Approved:

SYSTEM-LEVEL SYNTHESIS OF
ADAPTIVE COMPUTING
SYSTEMS
By
Sandeep K. Neema
Dissertation
Submitted to the Faculty of the
Graduate School of Vanderbilt University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY
in

Electrical Engineering

May, 2001

Nashville, Tennessee

Date:




[J Copyright by Sandeep K. Neema, 2001

All Rights Reserved



For my Family



ACKNOWLEDGEMENTS

I consider my educational career as an endeavor — a journey, along which many
persons have helped me. I take this opportunity to express my deepest gratitude and
appreciation to all those who have helped me directly and indirectly to steer me towards
my destination.

First and foremost, I would like to thank my family. Special thanks goes to my
father who has been a constant source of inspiration and motivation. Without him, I
could not have started, let alone finished, graduate studies. Many thanks go to my mother
who taught me to be patient when things did not go my way. Thanks also to my brother
whose inspirational letter always provided me a shot in the arm. The latest addition to
my family, my wife, deserves special credit for helping me crossover the threshold.

Secondly, I would like to thank members of my Ph.D. committee for their
valuable comments, insight, and direction. My advisor, Dr. Janos Sztipanovits, merits
special thanks for the many years of guidance. His insight, determination, dedication,
and desire to explore new ideas has been an inspiration. His excitement to new ideas and
challenges has been infectious. His approach to graduate students helps to create more
than just a dissertation, but to create a researcher.

Next, I would like to thank each and every member of the Institute for Software
Integrated Systems. Special thanks goes out to Dr. Ted Bapty, Dr. Gabor Karsai, and
Jason Scott. Thanks for all of the advice, encouragement, and direction over the years I

have been a graduate student.



Finally, thanks for the support and sponsorship given by the Defense Advanced
Research Projects Agency, Information Technology Office, Adaptive Computing

Systems program, contract #DABT 63-97-C0020.



TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS \Y

LIST OF FIGURES IX

LIST OF TABLES Xi

LIST OF ABBREVIATIONS Xil
Chapter

INTRODUCTION.... oottt 1

Issues in Design and Synthesis of Adaptive Computing Systems .........c..cccrueene. 3

System Modeling........ccovviiiiiiiiiiiii i 4

Design Space EXplOration .........cccivvriiiiiiiiiiniinsrice e 5

OULIINE. . r e en e r e nrenn e 7

. BACKGROUND ..ottt 9

Modeling of Design SPaces .......ccvviiiiiiiiiiniiii e 9

WV HDL . 10

Dynamic Architecture Description Languages ..........ccvcvvviiiniiinenninensnennn, 13

SOftWATe VATIaNtS ....cccvveiiiiiiiiiiec e 14

Summary: Modeling of design SPACES ........ccvcirririiiiiiesiiesee s 17

Design Space EXPlOTation .........cccoocviiiiiiiniiiniiie e 18

System Synthesis by solving Timing Constraints .........ccccceerieeerieeenieesnnnn. 18

System Synthesis using Evolutionary (Genetic) Algorithm ...........cccceeeene 22

System Synthesis using Mathematical Programming ..........c.ccceevceviiieeennnn. 26

System Synthesis using Heuristic Vector Packing..........cccoovevvrieneniinieennns 28

Heuristic based Hardware-Software Co-synthesis (COSYN)......coocvvieeennnen. 31

System synthesis by heuristic driven constrained partitioning ..................... 33

System synthesis by heuristic driven extended partitioning ..............cceeueee. 35

Summary: Design Space EXplOration .........cccccevriieiiiiinnieicnieee e, 37

Constraint SatiSfaCtion .......cccviviiiiiiiii 39

Summary: Constraint SatisfaCtion.........ccoccveeiiieeiiiin i, 42

1. SYSTEM MODELING.......cccoiiiiiiiiiiieiinie s a4

Multi-modal Structurally Adaptive Computing (MSAC) Systems..........ccceunee. 45

Operational Behavior ..o, 47



EXECULION RESOUICTES ..cvvuiiiiieeieeieieeeeeeeteseeeeesasseeesasssesesassssessasssesssssesssnnsseeees 49

