Institute for Software Integrated Systems
Vanderbilt University

Nashville, Z Z
Tennessee 37235

7 % 7 >

INSTITUTE FOR SOFTWARE
INTEGRATED SYSTEMS

TECHNICAL REPORT

TR #: 1SIS-06-701
Title: Automated Test Case Generation for Code Gen erators based on

Graph-Transformation Rules

Author: Sandeep Neema, Ingo Stirmer

Copyright © Vanderbilt University, 2006-10, All Rights Reserved

Abstract

In automotive software development models are the central artefact within the whole devel opment
process (model-based devel opment). The new technology of automatic code generation closes the gap
between the software design on the base of a model (executable specification) and its implementation
(controller code). This paper shows how to test formally specified code generators and gives guidance
in test case determination for specific code generator transformation rules.

1. Introduction

The development of embedded software has become increasingly complex aaadiabstppears the only viable means
of dealing with this complexity. In the automotive sector, the walyesltled software is developed has changed, in that
executable models are used at all stages of development, froirsthde$ign phase up to implementation (model-based
development). Such models are designed with popular and well-establisdpdcgr modelling languages such as
Simulink and Stateflow from The MathWorks [1]. Some recent approatlogsthe automatic generation of efficient code
directly from the software model via so-callgmtle generators, such as the Real-Time Workshop by The MathWorks [1] or
TargetLink by dSPACE [2]. A code generator is essentially a demipi that it translates a source language (a graphical
modelling language) into a target language (a textual programming languade)gé€herators are examples of dependable
software tools upon which software designers rely.

Code generators are complex tools and testing a code generatoudtabtask. There are many ways of proving the
correct behaviour of a code generator. Formal proofs are used to shgmathematical) correctness of the code generator
itself or its correct functioning during runtime (e.g. [14], [15]). Muckesrch has been done in the application field of
compiler testing, i.e. test case generation techniques. In the fietshgfiler testing there are two ways of generating test
cases, hamelyutomatic test case generation andmanual test case generation. The first approach yields a great number of
test cases in a short time and at a relatively low costt bfahe work uses a grammar of the source language to derive
programs by systematically exercising all productions of the granamariginally proposed by Purdom [22]. An overview
of these approaches is given in [21]. A different method is to gentastt cases manually with respect to given language
standards, such as the Ada testsuite ACATS [20] or testsuites for C language aooéosoch as [17],.

When dealing with a code generator which translates a graphical sangcage (e.g. Simulink or Stateflow) into a
textual target language (e.g. C or Ada), a natural approach consigiprasanting the generator via a set of graph
transformation rules. Besides providing a clear and understandablptimsaf the transformation processes, this formal
specification technique can be used for test case derivation, radlalé specific and thorough testing of individual
transformation rules as well as their interactions. This appiasiveen presented and discussed in [13] (see chapter 5 for
an overview). An important advantage of this test approach for codeagmsds its high automation potential from test
case design through to automatic test evaluation. The proposed testiiogl imes been tried and tested for code generators
implemented in a classical programming langauge such as C/C++ based on informait@ely sigecification.

In this paper, we will focus on a code generator whose implementatderived directly from its formal specification,
i.e. graph transformation rules. The test case derivation method progtises effective test case generation for the
exhaustive testing of specific transformation rules. The input tocthde generator is a graphical modelling language
known as the Embedded Control Systems Language for Distributed Prod@ss8igDP). This language and the set of
tools built around it provide a seamless tool-chain for design, simulatidrsyathesis of distributed embedded automotive
applications.

We initiate the rest of the discussions by introducing ECSL-DP,rentbol-chain built around it (section 2). Section 3
discusses principles of automatic code generation and shows how codetigensvald be specified with graph
transformation rules. Section 4 is dedicated to code generator testing and inttesiicase generation which starts from a
formal specification and leads to executable models. Section 5agivegerview on the code generator test approach and
shows how to compare a code generator test case (i.e. input mobets\ginerated code. Finally, section 6 concludes the
paper.

