data paths then it is not sufficient to sum up latencies
of all the components in the system to form the system level latency. Additionally, when
computations are distributed over multiple heterogeneous resources, the system-level
latency depends not only on the data dependencies, but also on the resource allocation
and the scheduling. Solving system-level latency constraints in the presence of these
dependencies is a challenging problem. While OBDD’s can be used to incorporate all the
dependencies including resource allocation and scheduling in solving the latency
constraints, the scalability of the method becomes susceptible and results in an
exponential blow-up in the OBDD representation. The symbolic representation of
latency constraints presented in this dissertation addresses only the structural data
dependencies and ignores resource allocation and scheduling while solving latency
constraints. This in effect assumes that all computations that have no data-dependency
may execute concurrently. Thus the approach results in a best-case approximation of the
system-level latency. In an early stage coarse-grained constraint satisfaction this
approximation is reasonable. The pruned design space can be further refined by using
fine-grained constraint satisfaction methods if so desired. It must be noted here that the
symbolic constraint satisfaction method does not incorrectly rule out any design that may
potentially meet the latency constraint with some resource allocation and scheduling
arrangement. Only the designs that do not meet the latency constraint even with the best-
case approximation are pruned out from the design space. In the next paragraph, the
algorithm that composes system-level latency is discussed.

There are two main steps in the algorithm: 1) Symbolic representation of the base
constraint, and 2) Splitting and extending the base constraint to incorporate the parallel
paths in the data flow graph

1. The first step of the algorithm consists of symbolic representation of the base
constraint, where the base constraint is formed under the assumption that the
latency values of all the non-orthogonal components add-up to form the
system-level latency. This is done as per the approach for representing linear
arithmetic constraint as described in the previous section. This is a constraint
of the form

vecNvvv +++≥ L21κ , where veci Niv ≤≤1: are the non-
orthogonal latency vectors. The subsequent steps in the algorithm work with
a symbolic representation of this base constraint.

2. This step of the algorithm concerns with exploring the data-dependencies in
the data flow graph and suitably modifying the base constraint. The
algorithm recursively traverses the hierarchical data flow graph. The main
action happens at the compound node in the dataflow graph. There are two
possibilities at a compound node: 1) There is a path in the data flow at the
node that includes all the components; or 2) There are many intersecting/non-
intersecting paths and none of the paths include all the components. In the

first case the base expression need not be modified as the latency property of
all the components is already considered in the base constraint. In the second
case, the base expression needs to be modified to account for multiple parallel
paths. This is done by considering a path in the sub graph contained in the
compound. All the components that are not on this path in the sub-graph do
not contribute to the latency along this path. Therefore, in the base constraint
the latency vectors corresponding to these components are substituted with a
constant value of ‘0’ and these variables are quantified out. Thus the reduced
base expression is narrowed down to sum the latencies of components
included only on this path. Then the components in the path are hierarchically
traversed with this reduced base expression to further reduce it down the
hierarchy. The same procedure is repeated with all the paths in the graph.
The reduced base expression along each path is conjuncted together to reflect
that all the paths must satisfy the system level latency constraint. The
complexity of this algorithm is dependent upon the number of paths in the
graph.

The complete Boolean expression thus formed consists of many sub-expressions
each of which is an arithmetic sum constraint on the latency variables of the primitives in
a data path through the dataflow graph. When conjuncted with the Boolean expression
representing the configuration space, the configuration space is restricted to only those
alternatives, the latency values of which satisfies the sub-expressions representing data
paths. The latency variables are quantified out from the product Boolean expressions.
The resultant Boolean expressions over the structure variables represent the constrained
design space.

Area, Cost, and Power constraints

Area, cost, and power compose additively. Thus, given these properties for the
components in the system, the system level property can be composed by simply adding
up the property-value of individual components. The basic approach prescribed for
solving constraints on additive properties can be used without any modification for
composing constraints on these properties.

Operational constraint

Operational constraints relate configurations with modes. If, dmo ∇ℑ : is an
operational constraint relating mode of operation m with processing blocks d then the
Boolean function () ()dConfigsmgsStateConfio ∇=ℑ represents the constraint oℑ
symbolically.

Apart from these basic constraints, complex constraints may be formed by
combining one or more of these constraints with first order logic connectives. The
symbolic representation of the complex constraints can be accomplished by composing
the symbolic representation of the basic constraints.

