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Abstract 
 

In the synthesis of embedded systems from models, the designer represents complex 
systems with domain-specific, multi-aspect, abstract models. Synthesis of optimal 
systems requires consideration of many factors: Algorithmic, environmental, 
specifications, target hardware, etc.  These are often variables, with specifications and 
target platforms evolving. This approach presents a way to capture a system solution in 
terms of a design space, encompassing not just a single point design responding to a 
single spec/target platform, but a range of designs that can cover an evolving target.  
Achieving this is a complex task, requiring the capability to represent flexible design 
spaces, and more importantly, manage and navigate the space to find (and synthesize) 
feasible target designs. 

 
The tool part of the Model-Integrated Design Environment for Adaptive Computing 
Systems.  The methods used to capture the design space are reported, as well as unique 
Ordered Binary Decision Diagram-based methods for representing and simultaneously 
evaluating an entire space. 
 
 
 
 
 
 
 
KEYWORDS 
Functional Simulation, Component-Based Design, Interface Synthesis, HW/SW Synthesis, 
FPGA, VHDL, Design Environment, Model-Integrated Computing. 
 
 
ACKNOWLEDGMENTS 
This work was sponsored by the Defense Advanced Research Projects Agency, Information 
Technology Office, under contract # DABT63-97-C-0020. 





 
INTRODUCTION: SYSTEM MODELING 

 
Developing a model for an industrial-strength software system prior to its 

construction or renovation is as essential as having a blueprint for large building [1].  
This chapter will focus on the concepts required to provide a modeling environment for 
adaptive computing systems.  A rigorous modeling paradigm is an essential requirement 
of a modeling environment.  In a synthesis methodology, the modeling paradigm is 
determined primarily by the synthesis goals, the execution semantics of the target system, 
the target architecture, and the constraints – operational as well as physical.    The chapter 
starts out by formally specifying adaptive computing systems addressed by this 
dissertation.  For an environment to successfully support the modeling of systems, the 
environment must faithfully reproduce the domain specific concepts, relations, and 
composition principle routinely used by the designers [2][3].  For that reason familiar, 
well-understood modeling formalisms are employed for representation of different 
aspects of an adaptive computing system.  The chapter explores existing modeling 
formalisms that can be extended and combined to represent adaptive computing systems.  
An important notion relevant to system design and synthesis is the creation of a design 
space.  Most state-of-the-art design methodologies employ modeling paradigms that 
support modeling of point-designs for systems.  This chapter develops the concept of 
creating flexible design space by modeling design alternatives.  The last section of this 
chapter puts all the concepts together in a modeling paradigm used in the creation of a 
Domain Specific Modeling Environment (DSME) in accordance with the Multi-Graph 
Architecture (MGA) [2].  A constraint language for expressing system constraints is also 
described. 

 
Multi-modal Structurally Adaptive Computing (MSAC) Systems 

The target systems of this research are embedded real-time, adaptive signal and 
image processing systems.  Specifically, a mode-based structural adaptation of the system 
is considered.  This section elaborates upon the semantics of mode-based structural 
adaptation, and concludes with the requirements for a modeling paradigm. 

The target systems operate in a dynamic environment that imposes varying 
functional and performance requirements on the system.  It is assumed that the 
operational space of the system is bounded and can be characterized into finite, discrete 
modes of operation.  The system reconfigures (adapts), when transitioning from a mode 
of operation to another to satisfy the distinct requirements per mode of operation.  Mode 
transitions are triggered in response to stimulus from the environment in the form of 
events.  The system adaptation policies are expressed in the transitions and the transition 
rules.  The modes of operation, transitions, and transition rules together constitute the 
operational behavior of the system. 

The functional requirements in each mode of operation define the complex 
signal/image processing computations that the system has to perform, and the 
performance requirements specify the constraints that the computations in a given mode 
must satisfy.  The computations are implemented as a set of computational components, 



concurrently executing over a network of heterogeneous processing elements ranging 
from processors (RISC/DSP) to configurable hardware (FPGA), and communicating via 
signals or dataflow.  The network of heterogeneous processing elements constitutes the 
execution resource set of the system.  The set of computational components, the 
communication topology between the components, and the resource allocation together 
define the computational structure of the system.  System configuration refers to the 
computational structure of the system, and the reconfiguration in transitioning from a 
mode of operation to another involves changing the computational structure of the 
system, hence the term mode-based structural adaptation. 

From the above description four closely-coupled yet distinct aspects can be 
identified that factor into the design of an MSAC system.  These are: 

1. The operational behavior; 
2. The execution resources; 
3. The computational structure per mode of operation; and 

4. The constraints. 

In order to design and synthesize systems, all these aspects and their interactions 
must be modeled explicitly and formally.   There are rich modeling formalisms for 
modeling each of these aspects independently.  The challenge is to augment these 
modeling formalisms and combine them in an integrated modeling environment such that 
design engineers working with different aspects can work with formalisms familiar to 
them and yet cooperate and meaningfully exchange information with each other. 

The sub-sections below formalize the different aspects listed above and identify 
the modeling formalisms that will be augmented and used for modeling each of these 
aspects in the modeling environment. 

 
Operational Behavior 

Formally, the operational behavior of an MSAC system can be expressed as a 5-
tuple. 
 { }0,,,, mTCTEM  (1) 
where, 

M  is a finite set of modes of operation; 
E  is a finite set of events; 

MMT ×⊆  is the set of transitions; 
{ }falsetrueTETC P ,: →×  denotes the trigger conditions on transitions, PE  

being the power set of E ; and 
Mm ∈0 is the initial mode of operation. 

The operational semantics can be described with a directed graph known as mode 
transition graph.  The nodes of this graph represent modes of operation of the system, 
and the edges of the graph represent transitions.  Edges are labeled with trigger 
conditions, a Boolean expression over the events Ee ∈ .  Events are Boolean variables 
that are set to signify a change in the operating environment.  An event is said to occur 
when the variable is set.  Events may occur asynchronously, and multiple events may 
occur simultaneously.  At any point of time the system is in some mode of operation 



Mm ∈ .  A transition is enabled when the system is in a mode of operation represented 
by the source node of the arc denoting the transition, and the trigger condition associated 
with the transition is satisfied.  The operational behavior of the system is deterministic 
i.e. at any time no more than one transition is enabled simultaneously.  An enabled 
transition is taken by the system and the destination of the transition becomes the current 
mode of operation.  Figure 1 shows a mode transition graph. 
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Figure 1: A mode transition graph 

The operational semantics discussed above may be modeled with the Finite State 
Machine (FSM) representation, a modeling formalism popular for representing 
behavioral specifications.  The FSM representation describes behavior in terms of states, 
transitions, and events.  The modes of an MSAC system map directly to the states in an 
FSM representation.  However, the FSM representation can be unwieldy for large 
systems when the number of modes and transitions are large.  Extensions have been 
proposed to the FSM representation to introduce hierarchy and concurrency by Harel [7].  
In a hierarchical FSM, a state may be further refined into another FSM.  Hierarchy 
simplifies the visual representation and makes the FSM representation more intuitive.  
Further, use of hierarchy promotes top-down design practices and varying levels of 
granularity when modeling system behavior.  In a concurrent FSM, multiple FSMs, each 
of which is sequential may be composed concurrently and the current state of the system 
is a tuple defined by the current state of the individual composing FSMs.  Concurrent 
FSMs may be flattened; however the state space of the flattened FSM is a cross product 
of the state spaces of the composing FSMs.  Concurrency in the FSM representation is 
extremely valuable in capturing fine-grained parallelism.  Use of hierarchy and 
concurrency together in the FSM representation can modularly capture very large state 
spaces. 

 
Execution Resources 

Formally, the execution resources may be expressed as a set R  of resources 
(processing elements) available for system execution.  For the purpose of this dissertation 
this abstraction is sufficient, however, for the purpose of generating executable artifacts, 
the inter-connect topology of the network is of interest.  The resource network can be 
described with an attributed directed graph known as resource network graph.  The nodes 
of this graph represent the resources, while the edges of this graph represent a physical 
communication channel between the resources.  Communication channels are 
unidirectional by default; a bi-directional channel is indicated with two edges in opposite 
directions between the communicating nodes.  Figure 2 depicts a resource network graph. 
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Figure 2: A simple network of resources 

Architecture Flow Diagrams (AFD) developed by Hatley and Pirbhai form a 
suitable basis for modeling the physical architecture of a system [11].  Architecture Flow 
diagrams is a block diagrammatic representation consisting of Architecture Modules, and 
Information Flow Channels.  An architecture module may be a physical module i.e. a 
processing element (DSP, RISC, FPGA, ASIC), a storage element (Memory), a sensor or 
an actuator element (AD/DA).  An architecture module may also be a composite module 
that can be used to create hierarchical architecture descriptions.  An information flow 
channel represents a physical communication channel between the architecture modules.  
This basically captures the as-built topology of the target architecture, along with 
parametric information about processing capacities, communication bandwidths, and 
storage capacities. 