2. Embedded Control Systems Language for Distributed Processing (ECSL-DP)

ECSL-DP is a graphical design modelling language supported by Graplocdallidg Environment (GME), a meta-
programmable graphical modelling tool developed at Vanderbilt Uniyg8}itFor GME, a modelling language is defined
in terms of meta-models that capture the abstract syntax t#rtheage. ECSL-DP has concepts and constructs suited for
modelling distributed automotive embedded applications. The key categories of modiefliegte in ECSL-DP include:
1. Dataflow Modelling — for hierarchical dataflow-diagram oriented moudglof signal flows, representing the
functional design.

2. Stateflow Modelling — for hierarchical state machine diagranmesenting finite-state behaviour, in the functional
design.

3. Component Modelling — for modelling of software components and partitioningnofiénal design over software
components. Components are software artefacts that get instantiated on an embéddded plat

4. Hardware Topology Modelling — for modelling of the topology of the distribptetform including ECU-s, Buses,
their physical ports, and their connectivity.

5. Deployment (Mapping) Modelling — for modelling of the deployment of componentsECU-s, including
association with RTOS tasks, and mapping of component ports on to phgsitalnication conduits (sensors,
actuators, and bus messages)

For illustrative purposes and for later reference we briefly desthie Stateflow modelling category with its meta-model
here (see [5] for details). GME uses UML-style class-diagrto specify meta-models, which capture the abstract syntax
for the models. How model elements are actually visualized ift @&Vdetermined by their stereotypes, which in effect
provides a binding of the abstract syntax to concrete syntax (see the GME documptjtidratetails).

Figure 1 illustrates the Stateflow portion of the ECSL-DP mmatdel, that supports the modelling of hierarchical finite
state machines, semantics of which are described in [6]SiTieef | ow folder containsst at e<<Mbdel >>s, which are
root models for hierarchical state machines. Eathate can contain a number obata<<Atone>s, and
Event <<At omp>s, and subclasses of the (abstrattlansConnector (as in “transition” connector) class. The
subclasses ofr ansConnect or include JunctionsTr ansl nPorts, TransQut Ports, TransStart (as in “transition”
input and output ports and starting pointdi)st ory, and Connect or Ref s (which are<<Ref er ence>>s pointing to
objects derived from th&r ansConnect or base class). States contain TransitieGonnect i on>>s. These connections
connect two objects (derived from theansConnector class), and represent the state transition concepts of the
hierarchical finite state machine. The operational semanticardition is the same as those of transitions in SF. In GME
there are no graphical means of depicting connections between objear®that contained in the same parent, and hence
cross-hierarchy transitions are represented usingdifveect or Ref .

A State model also containBhockRef <<Ref er ence>>, which points to &l ock (a dataflow modelling object not
described here). This mechanism provides the linkage between floStatedel and a Dataflow model. This meta-model
when instantiated in GME provides the embedded system developex midkdelling environment in which he can design

“Elata” Stateflow BlockRefProxy
Alom ==Folder== <=ReferenceProxy==>
ArrayFirstindex : field a
ArraySize : field 3 — Transition
DataType : field ==Connection==
Description: field Transition -
InitialValue : field O aon e
Max: field |2 .
Win field Trigger: field
Scape | enum State
Units : field ==Model==
MName : field - dst|0.2rc (0.
Decomposition : enum |subState
Label : field [2- . ConnectorRef TransConnector
Event 3 3 3 “':""*“:"?f: ==Reference== ==Atom==
==Atom==
Description - field |~
Scope : enum
Trigger: enum History |2..*
Mame : field

History
==Atom==

Junction (0.~

Junction
TransStart |0..* zzffom==

TransStart
==Atom==

TransinPort
==Atom==

TransOutFort | 0.~

TransQutPort
«w<Atoms=

Figure1: ECSL-DP meta-mode (Stateflow modeling category)
6

Matlab/Simulink
Stateflow ECSL-DPIGME

System Execution

5 System
=3 Synthesis Platform

Modeling

SLSF2EDP

Code-Gen

Platform
| ' OSEK
~@] MPC555
gl OSEK,

()
mdl/. m U

EDP2Giotto

Functional
Design & IR S
Simulation Analysis —JE—E@@L
B~ B
Giotto

Figure 2. Embedded Automotive System Development Tool Chain with ECSL-DP
and specify the system.