The symbolic constraint satisfaction approach described above has been
implemented in a design space exploration tool. The next section describes the
prominent features of the design space exploration tool.

Design Space Exploration Tool

The prominent features of the design space exploration tool include the ability to
interactively and iteratively apply constraints. The effect of various constraints upon the
design space can be visualized in this tool. The tool maintains multiple contexts and it is
possible to revert to a previous context. Whenever constraints are applied and the design
space is pruned a new context is created. The subsequent pruning is performed in this
new context. To “undo” an applied constraint one can simply revert back to the previous
context. The depth of the context stack is user programmable.

The design space exploration tool has a multi-pane graphical front-end. The first
pane is a checklist box, that is filled up with all the constraints are present in the model.
There is a check box in front of every constraint in the list. The user can check the box to
select the constraints to apply. More than one constraint can be selected for applying.
The second pane of the user interface shows the structural space as a tree. Different icons
are used to distinguish between a compound (AND) node, a template (OR) node, and a
primitive (LEAF) node. A box at the bottom of the pane displays the size of the structure
space composed in the tree hierarchy. The third pane of the user interface shows the
behavioral (mode) space also as a tree. The last pane of the user interface shows the
resources in the model. The menu of the user interface has options for applying a
selected set of constraint, applying all constraints, or reverting to a previous context.
Figure 16 shows a screen shot of the tool in operation.

Figure 16: Design Space Exploration Tool

When the user selects a group of constraints to apply, the tool evaluates the
constraints to determine the highest node in any hierarchy (structure or behavioral) that is
affected by the constraint. If the group of constraints affects more than one hierarchy
simultaneously (example: an operational constraint) then the entire design space has to be
encoded. If the group of constraints affects only a single hierarchy (example: no
operational constraint in the group), then only that hierarchy is encoded. This is done in
order to keep the OBDD representation manageable at each stage, as well as to speedup
the constraint application, because the OBDD algorithms are sensitive to the size of the
OBDD representation. Additionally, when the group of constraints has no performance
constraint, the performance property variables are not included in the encoding of the
structure space. This is a big improvement because it significantly reduces the number of
Boolean variables required to represent the configuration space. After creating the
representation of the space, the constraints are encoded and the space restricted with the
results. The current design space is evaluated against the restricted representation to
determine the pruning of the space. A new context is created and only those nodes that
were not pruned are propagated in the new context. The constraints that were applied
earlier and if the nodes affected by the constraints are pruned, then the constraint is
declared “dead”, and is not admitted in the new context. The panes of the user interface
are updated according to the new context.

Conclusions

The key issues in constraint based design space exploration are complex.A
symbolic constraint satisfaction method has been developed for pruning and exploration
of large design spaces. The highlight of the symbolic method is its ability to check and
enforce constraints in a large design space without enumerating the members of the
space. Owing to this the symbolic method has excellent scalability and extremely large
design spaces (in the order of 1030) have been pruned and explored using this method.
The chapter also demonstrated a method for solving linear arithmetic constraints over the
attributes of an object hierarchy symbolically using OBDD’s.

It must be emphasized here that the performance constraint validation performed
by this method is at a coarse level of granularity i.e. the method operates on analytical
estimates of the performance metrics, devoid of low-level architectural details. If a fine
grained and detailed verification of performance constraint is desired then a designer
must resort to conventional detailed, low-level architectural simulators. However, it
should be noted that these simulations are time intensive and can simulate only one
design at a time, thereby mandating the enumeration of the design space.

A key point about the constraint based design space exploration is the order of
constraint application. The end result, i.e. the final pruned design space, is independent
of the order of constraint application, however, the time complexity and even the
scalability of the exploration is dependent in a non-deterministic manner on the order in
which the constraints are applied. In fact there is a potential for an exponential blowup of
the OBDD representation, a phenomenon that is a common challenge for OBDD based
algorithms, for some order of constraint application. The dependence of the scalability of
the exploration method on the order of constraint application is a complex problem and
needs to be investigated further.

References

[1] Evans D., Morris D., “Applying Modeling to Embedded Computer Systems
Design”, in “Codesign – Computer-Aided Software/Hardware Engineering”, edited
by: Rozenblit J. and Buchenrieder K., IEEE Press, 1994.