 
Computational Structure 

Formally, the computational structure of the sys tem may be expressed as a 3-tuple 
 { }AFP ,,  (2) 
where, 

P  is the set of computational processes (components); 
PPF ×⊆  is the set of dataflow between processes; and 
RPA →:  is the resource allocation.  Each process is assigned to a processing 

element. 
The semantics of the computational structure can be described with an attributed 

directed graph known as process graph [13].  The nodes of this graph are computational 
processes.  The edges of this graph represent communication (dataflow) between 
processes.  Conceptually the processes operate continuously and concurrently 
transforming infinite sequence of input data to infinite sequence of output data.  The 
processes communicate via exchange of data tokens.  The communication is 
asynchronous and the tokens are buffered in FIFO queues.  The processes in the process 
graph are distributed and executed over the set of resources R .  Owing to the 
heterogeneity of the resources, some processes may be implemented as hardware 
functions and others may be implemented as software functions.  When implementing the 
processes as software functions executing on a sequent ial processor, the concurrency is of 
a conceptual nature and in reality the processes are scheduled for execution periodically 
by a runtime infrastructure.  The process is scheduled for execution when all the inputs to 
the process are available.  An execut ion of the process consumes data tokens on the 
inputs and produces data tokens on the outputs.  Figure 3 shows a process graph. 
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Figure 3: A simple process graph 

The above semantics can be captured as a Dataflow Model, a modeling 
formalism, particularly suitable for modeling image and signal processing computations 
[13].  The basic dataflow model does not support hierarchical representation.  However, 
many extensions have been proposed that introduce hierarchy in the dataflow model [14].  
In these extensions a dataflow block may be refined to contain another dataflow.  The 
basic dataflow execution semantics have been extended to hierarchical dataflow. 

The basic dataflow model captures a single solution for implementing a particular 
set of functional requirements.  As emphasized earlier, however, point solutions obtained 
by suppressing alternatives lead to sub-optimal and inflexible designs.  A need for 
capturing design spaces, by modeling alternatives explicitly was demonstrated earlier.  
This research extends the dataflow representation to enable representation of design 
alternatives.  With this extension a dataflow block may be decomposed in two different 
ways.  The first type of decomposition is a hierarchical decomposition in which a 
dataflow block can contain a dataflow model.  The second type of decomposition is an 
orthogonal decomposition, in which a dataflow block contains more than one dataflow 
block as alternatives.  In this case the container block defines only the interface of the 
block and is devoid of any implementation details.  The dataflow blocks contained within 
the container define different implementations of the interface specifications.  With these 
extensions i.e. hierarchy and alternatives, a dataflow model can modularly capture a large 
number of different computational structures together to form a configuration space. 

 
Constraints 

Constraints play two important roles in this research.  Primarily, constraints are 
used to: a) establish linkages and describe interactions between the elements of the 
different aspects of an MSAC system viz. modes of operation, computational processes, 
and resources; and b) express restrictions over the composite properties of a 
computational structure. 

The different aspects of an MSAC system are closely coupled together, and there 
are complex interactions that must be represented and enforced.  For example, the 
functional and performance requirements are driven by the mode of operation, and hence 
the selection of appropriate computational alternatives, and the allocation of resources to 
computational processes is typically mode dependent.  An English language expression 
of such a constraint would be: “when current mode of operation is mode X, then 
select alternative A of functionality F, and allocate resource R to 
alternative A”.  Typically there are consistency and typing restrictions when 
composing different alternatives of different functionality e.g. “alternative A1 of 
functionality F1 must be composed with alternative A2 of functionality 



F2 and a single resource R1 must be allocated to both A1 and A2 ”.  These 
types of constraints take the form of a relationship between different elements.   Complex 
relationships can be created by combining primitive relationships with first order logic 
connectives. 

The second form of constraints express restrictions over the composite properties 
of a computational structure.  A common example of such a constraint would be a 
maximum limit on end-to-end latency of a complex computational structure, or a bound 
on the power consumption of a computational structure.  These are composite properties, 
as they are not inherent to the computational structure, but are composed from the 
inherent properties of the basic components of the computational structure.  For example, 
the end-to-end latency of a complex computational structure is the sum of latencies of the 
basic building blocks of the computational structure.  This form of constraint restricts the 
selection of alternatives and their composition.  Typically, the two forms of constraints 
are combined together. 

Object Constraints Language (OCL), a part of the Universal Modeling Language 
(UML) suite, forms a good basis for expressing the type of constraints shown above [15].  
OCL is a declarative language, typically used in object modeling to specify invariants 
over objects and object properties, pre- and post- conditions on operations, and as a 
navigation language.  This dissertation extends a subset of OCL to express the type of 
constraints referred to above.  The extended constraint language is specified later in this 
chapter. 

 
The different aspects formalized above can be put together to form a formal 

definition of an MSAC system.  Formally, an MSAC system can be defined as an 8-tuple: 
 { }MCCRmTCTEMD ,,,,,,, 0=  (3) 
where, 

D  denotes an adaptive computing system; 
C  is a set of system configurations (computational structures) specified above; 

and 
CMMC →:  is the mapping function that associates each mode of operation 

with a configuration.  A mode transition in the operational behavior implies a system 
reconfiguration. 

 
This concludes the specification of the adaptive computing systems addressed by 

this research.  The next section describes a modeling paradigm defined for the creation of 
a modeling environment. 

 
Modeling Paradigm 

The Multi Graph Architecture (MGA) provides a unified software architecture 
and framework for creating a Model Integrated Program Synthesis (MIPS) environment 
[5][2].  The core components of the MGA are a customizable Graphical Model Editor for 
creation of multi-aspect domain-specific models, Model Databases for storage of the 
created models, and a Model Interpretation technology that allows creation of domain-
specific, application-specific model interpreters for transformation of models into 
executable/analyzable artifacts.  The details of the MGA are presented in Appendix A.  



The created environment is domain specific and includes tools and functionality for 
creation and storage of system models, and generation of executable/analyzable artifacts 
from system models.   

The customization and creation of a domain specific MIPS environment involves 
a careful analysis of the needs of the domain engineers, the components and the 
composition principles used in the domain, and the target applications.  For an 
environment to successfully support the creation of systems, the environment must 
faithfully reproduce the concepts employed by design engineers.  The previous section 
addressed the requirements of an adaptive computing system design environment and 
identified the modeling formalisms that must be employed for modeling and designing 
adaptive computing systems.  This section addresses the instantiation of the modeling 
concepts and formalisms in an MGA based MIPS environment. 

In the MGA technology, the modeling concepts to be instantiated in the MIPS 
environment are specified in a meta-modeling language.  A metamodel of the modeling 
paradigm is constructed that specifies the syntax, static semantics, and the presentation 
semantics of the domain specific modeling paradigm.  The metamodel captures 
information about the objects that are needed to represent the system information and the 
inter-relationship between different objects as a UML class diagram.  The meta-modeling 
language also provides for the specification of visual presentation of the objects in the 
MGA graphical model editor. 

The MGA based Adaptive Computing System design environment divides the 
modeling process into four categories in accordance with the aspects of an MSAC system 
identified earlier: 
Operational Behavioral Modeling – In this first category, the operational behavior of an 
MSAC system is modeled.  The designer can specify the operating modes of the system 
M , the legal transitions between modes T , the conditions for transition TC , and system 
events E  in an extended Finite State Machine formalism.  The modeling category also 
enables association of a mode of operation with a computational structure. 
a. Computational Structure Modeling – In this category, the computational 

structures set C  of the system is modeled.  Multiple dataflow models may be 
created, each customized for a particular mode.  Alternately, a single dataflow 
model may encapsulate multiple structures using alternatives. 

b. Execution Resource Modeling – In this category, the set of resources R  
available for system execution are modeled.  Along with the physical 
processors, configurable hardware (FPGA), I/O, memory devices, the 
interconnection topology is also modeled. 

c. Constraint Modeling – A textual constraint language has been provided that 
allows for expression of interactions and linkages between modeling objects in 
same or different categories, and expression of performance constraint over 
computations.  The constraint language is derived from OCL as specified 
earlier. 