2.1 ECSL-DP Tool Chain

The development of ECSL-DP was motivated by the lack of an itéegraol-chain that addresses the key aspects of a
distributed embedded system development process such as functional plasignm design, deployment, analysis, and
synthesis. The design intent was not to replace existing tools, buternemlthese tools as an integrator, by facilitating
interchange, and providing convenient and open interfaces which makes lilgptssntegrate new tools with relatively
modest effort. To that end we have developed (and are developingk aftianslators to facilitate the syntactic and
semantic interchange between tools. Figure 2 shows the prototype toolethailoped around ECSL-DP with the
following key components:

1. Simulink/Stateflow (SL/SF) — These tools are used for credt@dunctional design of the controller and for a hybrid
simulation of the design

2. ECSL-DP/GME (EDP) — This is the ECSL-DP modelling languageaintisted in GME used for component and

platform modelling, partitioning functional design over components, performingdép®oyment modelling, and

capturing the real-time properties and constraints of the system

Giotto — A time-triggered language used for schedulability analysis usingdriggered execution semantics.

SLSF2EDP — A translator that performs a mapping of SL/SF models into ECSL-DB mode

EDP2Giotto — A translator that synthesizes Giotto specifications from EEFSiodels (under development)

EDP2C — A C code-generator from ECSL-DP models, specified as graplking specifications, generates the code

from functional design models.

o0 AW

In the next section we examine the code generator the testing of which is the focus of this pape

3. Automatic Code Generation

The ECSL-DP to C (EDP2C) code generator deals with synthesizplgmentation from Dataflow and Stateflow
sublanguage of ECSL-DP. In the following discussion we will focus onlygemerating code from the Stateflow
sublanguage of ECSL-DP.

Statement |.emens SFFile ActiveSubStates

slcx - Integer =0 | SFPrefix String "name: string
statements |0, filename : string size: Integer
stateCount : Integer =0
SFState sCount Integer=10
name String - o5 oE
comment: String |__ "x'l T

Liz| name : String
= [initial : String

rixn [0..1

iss:megersy | [name siing]
andsSS: Integer=10 name - String
mask: Integer=10 Lo

enter

exes

sz 0.1

tn 0.3
Fxn

name String
args : Integer=0[7

SFData
type : String

Primitive Staternent

CompoundStatement

sCount: Integer=0

SFState_proxy

Ar
g val

FxnCall

name String [28 2
tipe String | :Iléx Inte: g:ﬂ_ﬂg o
aldx: Integer=10 ger=

inclusive : Boolean = false

StateRe!

inv: Boolean =false

L
[s-5om0]

text: String

ArgComp

opEQ : Boolean =false

SFState_proxy

...

state

Figure 3: Meta-model of stylized C (SFC)

In general, a code generator uses a “traverse-transform-priat®gt in order to gather information from the design
models, build intermediate data structures (e.g. tables) as ngcesghthen output the resulting code. The Stateflow code
generation follows a similar strategy; however, the transfoomalgorithm is developed and specified using a Graph
Rewriting technique implemented in the ‘GReaT’ tool developed at Vanderbilt Wity

The output of the code generator is a C program that implements théobehspecified with the state-machine,
according to the execution semantics described in the Matlab Statkdcumentation. The generated C code is a stylized
subset of C, and we have created a UML meta-model of this stylized C, whicli BEC (see Figure 3). The output of the
graph transformation is an object graph conformant to the SFC meta-riedalal output from this object graph is
generated by doing the equivalent of ‘anti-parsing’. The key entitidseilsFC meta-model and what they represent are
described below:

* SFFi | e —the top-level file object

* | nitFxn — initialization function that must be invoked by the generated Simatile once to initialize the state
machine

* Root Fxn — the main interface function that is invoked by the generated Simulink code

* SFDat a/SFEvent — the data, event variables within the state-machine thaharmterface to the Simulink code.
These variables form the input and output argument list of the rootdonobte the association betweRwot Fxn
andDE, the abstract base classSgDat a andSFEvent

* Enter ,Exit,Exec — these are the entry, exit, and step function corresponding to each comizend the state-
machineFxn is the abstract base class representing a function.