Computational SIUCTUTE ......ccveeieeeieerie e 50

CONSIIAINES.......ciiiiiii 52

Modeling Paradi@im ........coooueeieieiieiie e s 55

Operational Behavior Modeling..........ccocoviiiiiiiiiiiiiinee e 57

Computational Structure Modeling..........ccoocvrieeriienienieeseeseeee e 61

Execution Resource Modeling ........ccccoeeviiriinniniiinnee e 64

Constraint MOAEING . ......cccviieeriieiiseeseeie e 66

CONCIUSIONS......ooiiiii 70

V.  CONSTRAINT BASED DESIGN SPACE EXPLORATION .......ccccooviinirnnens 72

Symbolic Constraint SatiSfaCtion ..........coocveeriirieiiiieinie e 74

Symbolic Representation of Design Space .........ccvcviiiiiciiiinniinsienieeie 76

Symbolic Representation of CONSITAINLS ......evvveerreerireeseerreesee e 89

Design Space Exploration ToOl.........cccovviiiiiniiiiiinne e 99

CONCIUSIONS...ciiiiiiici s 102

V. CASE STUDY .ottt 104

Adaptive Missile Automatic Target Recognition System.........cccevrcvvrnerrnnnne 104

Modeling AMATR SyStem ......ccccviiiiiiniiiiinii s 108

Operational Behavior ... 108

Computational SIUCIUTE .......ccceiiiiiiiiii i 109

Execution RESOUTCES .......covcuiiiiiiiiiii e 114

CONSLIBINES.......oeiiiiii s 115

Constraint based Design Space EXploration ..........cccccvvviiinniniiinnennienseee, 119

VI. SCALABILITY STUDY ittt 126

Experimental SEtUP .....cccvvceiiiiiiiiiiin s 126

Analysis Of ReSUILS......cccviiiiiiiiiii 128

Scalability of the symbolic representation ...........ccovceerereereerseeseessreeseennnes 128

Scalability of symbolic constraint application .........cccecvvvvvriinnenicisseenn, 131

VII.  RESULTS AND FUTURE WORK .......coooiiiiiiirieieeseee s 134

RESUILS.......e s 135

FULUIE WOTK ..coiiiiii i 138

Modeling of Design SPACES .....cccccerviiiiiiiiriiiiin e 138

Constraint-based Design Space eXploration ..........cceeeereeerereeiesereenesenens 141
Appendices

A. MODEL INTEGRATED COMPUTING .....ccceeiiiiiieiieeseee e 146

Vil



B. ORDERED

BINARY DECISION DIAGRAMS ......cocoiiiiiiirreee e

Effects of variable ordering..........ccoccvoiiiiiiiinnin i

REFERENCES

viii



LIST OF FIGURES

Figure Page
1. A mode transition Zraph.......ccccviieiiiiiiiiee s 48
2. A simple NetwWork Of TESOUICES ......ccviiriririiieiiie s 49
3. A SIMPIE PrOCESS ZIAPN ..evviiiitiiiiiiieste et 51
4. Metamodel of operational behavior modeling ...........ccocvveeiiniiniinincsce e 60
5. Metamodel of computational structure modeling ..........cceevrveeiiriiiieeniiiseeeeeee 62
6. Metamodel of execution resource MOdeling .........ccecvrvireriiniininie e 65
7. Progressive design SPaCe PIUNING .....ccveceeireriririreseeireseesseese s s ssne e sesses 73
8. Symbolic Constraint SAtiSTACtION ......ccvvrcviieriiiieesie s 75
9. An HPFSM and its AND-OR-LEAF tree representation............ccocevereneresesesieenens 78