The metamodel of these modeling categories, and the constraint language is 
described below. 

 



Operational Behavior Modeling 

Behavioral models capture the operational behavior of the system.  As identified 
earlier a Discrete Finite State Machine representation, extended with hierarchy and 
concurrency, is selected for modeling the dynamic behavior of the system.  This 
representation has been selected due to its scalability, universal acceptability, and ease-
of-use in modeling.  Figure 4 illustrates the behavior modeling aspect of the metamodel 
of the modeling paradigm.  The objects used for creating a hierarchical, parallel, finite 
state machine representation and their inter-relationships are expressed as a UML class 
diagram in this figure. 

The primary object in a finite state machine representation is a state.  States define 
operational modes of the system.  Hierarchy is enabled in the representation by allowing 
States to contain other States.  Attribute of this object defines the decomposition of the 
state.  The State may be an AND state, when the state machine contained within the State 
is a concurrent state machine.  The State is an OR state, when the state machine contained 
within the State is a sequential state machine.  If the State does not contain child States 
then it is specified as a LEAF state.  In MGA there are two kinds of modeling objects, 
models and atoms.  Models are compound objects that may contain other objects.  Atoms 
are atomic objects that have no internal decomposition.  States are complex object with 
an internal decomposition and hence States are mapped to MGA models. 

In addition to states in a finite state machine representation, transitions define the 
potential conditions required for the system to change states and the destination state.  
Transition objects in the modeling environment are used to model a transition from one 
mode to another.  The attributes of the transition object define the trigger and the guard 
condition.  The trigger and guard are Boolean expressions.  When these Boolean 
expressions are satisfied the transition is enabled and mode change accompanied with 
system reconfiguration can take place.  Transitions are mapped to MGA atom, as they 
have no internal decomposition.  To denote a transition between two States two 
connections have to be made, one from the source State to a Transition object, and 
another from the Transition object to the destination State.  Unfortunately MGA does not 
support direct connect between MGA models.  Connection in MGA can be made only 
between atoms or ports.  Ports are atomic object contained in a model and used as a link 
part.  Thus, in order to enable transition connections between States, port objects have to 
be inserted in the State.  The InputTransition object and the OutputTransition object have 
been provided for this reason.  Sometimes, transition between two States at different 
levels of the hierarchy has to be specified.  This is enabled in the MGA by referencing the 
OutputTransition object of source State or the InputTransition object of the destination 
State.  Reference is an MGA modeling artifact that is used to create a pointer- like link to 
models or atomic objects.  In the metamodel a reference is represented as an association 
class.  In the FSM formalism, the initial state is denoted by drawing an arrow without 
source to a state.  In the MGA technology connections without a source cannot be 
specified.  Therefore, a connection is made from an InitialTransition object to an 
InputTransition port of a State to denote the initial state. 

In addition to states and transitions, the FSM representation includes events.  
These can be directly sampled external signals or complex computational results.  In the 
modeling paradigm Event objects capture the event variables.  Events are mapped to 
MGA atoms. 
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Figure 4: Metamodel of operational behavior modeling 

The computation to be executed in a mode of operation is defined by associating a 
mode with a computational structure.  In the modeling environment this association is 
expressed by referencing a processing object (described later) in a State.  The references 
allow a single computational structure to be applied to any number of modes, or allow all 
modes to have separate computational structures. 



In addition to the above objects a State may also contain Constraint objects.  A 
constraint object is an atomic object with a textua l attribute that is used to specify a 
constraint expression in the constraint language specified later. 

 
Computational Structure Modeling 

This modeling category is used to describe the computational structure.  A 
dataflow representation with extensions for hierarchy and alternatives has been selected 
for modeling computational structure.  This representation describes computations in 
terms of computational processes and their data interactions.  To manage system 
complexity, the concept of hierarchy is used to structure computation definition.  The 
representation is extended to enable capturing explicit design alternatives.  This extension 
allows a designer to represent extremely large configuration spaces in a highly modular 
and scalable manner.  Figure 5 illustrates the computational structure modeling aspect of 
the metamodel of the modeling paradigm.  The different objects and their inter-
relationship are described below. 

The computational structure is modeled with the following classes of objects: 
Compounds, Primitives, and Templates.  These objects represent a computational process 
in a dataflow representation.  DataPorts are used to define the interface of these 
processes, through which the processes exchange information.  DataPorts are specialized 
into InputPorts that represent inputs to a computation, or OutputPorts that represent the 
outputs from a computation.  The attributes of the DataPort objects characterize the data 
that can be exchanged with the component.  Attributes specify data type, data rate, data 
format, and data size. 
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Figure 5: Metamodel of computational structure modeling 

A Primitive is a basic element representing the lowest level of processing that is 
modeled.  A Primitive maps directly to a processing function that will be implemented as 
either a hardware macro or a software function.  Primitive objects are annotated with 
attributes.  These attributes capture measured performance, resource (memory/area) 
requirements, and other user-defined properties.  Specifically, Latency attribute captures 
the pre-determined latency of the primitive, Area attribute captures the gate count when 



the primitive is a hardware macro, and code size when the primitive is a software module, 
and Throughput attribute captures the pre-computed data processing throughput of the 
component.  The ScriptName and FileName store the name and the location of the 
module, and the ResourceType attribute specifies the implementation technology of the 
primitive i.e. RISC CPU, or DSP, or FPGA, or ASIC, etc. 

A Compound is a composite object that may contain Primitives, other 
Compounds, and/or Templates. These objects can be connected within the compound to 
define the dataflow structure.  Compounds provide the hierarchy in the structural 
description that is necessary for managing the complexity of large designs.  

A design alternative is used in the modeling process to allow the specification of 
multiple algorithm/architecture alternatives for a given process.  The Template object is 
used to capture the design alternatives.  Templates have a well defined interface 
represented with the Ports and can contain one or more alternative.  These alternatives 
can be either Compounds or Templates or Primitives, thus allowing hybrid hierarchies of 
alternatives and subsystems.  When alternatives are used, the algorithm structural models 
describe a huge number of potential design implementations.  The selection of 
appropriate alternative for design implementation is left to the design space explo ration 
and synthesis tool. 

When implementing a design a computation must be mapped to a physical 
resource.  The designer can provide the mapping specifications by referencing a resource 
within a processing object.  It must be noted that mapping specifications are not 
mandatory.  A designer may leave these unspecified, in which case the resource 
allocation is considered another dimension of the design space flexibility and is resolved 
by the design space exploration tool. 

The processing objects may also contain Constraint objects to express user-
defined constraints in accordance with the constraint language specifications. 

 
Execution Resource Modeling 

This category models the resources available for the system execution.  The 
resources are modeled in terms of physical hardware components and the physical 
connections among them.  Figure 6 shows the resource modeling aspect of the metamodel 
of the modeling paradigm. 

The top- level object in a Resource model is a Network of components.  A 
Network may contain: 1) General-purpose processor elements (such as DSPs or standard 
RISC/CISC processors) represented by a Processor object; 2) Programmable logic 
components (such as FPGAs) represented by a FPGA object; 3) Dedicated hardware 
components for fixed functions (ASICs) represented by an ASIC object; 4) Memory 
devices represented by a Memory object; 5) Sensors that are hardware acquisition devices 
represented by a Sensor object; and 6) Actuators for hardware effectation interface 
represented by an Actuator object.  Networks have a hierarchical decomposition i.e. 
Networks may contain other Networks. 
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Figure 6: Metamodel of execution resource modeling 

Networks and components have ports.  These are represented with a PhysicalPort 
object in the modeling environment.  A PhysicalPort represents a physical 
communication port that can be attached to a communication channel.  The attributes of 
the PhysicalPort object define the specifics of the communication protocol associated 
with the communication channel.  Communication links between components are 
represented by connecting the PhysicalPorts of components. 

The attributes of the components capture the inherent performance attribute of the 
processing element.  For example, Processor attributes include processor type, clock 
speed, memory and other resources; FPGA attributes include FPGA type, clock speed, 
and the programmable gate (logic block) count; Memory attributes include memory size, 
and memory width.  The resource models capture the “as-built” topology of the network 
of resources. 