» SFSt at e —these represent the states in the state machine, an enumeration list ismtivgegnerated code.

» ActiveSubSt at es — this singleton array variable represents the current liattdfe sub-state for each compound
state in the state machine. The enumeration value of the compownd staed to index into this array to determine
the current active sub-state in the generated code.

* Statenent — this abstract base class represent code blocks in the gerserdg¢edStatements are sub-classed into
ConpoundSt at enent s, andPri ni ti veSt at ement s. ConpoundSt at enent s are code blocks that include other

a
edpState edpState

>] a
sfFile sfFile

<dp

I o N e I
I Hexe mul lm mul leu-) exeld

[,
|I]m [s

M

GetExFxn xecOFGRemote ExecOFGLocal DuringAction ExecChildren

Figure 4: PopulateExecFxn Transformation Rule

St at enent s. These are sub-classedsas t ch, Case, | f, andFxn. Pri niti veSt at enment s areFxnCal | , Br eak,
Ret ur n, ArgConp, Acti vat e, | sl nacti ve, UExpr, etc.

For the purpose of illustration below we examine a couple key ruldseitransformation specification, a complete
description of the rules and transformation is beyond the scope of pes Pdease note that the transformation language
implemented by GReaT, has a control flow structure in addition to the graph rewritetioss (see [8] for details).

Figure 4 shows thBopul at eExecFxn rule that generates code for tBeec fuction, which implements a step in a
state-machine. Note that the purple colored boxes represent compoun@dmdiése blue and red colored port objects
represent passing of objects to and from the rules. The qup& at e, andsf Fi | e in the rule are bound to the state in
the ECSL-DP network which is to be transformed, and the root objesthdgkton instance &FFi | e) in the SFC data-
network, respectively. The generated code for the step function meg&tfohenabled transitions leading out of this state,
and if there is an enabled transition then the transition must bewdieh requires a call to the exit function of the source
state, performing the transition actions, and invoking the enter functitire afestination state in the simplest case. If no
transitions are enabled then the during action of the state mustftwemeel, and then the step function must do a step on
the sub-states. ThexecOFGRenot e, and theExecOFG.ocal sub-rules of this rule emit the code for checking for
enabled transitions and performing the transition step.Eklee OFGRenot e rule handles remote transitions (source and
destination state have different parents), whileBkec OFGLocal rule handles local transitions. TE®ec O-FGRenot e
rule is invoked prior to th&xecOFGLocal rule since cross-hierarchy transitions have a higher priority kbeal
transitions. Th&ur i ngAct i on is a primitive rule, and we examine it next.

Figure 5 shows thé@uringAction rule. This is a graph rewrite rules, which typically consistaofHS which
represents a pattern to be matched, and RHS which represents tfieathaliin the graph. In this particular rule the
pattern is simply an ECSL-DB&t at e, and aConpoundSt at ement , which are objects passed as input to this rule. The
light blue-border on the clasfExpr represents creation of a new object instance ofitrer class. Also, the blue-colored
composition arrow represents creation of a composition relation betive€onpoundSt at enent object and the created
UExpr statement. In simple words this rule creat&gor object in the output data-network. The boxes labated dx,
and am ea contain attribute mapping specifications. These are code snippets arki@xecuted by the transformation
engine when the pattern is matched. The red-circle labeleDur i ngActi on is a guard which must be satisfied for the
pattern to be matched. In this particular case the guard simply checks that ttaStathiring action.

There are ~75 rules in the complete transformation specificationhwhiécsignificant improvement over ~3000 lines of
code in an equivalent transformation developed by hand. The transfornpfications can be executed by the GReaT
tool in an interpretive fashion, as well can be compiled into C++ ttratecan be compiled and linked to build the code-
generator.