[2] Sztipanovits, J., et al., “MULTIGRAPH: An Architecture for Model-Integrated
Computing,” Proceedings of the IEEE ICECCS’95, pp. 361-368, Nov. 1995.

[3] Franke H., Sztipanovits J., Karsai G., "Model-Integrated Computing", Proceedings
of the 1997 Hawaii Systems Sciences Conference, (no page number available, CD-
ROM publication), 1997.

[4] Sztipanovits, J.: “Engineering of Computer-Based Systems: An Emerging
Discipline,” Proceedings of the IEEE ECBS’98 Conference, 1998.

[5] Karsai, G., et al.: “Towards Specification of Program Synthesis in Model-Integrated
Computing", Proceedings of the IEEE ECBS’98 Conference, 1998.

[6] Abbott, B., et al.: “Model-Based Approach for Software Synthesis,” IEEE Software,
pp. 42-53, May 1993.

[7] Harel, D.: “Statecharts: A Visual Formalism For Complex Systems,” Science of
Computer Programming 8, pp. 231-278, 1987.

[8] Harel, D. and Naamad, A.: “The STATEMATE Semantics of Statecharts,” ACM
Trans. Soft. Eng. Method., 5:4, Oct. 1996.

[9] Harel D., et al., “STATEMATE: A Working Environment for the Development of
Complex Reactive Systems,” IEEE Transactions on Software Engineering, pp. 403-
413, vol. 16, no. 4, April 1990.

[10] Harel, D., “StateCharts: A visual Formalism for Complex Systems”, Science of
Computer Programming 8, pp 231-278, 1987.

[11] Hatley D., Pirbhai I., “Strategies for Real-Time System Specification,” Dosret
House, 1987.

[12] De Marco, Tom, “Structured Analysis and System Specification,” Englewood
Cliffs, N.J.: Prentice Hall, 1978.

[13] Dennis J., “First version data flow procedure language,” Massachusetts Institute of
Technology Lab Computer Science Technical Memo MAC TM61, May 1975.

[14] Najjar W., Lee E., Gao Guang, “Advances in the dataflow computational model,”
Journal of Parallel Computing, pp. 1907-1929, vol. 25, 1999.

[15] OCL reference

[16] Bryant R., “Graph-Based Algorithms for Boolean Function Manipulation,” IEEE
Transactions on Computers, pp. 677-691, vol. C-35, no. 8, August 1986.

[17] Bryant R., “Symbolic Manipulation with Ordered Binary Decision Diagrams,”
School of Computer Science, Carnegie Mellon University, Technical Report CMU-
CS-92-160, July 1992.

[18] Meinel C., Theobald T., “Algorithms and Data Structures in VLSI Design”,
Springer-Verlag, 1998.

[19] Helbig J., Kelb P., “An OBDD Representation of Statecharts,” Proceedings of the
European Conference on Design Automation, pp. 142-151, Paris, France, 1994.

[20] Yang J., Mok A., “Symbolic Model Checking for Event-Driver Real-Time
Systems,” ACM Transactions on Programming Languages and Systems, pp. 386-
412 vol. 19, no. 2, March 1997.

[21] Mahalanobis A., Vijaya Kumar B., Sims S., “Distance-classifier correlation filters
for multiclass target recognition” Applied Optics, vol. 35, no. 17, June 1996.

[22] Cheeseman P., Kanefsky R., Taylor W., “Where the Really Hard Problems Are,”

[23] Ledeczi A., ASC program report

[24] Girault A., Lee B., Lee E., “Hierarchical Finite State Machines with Multiple
Concurrency Models,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 18, no. 6, June 1999.

[25] Gray J., “Position paper on PCES”, OOPSLA

[26] Gajski D., et al, “System-Level Exploration with SpecSyn,” Proceedings of the 35th
Design Automation Conference, San Francisco, 1998.

[27] Gajski D., Vahid F., “Specification and Design of Embedded Hardware-Software
Systems,” IEEE Design & Test of Computers, pp 53-67, Spring 1995.

[28] Vahid F., et al, “A Binary-Constraint Search Algorithm for Minimizing Hardware
during Hardware/Software Partitioning,” Proceedings of European Design
Automation Conference, pp 214-219, September 1994.

[29] Ernst R. et al, “Hardware-Software co-synthesis for microcontrollers,” IEEE Design
& Test of Computers, vol. 10, no. 4, December 1993.