 



Constraint Modeling 

The Constraint objects mentioned earlier have a text attribute for specification of 
constraints.  Constraints are specified in a language that is an extended subset of OCL.  
The specified constraint operates in the context of the object that contains the Constraint 
object.  A constraint expression can refer to the context object and to other objects 
associated with the context object and their properties.  The context object can be referred 
to by the OCL keyword self.  Associated objects can be referred to by navigation, an 
OCL concept.  Role names are used to navigate and access associated objects.  For 
example, the expression self.parent evaluates to the parent object of the context 
object, similarly self.children evaluates to a set of children object of the context 
object.  The following associations are enabled for navigation in the derived constraint 
language: 
• parent – evaluates to the parent of the context object in the hierarchy. 

• children – evaluates to a set of children objects of the context object in the object 

hierarchy.  When invoked with the name of a child as an argument the expression 

evaluates to a specific child object e.g. self.children(“childX”) evaluates to 

an object with the name childX contained in the context object.  The modeling 

environment enforces unique names for all objects in a single context. 

• project – evaluates to a project object that is the root container of all the objects in the 

system model. 

• resources – evaluates to a set of resource objects  contained in the system model. 

• modes – evaluates to a set of the operational modes of the system. 

• processes – evaluates to a set of the processing objects of the system 

A constraint expression can either express direct relation between the objects by 
using relational or logical operators, or express performance constraints by specifying 
bounds over object properties.  Object properties can be referred to in a manner similar to 
associations.  The following property constructs are enabled in the derived constraint 
language for expression of constraints: 
• latency – evaluates to the latency attribute of a processing object 

• area – evaluates to the area attribute of a processing object 

• power – evaluates to the power consumption of a processing object 



• implementedBy – evaluates to an alternative of a template processing object selected 

for implementation 

• assignedTo – evaluates to the resource that a processing object is assigned or mapped 

to. 

There are four basic flavors of design constraints that can be expressed in the 
modeling environment using the derived constraint language: (a) compositional 
constraints, (b) resource constraints, (c) performance constraints, and (d) operational 
constraints.  More complex constraints can be expressed by combining these basic 
categories of constraint with first order logic connectives. 

 
Compositional constraints 

Compositional constraints are logic expressions that restrict the composition of 
alternative computational blocks.  They express relationships between alternative 
implementations of different components.  These are essentially compatibility directives 
and are similar to the type equivalence specifications of a type system.  Therefore, 
compositional constraints are also referred to as typing constraints. The compositional 
constraints are specified with the implementedBy property of a template object.  For 
example,  

constraint compositional() { 

(self.children(“FFT”).implementedBy = 

self.children(“FFT”).children(“FFT_HW”))  

implies  

(self.children(“IFFT”).implementedBy = 

self.children(“IFFT”).children(“IFFT_HW”)) 

} 
expresses a compatibility directive between two alternative processing blocks FFT and 
IFFT.  The compositional constraint can also take an imperative form, when the 
implementedBy property of a template object is assigned to a particular implementation 
alternative e.g. {self.implementedBy = self.children(“FFT_HW”)} (the constraint 
is expressed in context of the FFT template object). 

 
Resource constraints 

Resource constraints relate computational blocks to resources.  These are 
basically assignment directives that assign a resource to a processing object.  The 
resource constraints are specified with the assignedTo property of a processing object.  
For example, {self.assignedTo = project.resources(“FPGA_1”)} is an imperative 
resource constraint.  More complex resource constraints may be formed by combining 
resource and compositional constraints e.g.  

constraint resource() { 



((self.children(“FFT”).implementedBy = 

self.children(“FFT”).children(“FFT_HW”)) 

implies 

self.children(“IFFT”).implementedBy = 

self.children(“IFFT”).children(“IFFT_HW”)) 

and 

(self.children(“FFT”).assignedTo = project.resources(“FPGA_1”)) 

and 

(self.children(“IFFT”).assignedTo = project.resources(“FPGA_2”)) 

} 
 

Performance constraints 

Performance constraints express non-functional requirements that the synthesized 
system must obey.  These are expressed as bounds over the composite properties of 
computational blocks.  The following performance attributes have been considered for 
constraint specification. 

o Timing – expresses end-to-end latency constraints, specified over the 
entire system, or may be specified over a subsystem e.g. (self.latency 
< 20). 

o Area – expresses bound over the area of a system or a subsystem 
(self.area < 105).  The area is defined for a hardware component to be 
the logic block count and for a software component to be the code size.   

o Power – expresses bound over the maximum power consumption of a 
system or a subsystem e.g. (self.children(“Multiplier_32”).power 
< 100). 

 
Operational constraints 

These constraints express conditions relating design configurations to operational 
modes.  Mode-specific design requirements, composition preferences and allocation 
restrictions can be specified with these constraints. The previously specified constraints 
are applicable in all modes of operation.  The operational constraints conditionalize these 
constraints with a mode of operation e.g. {(systemMode() = 
project.modes(“TerminalTracking”)) implies (self.latency < 10)}. 

 
Modeling Summary 

The previous sections reviewed the key concepts required in modeling multi-
model structurally adaptive computing systems and demonstrated an instantiation of these 
concepts in an MGA based Model-Integrated Design Environment.  Specifically, 
modeling formalisms for modeling the operational behavior, modeling the computational 
structure, and modeling the resources were reviewed.  An instantiation of these 
formalisms, extended to the specific needs of MSAC systems, in the MGA based Model 
Integrated Environment was specified as a metamodel.  A constraint language extended 



from a subset of OCL has been presented for the expression of user-defined operational 
and performance constraints.   

An important contribution of this dissertation is in modeling of design spaces by 
explicit modeling of alternatives.  The dataflow modeling formalism was extended with a 
template object, that defines an interface along with multiple potential implementations 
of a functionality.  Templates can be used to capture algorithm alternatives, architectural 
alternatives, and technology alternatives.  With templates it is possible to create 
application designs that are not specifically tied to any particular architecture, or 
technology, thus enabling the issue of application and technology evolution, at least from 
a system integration perspective.  The design spaces created by capturing 
characteristically different design alternatives, gives the environment and the designer, 
the freedom to explore and search for the “best” design that satisfies a given set of 
constraints.  A tool for exploring these design spaces is discussed in the next chapter. 



 
 

CONSTRAINT BASED DESIGN SPACE EXPLORATION 

 
The objective of design space exploration for system synthesis is to find a single 

design, or a set of designs from the design space that satisfies the system constraints and 
maximizes (minimizes) an objective (cost) function.  The exact exploration strategy 
depends upon the synthesis objectives and the nature of the design space in terms of the 
dimensionality of the space, continuity of the space, and other defining characteristics of 
the design space.  In general, the design space exploration methods can be primarily 
grouped into two categories: a) exhaustive search based, and b) heuristics based.  Some 
representative approaches from each category were reviewed in Chapter 2.  It was 
observed that when design spaces are large none of the reviewed methods is effective. 

Metaphorically, searching for a single design in a large design space is akin to the 
proverbial “needle in a hay stack”, and the complexity of search in such design spaces is 
dominated by the size of the design space.  This dissertation develops a novel approach to 
the design space exploration in large design spaces.  There are two core concepts in the 
developed approach:  

a) Progressive pruning of the design space by constraint satisfaction, and  
b) Symbolic methods for constraint satisfaction 

The main idea behind progressive pruning is to avoid a single stage search in a 
large design space.  Instead, the design space is iteratively pruned through the application 
of constraints.  The granularity of the constraints is progressively improved.  In the early 
stages of design space pruning, when the design space is extremely large, coarse-
granularity constraints are applied.  In subsequent stages, when the design space is much 
smaller fine-granularity constraints are applied.  This technique is based on the 
assumption that coarse-granularity constraints can be easily evaluated and a fast 
constraint satisfaction procedure can be developed for satisfying coarse constraints.   The 
fine-granularity constraints, on the other hand have to be evaluated by a more intensive 
constraint satisfaction procedure such as performance simulation or embedded testing.  
Figure 7 illustrates the idea of design space exploration by progressive pruning. 
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Figure 7: Progressive design space pruning 

While a single coarse-granularity constraint may be easy to evaluate against a 
single design, verifying all the designs against a coarse-granularity constraint in a large 
design space can still be highly compute- intensive.  This complexity is inherent due to 
the enumeration of an exponentially large design space.  To overcome this challenge a 
symbolic constraint satisfaction method was developed.  The highlight of the symbolic 
constraint satisfaction method is the ability to apply constraints to the entire design space 
without enumerating individual designs.  Symbolic analysis methods represent the 
problem domain implicitly as mathematical formulae and the operations over the domain 
are performed by symbolic manipulation of mathematical formulae.  Recently, symbolic 
analysis methods based on Ordered Binary Decision Diagrams (OBDD) [16][17] have 
found much success in solving a large number of problems in digital system design, finite 
state system analysis, combinatorial optimization, artificial intelligence, and  
mathematical logic [18].  These symbolic analysis methods employ Boolean algebra as 
the underlying mathematical formalism.  The symbolic constraint satisfaction method 
developed in this dissertation is based on OBDDs.  OBDDs are basically a data structure 
for symbolically representing Boolean functions.  A powerful suite of graph algorithms 
accompanies the OBDD data structure, and provides for fast symbolic manipulation of 
Boolean functions.  OBDDs are further described in Appendix B.   