4. Code Generator Testing

EDPState
=<Model>=

o
edpState edpState
-

UExpr hasDuringAction

CompoundStatement

O— a

exec [exec

Figure5: DuringAction Transformation Rule

o 0
TrSrc | TrSrc

o
Junction s Sting | [new_ S
o | am_idx
TrDst |:| TrDst
T Hiiota
Transion N
[<<Connection>> oia Sting | [new. Sting
>})] am_expr

>]
ParStmnt ParStmnt

UExpr

Figure6: IfTrValid Transformation Rule

The most significant weakness of testing is that it can onlyprese that the test object functions as it should for those
input situations chosen as test data (i.e. testing can show the predesicors but not their absence). In practice, a
complete test is impossible, with the exception of trivial cades to the large number of possible input situations. Testing
is, then, a sampling procedure. Accordingly, the essential task duriimgtssthe determination of suitable (i.e. error-
sensitive) test cases, which ultimately determines the soapguality of the test. Therefore — of all the testing activitie
test case design is of decisive importance. It considerabbtsaffest quality, since the selection of the test data to loe use
to test the test object determines the type, extent, and thus the quality of the test.

The inadequate testing of code generators is mainly due to the melhwalidity to describe the mode of operation
and interaction between complex transformations and optimisation fdekdy.cthus making it possible to test them
effectively. In order to do this, the program code and textual specificatina ate unsuitable as a base for test case design.
Therefore, an essential prerequisite for effectively testimgd®e generator is to choose a formal specification language
which generally leads to higher quality, and also describes the fumgtiohithe code generator as simply and clearly as
possible.

4.1. Specification of Transfor mations

Practice shows that the use of formal techniques for testdesmign and generation result in high quality, reliable
software products [9]. Taking account of this experience, a code genesditog approach based on graph rewriting rules
(i.e. graph transformations) was proposed in [13].

With a formal specification of the translation process availatdecan use the graph rewriting rules to derive test cases
systematically as shown in the following section.

4.2. Test Case Design

Having a specification of the code generation process present asrgnajiimg rules, we can use this description to
derive test cases. The application of graph rewriting rules for test case desigartygadvantages:
« Graph transformations provide the most faithful reproduction of transformation medesisle a code generator. For

this reason, error-sensitive test cases can be derived from this spenifica

* The correctness of the test cases can be checked (more on this later).
* High automation potential

In order to provide an example, we will use HfieValid graph transformation rule, from the ESF2C code-generator as a
running example (see Figure 6). The rule generates code for adsiatafhsition as follows: with respect to the Stateflow
semantics, a transitions representsfdmanch of anf-then-else control structure. Each transition has a label of the form T
[G]{A}, where T is theevent, triggering the transition, G is tlwendition (Boolean expression) guarding the transition and
A is theaction part executed. The transition will be translated intd-atatement of the language C. The left-hand side part
of the rule consists of three node (classBisansConnect or , Junct i on andTr ansi ti on. Each class is a member of

10

the Stateflow meta-model as shown in Figure 1. If an instance bf mattern is found within the source graph (i.e.
Stateflow model), £ompoundSatement of the destination graph (i.e. C code) is created witifi-iicanch. The destination
graph is an instance of the C code meta-model as depidtegiia 3

If someone wants to test this code generation rule for correctnimeptation, the main objective for test case design is
initially the possible input domain for the left-hand side of the graphiting rule. To be precise: what are the possible
graph instances the rule could match?

Domain-oriented test derivation techniques such as the Claseifiteee Method (CTM) developed by Grochtmann
and Grimm [10] seem to be appropriate for this purpose. The CTM tf@erfuevelopment of partition testing) is an
approach for deriving abstract test case specifications fromea gpecification. The basic idea behind this method is to
split up the input domain of the test object (here: the GG left-hdelliato partitions (called classifications) according to
different aspects and to subdivide these partitions into equivalensex(ae. the leaves in the tree). These classes are then
recombined and instantiated to form the test data.

In order to be able to apply the classification-tree method toetiieng of a transformation rule, it must describe the
input domain of the transformation rule.

To give the reader an idea of the method, a classificationdre@dlfTrValid graph transformation (ref Figure 6) is
shown in Figure 7 (upper part). The name of the test object itsefisfthe root node of the tree (hetEfrValid).
Regarding the LHS of the rule, the input domain can be partitioned intcatistion sourceTtSrc), the transition itself
(Tr) and its destinationT¢(Dst). Regarding the meta-model of Statflow (ref. FigureTtc is a TransConnector class
(atom) with possible instances suchTaansinPort, TransOutPort or Junction. Since we expect a transition from the
source to the destination node we only have to check, if the attrijuass action andtrigger are existentyes) or not
(no). Finally, we always expect a destination root which is of the dypetion.

The test cases derived are shown in the lower part of Figure aranalfranged in a kind of table in which each
numbered row indicates a test case. A dot in a column indicapesialsclass (or value) for a test case. A possible instance
of test case 1 is the test model (flow chart) depicted in &iguft represents an executable model as an input for the code
generator.

Transition (Attributes) Junction

check: is_null

TransinPort [Guard | [Action] [Trigger |

TransOutPort

Junction yes no yes no yes no yes

Test Case

Figure7: Classification Tree of 1fTrValid
Transformation

11

Figure8: Instance of Test Case 1

The combination of all the classes leads to a total of 24 tess.c@hese include both correct (i.e. translatable) and
incorrect models (i.e. those refused by the code generator). Regardimgnfermation rule specified, the correct test
cases could be valid (the code generator should apply the transfornmationplid (the code generator should apply a
different or no transformation). With each of the 24 test caseasntisted as an input model for the code generator, we
have a suitable set for testing thi@érValid transformation. However, what remains is to stimulate alletimesdels with
appropriate input data and to compare the code generated with the nxgadtively. How this could be done is shown in
section 5.

The classification tree depicted in Figure 7 has been created lipainam the IfTrValid graph rewriting rule.
Obviously, it would be more advantageous to generate the treeydirecti the graph rewriting rule automatically. A
possible way of doing this is presented in the next section.

4.3. Automatic Classification-Tree Generation

The key intuition in deriving a classification tree from a graptrite based transformation specification is to formulate
the domains of possible matches of the LHS of a rewrite patteiminivolves examining a pattern specification. A pattern
specification in GReaT may include classes from the input metiel, classes from the output meta-model, associations
from the input and/or output meta-model, possibly cross-associations, arehBaplards that are evaluated over the
attributes of potentially matched class objects. The algorithmbélgw demonstrates the systematic derivation of a
classification tree from a pattern specification:

1. for each Primtive Rule P in a GReaT
speci fication GS

2. create a new classification tree CT,

3. for each class G from the input
neta-model in the rule insert a node
N:i in the tree CT,

4. if class G is an abstract class,
then for each derived concrete class
of G, insert a node in the sub-tree
rooted at N,

5. for each association A between two
classes from the input neta-nodel in
the rule insert a node Ny in the
tree CT, and for each node N; insert
two branches in the sub-tree rooted
at Ny corresponding to the presence
or absence of the association,

6. for each guard G over classes from
the input neta-nodel in the rule
insert a node Ny in the tree CT, and
for each node Ny insert two branches
in the sub-tree rooted at Nyi
corresponding to the guard eval uating
to true or fal se.

This basic algorithm explores the input domain of a Primitive
Rule in GReaT specifications. However, GReaT in addition to thmitpe rules also has control structures with
conditional constructs, which also are responsible for partitioning the dgooain and hence must be used in deriving
classification tree. Conditional constructs are specified in GRéth a test-case construct. A Test-Case construct has

12

multiple Cases each of which is specified as a LHS pattern (with no sideseffeewrites). The classification tree for each
Case construct can be derived using the basic algorithm shown. &arkefollowing algorithm (2) shows the systematic
derivation of classification tree from a test-case construct in a GReaifisation:

1. for each Test in a GReaT
speci fication

create a new classification tree CT,
for each Case in the Test create a
new node N in the tree CT,

casting the Case as a Primtive Rule
use the steps 3-6 of algorithm 11l to
popul ate the sub-tree rooted at N

rown

We are currently in the process of implementing the algorithms shown above.