The rest of this chapter describes in detail the symbolic constraint satisfaction 
method and a design space exploration tool that enables interactive and iterative design 
space exploration through symbolic constraint satisfaction. 

 



Symbolic Constraint Satisfaction 

The symbolic constraint satisfaction problem considered here is a finite set 
manipulation problem.  The design space for MSAC systems, as can be seen from the 
definition in Chapter 3, is a finite set that is primarily a cross product of mode space and 
configuration space.  The mode space and configuration space in turn are finite sets 
composed of their respective constituent elements.  Constraints are relations in this 
product space.  Constraint satisfaction is restriction of the design space with the 
constraints.  This can be summarized as follows: 

• CM ×  – design space 
• ( )cmO ,  – constraints 

• ( ) ( ) ( ) ( ){ }cmOcmCcMmcmCM r ,,,,, ∈∈∈=×  – constraint satisfaction 
Solving this finite set manipulation problem symbolically requires the solution of 

two key problems: 
1. Symbolic representation of design space, and 
2. Symbolic representation of design constraints. 
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Figure 8: Symbolic Constraint Satisfaction 

The symbolic constraint satisfaction is simply the logical conjunction of the 
symbolic representation of design space with the symbolic representation of design 
constraints.  Figure 8 illustrates symbolic constraint satisfaction.  The next sections 
describe the symbolic representation of design space, and symbolic representation of 
constraints. 

 



Symbolic Representation of Design Space 

The key to exploit the power of symbolic Boolean manipulation is to express a 
problem in a form where all of the objects are represented as Boolean functions [17].  By 
introducing a binary encoding of the elements in a finite set all operations involving the 
set and its subsets can be represented as Boolean functions.  Consider a finite set D .  An 
element Dd ∈  can be uniquely encoded as a vector of n  binary values, where 

 Dn 2log= .  The encoding is denoted by a function { }nD 1,0: →σ , mapping each 

element of D  to a distinct n -bit binary vector.  The function ( ) ( )∏
≤≤

⊕=
ni

ii dvdf
1

σ , 

where niv i ≤≤1:  are Boolean variables, ( )diσ  is the i -th bit in the encoding, and the 
product operator denotes logical conjunction, represents the element Dd ∈  symbolically.  
The set D  may be symbolically represented as ( )U

Dd

df
∈∀

, where the union operator 

denotes logical disjunction.  This forms the general approach towards representing finite 
sets symbolically.  A fixed-length encoding scheme has been used above to encode the 
elements of the set.  However, when sets are hierarchically composed a variable length 
prefix-based encoding scheme may be preferable. 

In order to represent the design space symbolically, the elements of the design 
space had to be encoded as binary vectors.  An encoding scheme was developed after a 
careful analysis of the problem domain, taking into consideration the hierarchical 
structure of the design space.  The choice of encoding scheme has a strong impact on the 
scalability of the symbolic manipulation algorithms [17][18].  The design space as 
mentioned earlier is a product of the mode space and the configuration space.  The two 
spaces can be encoded separately and represented symbolically and the design space can 
be symbolically composed.  The following sections describe the encoding and symbolic 
representation of the two spaces.   

 
Encoding and symbolic representation of the mode space 

The mode space captures the behavior of the system and is constructed as a 
Hierarchical Parallel Finite State Machine (HPFSM) as described in Chapter 3.  The 
structure of a HPFSM can be shown as an AND-OR-LEAF tree.  In this tree the leaf 
nodes represent the LEAF-states of the system and the intermediate nodes represent the 
AND-states and OR-states.  The distinction between an AND-state and an OR-state is 
made by using visually different branching shapes.  Figure 9 below depicts a HPFSM and 
its structure in an AND-OR-LEAF tree representation. 

Unlike a finite state machine, where a system is in a single state at any given point 
of time, the current state of the system in a HPFSM is a configuration of states that 
includes exactly one sub-state of an OR-state and all sub-states of an AND-state.  The 
state configuration should not be confused with the system configurations in the 
configuration space.  A state configuration is essentially a well- formed path in the AND-
OR-LEAF tree representation of the state machine from the root to leaf (leaves) in the 
tree.  A well- formed path originates from the root and consists of a unique trail branching 
from an OR-node and multiple simultaneous trails branching from an AND-node.  For 
example, {S, S2, S21, S211, S22, S23, S232} is a well- formed path, and so is {S, S1, 



S11} in Figure 9 shown above.  The basic goal of the encoding scheme is to assign a 
unique encoding value to each configuration, which translates to a unique encoding value 
for each well- formed path in the tree.  A similar approach is used for encoding HPFSM in 
[19] 
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Figure 9: An HPFSM and its AND-OR-LEAF tree representation 

This is accomplished by assigning an encoding value to a node that uniquely 
identifies the choices made in traversing a well- formed path from the root to the node.  
Since the path to a node contains the path to its parent, encoding of every node is prefixed 
by its parent’s encoding.  When the parent of a node is an OR-node then  n2log  
additional bits are required to distinguish the node from its 1−n  siblings.  When the 
parent of a node is an AND-node no such distinction is required as a well- formed path 
contains the node along with all its siblings.  However, it must be noted that a well-
formed path splits into multiple trails from an AND-node, and different group of bits are 
required to identify choices made when traversing each of these trails independently. 

A notion of orthogonality may be defined here.  Two nodes in the tree are said to 
be orthogonal to each other when the nearest common ancestor is an OR-node, otherwise 
the nodes are said to be non-orthogonal.  For example, S11 and S21 in Figure 9 are 
orthogonal.  Orthogonal nodes do not exist together in any well- formed path and 
therefore they may share/reuse the same group of bits in the binary vector for encoding 
(with different values).  Non-orthogonal nodes may not share the same bits. 

The total number of bits used when nodes are encoded as above can be 
determined as follows.  Let ( )dtotalm  be the number of bits required to encode a node 
d and the sub-tree rooted at it, and let ( )dχ denote the children of node d .  Then, 
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and, 
 ( )mmm totalN ℜ=  (5) 



where, mN  is the total number of bits required for encoding the mode space, and mℜ  is 
the root state in the HPFSM.  Figure 10 shows the AND-OR-LEAF tree of Figure 9 
annotated with encoding values.  An underscore in the encoding value denotes that the 
particular bit is a ‘don’t care’ for the node. 
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Figure 10: Encoding of the HPFSM of Figure 9 

The mode space when represented as an HPFSM can be defined as the set of all 
state configurations in the HPFSM.  This set can be composed recursively in the 
following manner:  Let, ( )dgsStateConfi  be the set of all configurations that include a 
state d , ( )dpath  be the path to state d  in the tree, and ( )dχ  be the set of children of d .  
Then, 
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and ( )mgsStateConfi ℜ  is the set of all configurations that include the root state, which in 
fact is the mode space. 

The symbolic representation of the mode space represents the set 
( )mgsStateConfi ℜ  as a Boolean function.  Given the binary encoding for the nodes this 

set may be composed symbolically using mN  Boolean variables.  Let, ( )dgsStateConfi  

be the Boolean function denoting the set ( )dgsStateConfi , ( )dσ  denote the encoding of 
d  with ( ) { }×∈ ,1,0diσ  being the i -th bit in the encoding, and ×  denoting don’t care, and 

mi Nim ≤≤1:  be Boolean variables.  Then, 
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The Boolean variables im  are referred to as mode variables in the later sections.  The 

Boolean function ( )mgsStateConfi ℜ  is the symbolical representation of the mode space. 
 