13

Test ; Graph
generate| Classification derive
Case — €= | Transformation
Tree
1..n Rule
Goals C1 Cc2 Goals Cl C2
I 0 0 1,2 (F), 4 (F),6, 0 0
I 0 1 4(T),5 0 1
£ I 1 0 L 2(1).3 1 1
z = A
S 4 o
2 |E
— y A 4
S 1o TC c1 c2 1.
S 2 1 0 0 S %,
51¢ 2 0 1 < R
=13 3 1 0 218
© o © Q
=123 4 1 1 =
° 2z © S
=) 5 o
- @ Input data Input data - @

void if_then_el se(Bool Cl, Bool C, Unt8 *Qut)
{
7 L static Int16 i =0
c1 /1 Stateflow if_then_else/ Chart
In_C1 2 it (a) {
3 i=1;
Code } else {
4 it (@) {
Generator 5 VL
2 c2 _ el se {
In_c2 & s
. }
7 *Qut = (Unt8) i;
}
c
§e] c
3 i)
_— -
2 2
£ o)
7 X
5 @ :
TC Result TC R esult
1 3 compare 1 3
2 2 < = > 2 2
3 1 3 1
4 X 4 1

Figure 9: The Code Generator Testing Approach
5. Code Generator Testing Approach

This chapter surveys the overall principles of the proposed code @entsting approach (for a more detailed
explanation, the reader should refer to [13]). The main tasks are shadwiguire 9 and are described in the following:

(A) A formal specification of a transformation is created as a graph rewritingucieas that presented in Figure 6.

(B) The formal specification is then used as a blueprint to describe thiblpdasgut domain of a transfor-mation rule with
the classification-tree method (ref. section 4.2). With themestels derived from the classification tree we now have
representative input models to verify the code generator’s céurextionality with regard to a specific transformation.

14

However, before we can observe the code generator’s correct behaxgmeged the right input data to stimulate these
models.

(C) In order to stimulate all possible 'simulation pathways' through engest model, we apply structural testing. Here,
structural testing has the goal of automating the input data generatisoitable white box (or structural) testing
criteria on model level, i.e. to find a selection of input data waddtieves full structural model coverage. This can, to
a large extent, be automated using tools such as Reactis [23]. ddemgeneration has been carried out, a similar
approach is followed on code level: this time structural testingsésl to create a second set of input data, which
guarantees complete structural coverage of the C code generated (here, bvanehembverage [12] as an appropriate
measure). In this case, automation can be achieved with the did efdlutionary structure test [11]. Evolutionary
structural testing uses evolutionary algorithms, an iterativets@aocedure based on biological evolution, to generate
test data for each branch of C code generated.

(D) After input data for model and code coverage have been generated, both input data sttreneatged together.

(E) Finally, the model and the code outputs are compared. If these afeddfemtone and the same test datum, this is an
indication that the code generator and the other tools used (e.g. cormpkken), &re working correctly. If, however,
they are (substantially) different, one can conclude that this is due to ané¢h@opkementation of the code generator,
a problem with one of the other tools involved, a faulty test modah ancomplete specification of the optimisation
(incorrect graph transformation).

6. Conclusions

In this paper, a general test approach for the verification of a gekerator’'s correct functioning based on graph
transformation rules has been researched. In this approach, tededaaton is based on the formal specification of the
code generators functional behavior. The description of the possible inpundufnaedicated transformation rules with
the classification-tree method is a suitable means of wgeatiput models which test transformations effectively.
Furthermore, a method was suggested to create such classification trees fpmteagisformation rule systematically.

The main benefits of this testing approach could be summed up as fdfiostsof all, it shows a way how to design
test cases for a code generator systematically, startingitsdormal specification through to test case derivation. Second,
it is possible to compare the model and the code generated frormidns of structural testing. Finally, the test process
could be automated to such an extent, that the test suite could be &ppled tool releases with respect to changing
requirements.

6.1. Future Work

The amount of test cases derived is (in the example presentedogui?4 test cases for one specific rule. With more
classes in the classification tree the number of test caséd, in most cases, amount to approximately a few hundred. It
would obviously be impractical to instantiate all these testscazanually as a model. The automatic generation of these
models from the classification tree would be advantageous. A solcaddel generator, which allows the automatic

generation of the input models and the execution of the models withinemt@®nment for code generators, is currently
being developed. First experiences with the tool promises high automation potentialodithgererator testing process.