Encoding and symbolically representing the configuration space 

The configuration space captures the computational structure and is constructed as 
a hierarchical dataflow graph with alternatives, as described in Chapter 3.  The dataflow 
is associated with a network of resources in defining the computational structure.  The 
hierarchical dataflow with alternatives together with the resource network can define 
modularly a very large configuration space.  The scalability of this representation in 
capturing large design space can be estimated through the following expressions.  With a  
alternatives per template, and n  templates per compound, composed in a m -level deep 
hierarchy this representation can define: mka  design configurations, where 

( ) nkk mm ×+= − 11 , and nk =1 , using just ( )mna ×  primitives.  As an example, with 

4=n , 3=a , and 3=m , a total of 1728 primitives can represent 843  design 
configurations! 

The structure of the hierarchical dataflow with alternatives is similar to the 
structure of the HPFSM and can be represented as an AND-OR-LEAF tree.  A compound 
in the hierarchical dataflow implies inclusion of all its children in a configuration and is 
therefore represented as an AND-node.  The template component on the other hand 
implies selection of exactly one of its children in a configuration and is therefore 
represented as an OR-node.  The primitive component has no internal decomposition and 
is represented as a LEAF-node.  Figure 11 shows a hierarchical dataflow with alternatives 
and its equivalent AND-OR-LEAF tree representation. 
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Figure 11: Hierarchical dataflow and its AND-OR-LEAF tree representation 



The encoding of the configuration space basically follows the same argument as 
forwarded for the encoding of the mode space.  However, a configuration in the 
configuration space in addition to being a well- formed path in the tree representation of 
the dataflow also includes resource assignments of primitives.  The encoding scheme 
therefore must uniquely identify the resource assignments.  Moreover, each primitive is 
characterized with performance attributes such as latency, area, power, cost, etc.  
Therefore, the encoding scheme must also include performance attributes in order to 
uniquely characterize a configuration.  The encoding of the configuration space thus has 
three parts: a) structure (well- formed paths), b) resource assignments, and c) performance 
attributes.  The following sections elaborate upon these individually. 

a. Encoding the structure – This encoding is exactly the same as that of the mode 
space.  The total number of bits required to encode the structure are 

( )sss totalN ℜ= , where sℜ  is the root of the dataflow hierarchy, and the function 

stotal  is defined similar to function mtotal  above i.e. 
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Figure 12 shows the AND-OR-LEAF tree of Figure 11 annotated with the 
encoding values under the structure encoding. 
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Figure 12: AND-OR-LEAF tree of Figure 11 annotated with structure encoding 

b. Encoding the resource assignments – Let, R  be the set of resources available for 
system execution, and ( )pγ  be the set of resources that can be potentially 
assigned to a primitive p , then ( ) Rp ⊆γ  and ( ) φγ ≠p .  In order to uniquely 

identify the resource assignment of a primitive ( ) pγ2log  bits are required for 
each primitive. The total number of bits required to encode the resource 
assignments are ( )srr totalN ℜ= , where the function ( )dtotalr  is as follows: 
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It must be noted here that by using exactly ( ) pγ2log -bits to encode the 
potential resource set of a primitive, the encoding value of a resource is made 
specific to the primitive, and may be different for different primitives.  In contrast 
by using  R2log -bits for encoding the potential resource set the encoding value 
of a resource can be made unique over all primitives.  The trade-off is in the 
number of bits used against the encoding effort.  Figure 13 shows the AND-OR-
LEAF tree of Figure 11 partially annotated with the encoding of the resource 
assignment of the primitives.  The boxes represent resources, and the dashed 
arrows indicate potential assignments.  
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Figure 13: AND-OR-LEAF tree of Figure 11 annotated with resource encoding 

c. Encoding the performance attributes – Various attributes characterize the 
performance of a processing primitive.  These attributes assume numeric values 
from a finite domain.  The domains may be continuous; however, for the purpose 
of encoding the domains must be discretized.  By choosing a large number of 
quantization levels, quantization errors may be minimized.  The tradeoff is in the 
number of bits required for encoding the domain.  For the purpose of illustration 
only latency attributes are being considered, however the encoding may be 
similarly extended for other performance attributes.  When the domain of latency 
attributes is quantized into L  levels, then  L2log -size binary vector is required 
to encode the latency attribute of each primitive.  The total number of binary 
vectors required for encoding the latency attributes are ( )slvec vecN ℜ= , where 

( )dvecl  is defined as follows: 
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Note that the orthogonal nodes share the same binary vector for encoding their 
latency attributes.  The total number of bits required for encoding the latency 
attributes is the number of binary vector times the size of each vector i.e. 

( ) ( )vecvecl NLNN ××= 2log .   Note that the size of the bit vectors representing 
latency attributes is increased to prevent overflow when adding the latency 
attributes.  At most vecN  attributes are added. 
Thus, the total number of bits required to completely encode the configuration 

space are lrsc NNNN ++= .  sN  depends on the structure of the hierarchical dataflow 
representation and is generally small; rN  depends primarily on the number of resources 
and is generally small; lN  however depends primarily on the domain size of the latency 
attribute and can be large.  The impact of vecN  and lN  on the scalability of the approach 
is considered in a subsequent section. 

The configuration space is a set of all configurations.  This set may be constructed 
recursively in the following manner:  Let, ( )dConfigs  be the set of all configurations 
including a node d , and ( )dl  be the latency of d  (defined for leaf nodes only).  Then, 
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Note that the definition of a configuration has been extended to includes resource 
assignments as well as performance attributes.  Only latency attribute is being shown here 
for convenience.  The set ( )sConfigs ℜ  is a set of all configurations that include the root 
of the dataflow hierarchy, and thus represents the configuration space. 

The symbolic representation of the configuration space represents the set 
( )sConfigs ℜ  as a Boolean function.  Given the binary encoding for the nodes this set 

may be composed symbolically using cN  Boolean variables.  Let ( )dConfigs  be the 

Boolean function denoting the set ( )dConfigs .  Let )(dsσ denote the encoding of d  

under the structure encoding, ( )drr ,σ denote the encoding of resource ( )dr γ∈  under 

the resource encoding, ( )dlσ denote the encoding of d  under the latency encoding, and 
each of the encoding function above subscripted with i  denote the i -th bit in the 
respective encoding.  Also let si Nis ≤≤1: , ri Nir ≤≤1: , and li Nil ≤≤1:  be Boolean 
variables.  Then, 
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The Boolean variables is  are referred to as structure variables, ir  are referred to as 
resource variables, and il  are referred to as latency variables, and collectively these are 

referred to as configuration variables.  The Boolean function ( )sConfigs ℜ  is the 
symbolic representation of the configuration space. 

 
OBDD representation of the design space 

The Boolean function ( ) ( )sm ConfigsgsStateConfiDesigns ℜ∧ℜ=  represents the 
design space symbolically.  The first step in representing this function as an OBDD is to 
determine the ordering of the introduced Boolean variables.  The size, and hence the 
scalability, of the OBDD representation is highly dependent upon the variable ordering.   

Determining an optimal ordering for an OBDD representation is an unsolved 
problem [18].  However, heuristics are generally effective in most problem domains.  The 
general rule of thumb applied here is to use a notion of dependency.  For example, 
selection of mode determines the usable configurations; therefore, mode variables are 
ordered before configuration variables in the ordering.  With this ordering mode variables 
are evaluated before configuration variables, and when mode variables are bound this 
rules out large parts of the configuration space in the decision diagram.  Among the 
configuration variables, the structure variables are interleaved with the resource variables, 
and latency variables are ordered after these.  Within both the mode variables and the 
structure variables, lower index is given to the variables introduced with the nodes higher 
in the hierarchy.  This follows the same argument of being able to rule out larger parts of 
the space formed by the hierarchy instead of maintaining and propagating the alternatives 
to a deep level.  The latency variables can basically be grouped into vecN , 

( ) vecNL×2log -bit binary vectors.  Within each vector the most significant bit receives 
the lowest index in the ordering.  Further, the bits of all the vectors are interleaved 
together e.g. the most significant bit of all the vectors is grouped together and is ordered 
before the next most significant bit of all the vectors grouped together.  Once the variable 
ordering is fixed, the Boolean function representing the design space is mapped to an 
OBDD representation in a straightforward manner. 

The next step in symbolic constraint satisfaction is to represent the design 
constraints symbolically.  The next section describes the symbolic representation of 
constraints. 

 



Symbolic Representation of Constraints 

Recall from Chapter 3, four basic categories of design constraints may be 
expressed in the modeling environment.  Symbolic representation of each of these basic 
categories of constraints is described below. 

 
Compositional constraints 

Compositional constraints express logical relations between processing blocks in 
the hierarchical dataflow representation.  Let, 21: ddc ∇ℑ  be a constraint over processing 
blocks 1d  and 1d  relating them under relation ∇ , which is one of conjunction, 
disjunction, implication, or equivalence.  Symbolically the constraint can be represented 
as a relation over the symbolic representation of the processing blocks.  Thus, the 
Boolean function ( ) ( )21 dConfigsdConfigsc ∇=ℑ  represents the constraint cℑ  
symbolically. 

Figure 14 below shows a compositional constraint expressed on the hierarchical 
dataflow graph of Figure 11 and its symbolic representation. 
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Figure 14: Compositional constraint 

 
Resource constraint 

Resource constraints relate processing blocks to resources.  Symbolic 
representation of resource constraints is accomplished by expressing the relation over the 
symbolic representation of the processing block and resource.  Thus, a resource constraint 

rdr ∇ℑ :  over processing blocks d  and resource ( )dr γ∈  can be symbolically 
represented with the Boolean function ( ) ( )drfdConfigsr ,∇=ℑ , where 

( ) ( )
( )

∏
×≠∧≤≤

⊕=
drNi

r
ii

ir

drrdrf
,1

,,
σ

σ .  rℑ  represents the constraint rℑ symbolically. 

Figure 15 below shows a resource constraint expressed on the hierarchical 
dataflow graph of Figure 11 and its symbolic representation. 
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Figure 15: Resource constraint 

 
Performance constraints 

Performance constraints are more challenging to solve symbolically than the 
previously specified categories of constraints.  There are two primary drivers of the 
complexity: 1) A system-level property has to be composed from component- level 
properties in a large design space, and 2) The property being composed is numeric, and 
may admit a potentially very large domain.  Representing a large numeric domain 
symbolically as a Boolean function and performing arithmetic operations symbolically is 
a challenging problem with serious scalability concerns. 

Different performance attributes may compose differently.  The next section 
elaborates upon the general approach in solving constraints on simple additive attributes.  
Additive attribute refers to those attributes that can simply be added together to compose 
the system-level attribute from components.  Subsequent sections discuss specific 
performance attributes that are the focus of this dissertation. 

 
Basic approach 

Recall that while encoding the configuration space binary vectors are assigned to 
primitives to encode their attributes.  It was noted earlier that orthogonal nodes might 
share the same binary vector.  This is reasonable because orthogonal components are 
exclusive and are not simultaneously present in a configuration.   



Consider the Boolean expression 
vecNvvvf +++= L21  where, f  and 

veci Niv ≤≤1:  are  vecNn 2log+ -bit binary vectors, and ‘+’ denotes Boolean 
representation of arithmetic sum over binary encoded numbers.  Then let, 

 ( ) ( )( )
vecNiiv

vec sN Configsvvvfh
≤≤
∃

ℜ∧+++==
1:

21 L  (13) 

The function h  is satisfiable when each configuration denoted by a particular assignment 
of the configuration variable is uniquely paired with an assignment to f  that is a binary 
representation of the sum of the attribute of all primitives contained in that configuration. 
This is so because ( )sConfigs ℜ , encodes the attribute value of the primitives in 
appropriate binary vector, conditionalized with appropriate configuration.  Forming the 
conjunction of the arithmetic expression with the configuration representation restricts 
the arithmetic expression to only those values that represents the sum of the values 
encoded in the configuration representation.  The variables of the binary vectors are 
existentially quantified out from this expression. 

The function h  can be restricted further by constraining f  i.e. 

 ( )( )
f

fhh ∃≤∧= κ'  (14) 

The restricted function 'h  is satisfiable only for those configurations for which the sum of 
the attribute of all primitives contained in that configuration is less than or equal to κ .  
Thus 'h  is a restriction on the configuration set and serves to constrain the configuration 
space.  Further, with f  and veci Niv ≤≤1:  variables existentially quantified 'h  is a 
function exclusively over the structure variables in the symbolic representation of the 
configuration space.  Thus, a relation over the attributes of primitives is effectively 
composed into a relation over the elements of the configuration space. 

 
Representing linear arithmetic constraints 

The basic approach presented here relies on a scalable symbolic Boolean 
representation of linear arithmetic constraints of the form mba +++≥ Lκ , where κ  is 
a constant and mba ,,, K  are non-negative integer variables.  In the following section an 
approach for symbolically representing linear arithmetic constraints of the form shown 
above is presented.  A approach presented below was originally developed in [20]. 

First let naaaa K21= , nbbbb K21= , ncccc K21= , be unsigned n -bit binary 
representation of three non-negative integer variables, with each of ia , ib , ic  as a 
Boolean variable.  The linear arithmetic constraint bac +=  over these variables can be 
represented as a Boolean function in the following manner.  Define ( )kcr0  and ( )kcr1  as 
the predicates for the carry-bit from nknk bbaa KK +  being 0 and 1 respectively.  Then, 
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(15) 
and, 
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(16) 
The function ( )10crf sum =  represents the linear arithmetic constraint bac +=  as a 
Boolean function.  The size of the OBDD representing f is shown to be n10≤  in [20] 
when the variables are ordered highest bit first and interleaved kkk bac ,, at each bit thus.  
Thus, the representation is highly scalable.  The linear arithmetic constraint can be 
extended to more variables by using temporary variables.  For example, the linear 
arithmetic constraint cbadC ++=:  can be represented as two separate constraints 

batempC +=:1  and ctempdC +=:2 .  Let nttttemp K21= , 
1Cf be the Boolean 

function representing 1C , and 
2Cf be the Boolean function representing 2C , then 

( )
nitCCC

i
fff

≤≤∃
∧=

1:21
 represents C .  It should be noted that there may be an overflow in 

representing the arithmetic sum.  In order to avoid the overflow, each n -bit variable must 
be extended and represented as  vNn 2log+ -bit number, where vN  is the number of 
variables in the sum.  Experimental results indicate that the size of the OBDD 
representing the complete linear arithmetic constraint is ( )ρ

vnNO , where n is the number 
of bits in the binary representation of each non-negative integer variable, vN  is the 
number of non-negative integer variables, and ρ  is a constant such that 21 ≤≤ ρ . 

Next consider linear arithmetic constraint of the form ba ≥ .  This can be 
represented symbolically as a Boolean function in the following manner.  Define 
predicate ( )keq  to denote equality of two 1+− kn  bit numbers nknkk bbaaa KK =+1 , 
and ( )kgt  to denote nknkk bbaaa KK >+1 .  Then, 

 ( ) ( )
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and, 
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The function ( ) ( )11 gteqf ge ∨=  represents the constraint ba ≥  as a Boolean function.  
The size of the OBDD representing f  can be shown to be n10≤ .  In the above Boolean 
representation, a  can be substituted with a constant and the size of the resulting OBDD is 
even smaller.  The overall linear arithmetic constraint of the form mba +++≥ Lκ , can 
be represented symbolically by forming Boolean representation of 

mbatempC +++= L:1  and tempC ≥κ:2  separately and then taking the conjunction 
of the two, and quantifying the binary variables representing temp  i.e. 

( )
nitCCC

i
fff

≤≤∃
∧=

1:21
. 