References

[1] The MathWorks, Simulink, Stateflow and Real-Time Workshop at httpsvartworks.com/products, Website,
2003.

[2] dSPACE, TargetLink at http://www.dspace.com, Website, 2003.

[3] Ledeczi A., Bakay A., Maroti M., Volgyesi P., Nordstrom G., Sprinkle &rski G. “Composing Domain-Specific
Design Environments Computer, pp. 44-51, November, 2001.

[4] GME Software Manual at http://www.isis.vanderbilt.edu/Projects/gme/GMan.pdf

15

[5] S. Neema and G. Karsai, “Embedded Control Systems Language fobudestrProcessing,” ISIS Technical Report,
2004.

[6] Harel D., “Statecharts: A Visual Formalism for Complex Systé Science of Computer Programming, vol. 8, pp.
231-274, June 1987.

[7] Karsai G., Agrawal A., Shi F., Sprinkle J. “On the use of Graph Teamstions in the Formal Specification of
Computer-Based Systems,” IEEE TC-ECBS and IFIP10.1 Joint Workshop oralF8pecifications of Computer-
Based Systems, p. 19-27, Huntsville, Alabama, April 9, 2003.

[8] Agrawal A., Karsai G., Shi F.: Graph Transformations on Domain-Specific ModEs08403, November, 2003

[9] A. Boujarwah and H. Saleh, “Compiler test suite: evaluation andnuae automated environmentfiformation and
Software Technology, 1994, pp. 607-614.

[LO]M. Grochtmann and K. Grimm, "Classification-trees for partitiesting"”, Software Testing, Verification and
Reliability, 3 (2), 1993, pp. 63-82.

[11]J. Wegener, H. Stahmer and A. Baresel, “Evolutionary Test EnvironimreAutomatic Structural Testing”, Special
Issue of Information and Software Technology, vol. 43, 2001, pp. 851-854.

[12] B. Beizer, “Software Testing Techniques”, New York: Van Nostrand Reinhold, 1983.

[13]1. Stirmer and M. Conrad, “Test Suite Design for Code Generation Td&uis. of 18" Int. Automated Software
Engineering Conference, 2003, pp. 286-290.

[14] G. C. Necula, "Translation Validation for an Optimizing Compil&roceedings. of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2000, pp. 83-95

[15]A. Pnueli, O. Shtrichman and M. Siegel, "Translation Validation: froaew&. to C", in K.G. Larsen, S. Skyum, and
G. Winskel, (editors)Proceedings of the 25th International Colloquium on Automata, Languages, and Programming
(ICALP 1998), volume 1443 of Lecture Notes in Computer Science, Springer-Verlag, 1998, page 235-246.

[16] E. Lehmann and J. Wegener, “Test Case Design by Means of the CTIPrét. of the 8th European International
Conference on Software Testing, Analysis & Review (EuroSTAR 2000), Kopenhagen, Denmark, Dec. 2000.

[L17]ANSI/ISO FIPS-160 C Validation Suite (ACVS™), www.peren.com, WebSite, 2003.
[18] Plum Hall Validation Suite for ANSI C™, www.plumhall.com, WebSite, 2003.
[19] Associated Compiler Experts (ACE), SuperTest C&C++ Test and Validatios, 8witv.ace.nl, WebSite, 2003.

[20]Ada Conformity Assessment Authority, The Ada Conformity Assessmiest Suite (ACATS), Available from:
www.adaic.org, WebSite, 2003.

[21]A.S. Boujarwah and K. Saleh, “Compiler test case generation methesdsvey and assessmenififormation and
Software Technology, 39(9), 1997, pp. 617-625.

[22] P. Purdom, “A Sentence Generation for Testing Parsers”, BIT, 1972, pp. 366-375.

16

[23] Reactive Systems Inc, Reactis Simulator / Tester at www.reagtséems.com, Website 2003

[24] G. Goos and W. Zimmermann, “Verifying Compilers and ASMs”, In AbstrateS#lachines, LNSC Vol. 1912, 2000,
pp. 177-202.

17