 



Latency constraints 

The basic approach presented above demonstrates composition of system level 
properties from the properties of primitives when these properties compose additively.  
Composition of system-level latency from the components is not so straightforward.  
When the components are connected to form a pipeline, latencies of all the components 
can be added up to form the system level latency.  However, when the components are 
connected to form multiple parallel data paths then it is not sufficient to sum up latencies 
of all the components in the system to form the system level latency.  Additionally, when 
computations are distributed over multiple heterogeneous resources, the system-level 
latency depends not only on the data dependencies, but also on the resource allocation 
and the scheduling.  Solving system-level latency constraints in the presence of these 
dependencies is a challenging problem.  While OBDD’s can be used to incorporate all the 
dependencies including resource allocation and scheduling in solving the latency 
constraints, the scalability of the method becomes susceptible and results in an 
exponential blow-up in the OBDD representation.  The symbolic representation of 
latency constraints presented in this dissertation addresses only the structural data 
dependencies and ignores resource allocation and scheduling while solving latency 
constraints.  This in effect assumes that all computations that have no data-dependency 
may execute concurrently.  Thus the approach results in a best-case approximation of the 
system-level latency.  In an early stage coarse-grained constraint satisfaction this 
approximation is reasonable.  The pruned design space can be further refined by using 
fine-grained constraint satisfaction methods if so desired.  It must be noted here that the 
symbolic constraint satisfaction method does not incorrectly rule out any design that may 
potentially meet the latency constraint with some resource allocation and scheduling 
arrangement.  Only the designs that do not meet the latency constraint even with the best-
case approximation are pruned out from the design space.  In the next paragraph, the 
algorithm that composes system-level latency is discussed. 

There are two main steps in the algorithm: 1) Symbolic representation of the base 
constraint, and 2) Splitting and extending the base constraint to incorporate the parallel 
paths in the data flow graph 

1. The first step of the algorithm consists of symbolic representation of the base 
constraint, where the base constraint is formed under the assumption that the 
latency values of all the non-orthogonal components add-up to form the 
system-level latency.  This is done as per the approach for representing linear 
arithmetic constraint as described in the previous section.  This is a constraint 
of the form 

vecNvvv +++≥ L21κ , where veci Niv ≤≤1:  are the non-
orthogonal latency vectors.  The subsequent steps in the algorithm work with 
a symbolic representation of this base constraint. 

2. This step of the algorithm concerns with exploring the data-dependencies in 
the data flow graph and suitably modifying the base constraint.   The 
algorithm recursively traverses the hierarchical data flow graph.  The main 
action happens at the compound node in the dataflow graph.  There are two 
possibilities at a compound node: 1) There is a path in the data flow at the 
node that includes all the components; or 2) There are many intersecting/non-
intersecting paths and none of the paths include all the components.  In the 



first case the base expression need not be modified as the latency property of 
all the components is already considered in the base constraint.  In the second 
case, the base expression needs to be modified to account for multiple parallel 
paths.  This is done by considering a path in the sub graph contained in the 
compound.  All the components that are not on this path in the sub-graph do 
not contribute to the latency along this path.  Therefore, in the base constraint 
the latency vectors corresponding to these components are substituted with a 
constant value of ‘0’ and these variables are quantified out.  Thus the reduced 
base expression is narrowed down to sum the latencies of components 
included only on this path.  Then the components in the path are hierarchically 
traversed with this reduced base expression to further reduce it down the 
hierarchy.  The same procedure is repeated with all the paths in the graph.  
The reduced base expression along each path is conjuncted together to reflect 
that all the paths must satisfy the system level latency constraint.  The 
complexity of this algorithm is dependent upon the number of paths in the 
graph. 

The complete Boolean expression thus formed consists of many sub-expressions 
each of which is an arithmetic sum constraint on the latency variables of the primitives in 
a data path through the dataflow graph.  When conjuncted with the Boolean expression 
representing the configuration space, the configuration space is restricted to only those 
alternatives, the latency values of which satisfies the sub-expressions representing data 
paths.  The latency variables are quantified out from the product Boolean expressions.  
The resultant Boolean expressions over the structure variables represent the constrained 
design space.  

 
Area, Cost, and Power constraints 

Area, cost, and power compose additively.  Thus, given these properties for the 
components in the system, the system level property can be composed by simply adding 
up the property-value of individual components.  The basic approach prescribed for 
solving constraints on additive properties can be used without any modification for 
composing constraints on these properties. 

 
Operational constraint 

Operational constraints relate configurations with modes.    If, dmo ∇ℑ :  is an 
operational constraint relating mode of operation m  with processing blocks d  then the 
Boolean function ( ) ( )dConfigsmgsStateConfio ∇=ℑ  represents the constraint oℑ  
symbolically. 

Apart from these basic constraints, complex constraints may be formed by 
combining one or more of these constraints with first order logic connectives.  The 
symbolic representation of the complex constraints can be accomplished by composing 
the symbolic representation of the basic constraints. 

The symbolic constraint satisfaction approach described above has been 
implemented in a design space exploration tool.  The next section describes the 
prominent features of the design space exploration tool. 



 
Design Space Exploration Tool 

The prominent features of the design space exploration tool include the ability to 
interactively and iteratively apply constraints.  The effect of various constraints upon the 
design space can be visualized in this tool.  The tool maintains multiple contexts and it is 
possible to revert to a previous context.  Whenever constraints are applied and the design 
space is pruned a new context is created.  The subsequent pruning is performed in this 
new context.  To “undo” an applied constraint one can simply revert back to the previous 
context.  The depth of the context stack is user programmable. 

The design space exploration tool has a multi-pane graphical front-end.  The first 
pane is a checklist box, that is filled up with all the constraints are present in the model.  
There is a check box in front of every constraint in the list.  The user can check the box to 
select the constraints to apply.  More than one constraint can be selected for applying.  
The second pane of the user interface shows the structural space as a tree.  Different icons 
are used to distinguish between a compound (AND) node, a template (OR) node, and a 
primitive (LEAF) node.  A box at the bottom of the pane displays the size of the structure 
space composed in the tree hierarchy.  The third pane of the user interface shows the 
behavioral (mode) space also as a tree.  The last pane of the user interface shows the 
resources in the model.  The menu of the user interface has options for applying a 
selected set of constraint, applying all constraints, or reverting to a previous context.  
Figure 16 shows a screen shot of the tool in operation. 



 
Figure 16: Design Space Exploration Tool 

When the user selects a group of constraints to apply, the tool evaluates the 
constraints to determine the highest node in any hierarchy (structure or behavioral) that is 
affected by the constraint.  If the group of constraints affects more than one hierarchy 
simultaneously (example: an operational constraint) then the entire design space has to be 
encoded.  If the group of constraints affects only a single hierarchy (example: no 
operational constraint in the group), then only that hierarchy is encoded.  This is done in 
order to keep the OBDD representation manageable at each stage, as well as to speedup 
the constraint application, because the  OBDD algorithms are sensitive to the size of the 
OBDD representation.  Additionally, when the group of constraints has no performance 
constraint, the performance property variables are not included in the encoding of the 
structure space.  This is a big improvement because it significantly reduces the number of 
Boolean variables required to represent the configuration space.  After creating the 
representation of the space, the constraints are encoded and the space restricted with the 
results.  The current design space is evaluated against the restricted representation to 
determine the pruning of the space.  A new context is created and only those nodes that 
were not pruned are propagated in the new context.  The constraints that were applied 
earlier and if the nodes affected by the constraints are pruned, then the constraint is 
declared “dead”, and is not admitted in the new context.  The panes of the user interface 
are updated according to the new context. 

 



Conclusions 

The key issues in constraint based design space exploration are complex.A 
symbolic constraint satisfaction method has been developed for pruning and exploration 
of large design spaces.  The highlight of the symbolic method is its ability to check and 
enforce constraints in a large design space without enumerating the members of the 
space.  Owing to this the symbolic method has excellent scalability and extremely large 
design spaces (in the order of 1030) have been pruned and explored using this method.  
The chapter also demonstrated a method for solving linear arithmetic constraints over the 
attributes of an object hierarchy symbolically using OBDD’s. 

It must be emphasized here that the performance constraint validation performed 
by this method is at a coarse level of granularity i.e. the method operates on analytical 
estimates of the performance metrics, devoid of low-level architectural details.  If a fine 
grained and detailed verification of performance constraint is desired then a designer 
must resort to conventional detailed, low-level architectural simulators.  However, it 
should be noted that these simulations are time intensive and can simulate only one 
design at a time, thereby mandating the enumeration of the design space. 

A key point about the constraint based design space exploration is the order of 
constraint application.  The end result, i.e. the final pruned design space, is independent 
of the order of constraint application, however, the time complexity and even the 
scalability of the exploration is dependent in a non-deterministic manner on the order in 
which the constraints are applied.  In fact there is a potential for an exponential blowup of 
the OBDD representation, a phenomenon that is a common challenge for OBDD based 
algorithms, for some order of constraint application.  The dependence of the scalability of 
the exploration method on the order of constraint application is a complex problem and 
needs to be investigated further. 
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