10. Encoding of the HPFSM 0f Figure 9 ......ccccciiiiiiiiiiicserseeee s 80

11. Hierarchical dataflow and its AND-OR-LEAF tree representation ............cccceveennene. 82

12. AND-OR-LEAF tree of Figure 11 annotated with structure enCOding............ccccee.e. 83

13. AND-OR-LEAF tree of Figure 11 annotated with resource encoding ............c.cceuuee. 85

14. Compositional CONSITAINL.....ccueiiviiriiieiier e 90

15. RESOUICE CONSITAINE ....vviuviiiriieieitiere sttt n e b n e san e e n e 91

16. Design Space Exploration TOOl........cccuiriiiiiiiiniiiieeceesee s 100

17. ATR high-level block diagram.........ccoceeiuiriiiiiiiiiic s 105

18. Operational scenario of the AMATR SyStemM .......cccvririririiiiiiniineeseee e 106

19. AMATR Behavioral MOdelS .......ccouiviiiriiiniiiiiiincseeeses s 108

20. AMATR Functional AIEIrNatiVeS......cccveieriiiiieiieiiineesiesre s 110



21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

AMATR Algorithm AIEINALIVES .....evivveeririiriesie e 112
AMATR Implementation AIEINAIVES. ......covverrerririeiie e 113
AMATR Resource MOdEIS ......ccueeiiiiiiiiiieiie e 114
Design space size (log scale) vs. applied CONStraints ........cccoeveeerieeerieeesieeesieeeseen. 122
Symbolic representation size (OBDD nodes) vs. applied constraints...............coe.... 123
Constraint application time (ms) vs. applied CONStraints .........ccooeeerveerieerieisseesnene 124
Experimental SELUP .......cooveiiiiiiiii e 127
Design space size (10g scale) vS. Ne v 129
Symbolic representation size (OBDD nodes) vS. Ne..vvvvivieiiiiiiiiicnieeiieee e 130
Design space size (10g-scale) vS. Neuuoiiiviiiiiiiiiiiii e 131
Largest design size (number of components) vS. Ne.uoovueeriieeriieeiiieeniiee e 132
Largest intermediate symbolic representation size (OBDD nodes) vs. N¢ ....ocveeeee. 133
Constraint application time (MS) VS. N¢ vooeviiiiiiniiiiin i 134
The MGA Functional COMPONENTS .......ccceviiiiiiiniiiiiie e 148
OBDD representation of (a+b).c {ordering: a < b < C} .ooccvvriiiiiiiiiiiieceeeree e, 151
Comparison of OBDD size for different variable ordering.........ccccevvvvviiiinecnnnnne 153



LIST OF TABLES

Table Page
1. Constraints in the AMATR appliCation ..........cccerveereeiiiiieniniee e 115
2. Constraint application OVer deSign SPACE .......eevvereerririrerieeriere e 120

Xi



LIST OF ABBREVIATIONS

ACS — Adaptive computing systems

AMATR — Adaptive missile automatic target recognition
ASIC — Application specific integrated circuit

ATR — Automatic target recognition

FPGA —Field programmable gate array

FSM - Finite state machine

GFLOPS — Giga floating operations per second

GME — Graphical model editor

HPFSM — Hierarchical parallel finite state machine
MGA —MultiGraph Architecture

MIC —Model integrated computing

MIDE —Model integrated design environment

MIPS —Model integrated program synthesis

MSAC —Multi-mode structurally adaptive computing
OBDD - Ordered binary decision diagram

OCL — Object constraint language

UML — Unified modeling language

VHDL — VHSIC hardware design language

Xii



CHAPTER 1

INTRODUCTION

With the rapid proliferation of embedded computer technology over the years,
functional and performance demands from embedded computer systems have increased
severely. Specifically in defense and space related applications embedded computing
systems are routinely required to deliver a sustained compute power on the order of
several GFLOPS. A strong constraint specific to these applications is that of resource
limitation. The systems are required to be physically small with little room for
electronics, and are required to function for extended durations with small battery power.
These two factors combined together put a premium on the amount of hardware that a
designer can incorporate. Additionally, these systems may need to function in rapidly
changing environments where performance and functional goals change over time.
Missile Automatic Target Recognition (ATR) is a representative application, where along
with these constraints, the designer is also faced with the challenge of hard real-time
requirements.

The challenge of high-performance with resource economy has typically been
addressed by employing custom application-specific architectures. It is generally
accepted that high performance while minimizing resource envelope can be obtained by
matching the architecture to the algorithm. However, the approach is unattractive due to
the difficulty in supporting application and technology evolution, relative inflexibility,
and limited programmability of the designed system, and long development times and

high design costs. Further, when the system has to function in rapidly changing
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environment, executing different algorithms, the hardwired approach is unsuccessful as it
is difficult to come up with a single architecture that can best fit all the algorithms.

Adaptive Computing has been considered to meet the contradicting demands of
high-performance with minimal resources and changing functional/performance goals
over time [1][2][3]. The Adaptive Computing approach views a system as a multi-mode
system that has distinct, well-defined modes of operation and has explicit conditions and
rules for mode changes. The main theme of the approach is to develop system
architectures that can be modified or reconfigured dynamically upon mode changes, to
match the algorithm and maximize performance. While there has been considerable
interest in understanding and developing Adaptive Computing Systems, the
implementation of such systems has been made feasible only recently, by the advances
made in the reconfigurable logic technology.

The reconfigurable logic technology has advanced significantly producing fast,
in-circuit programmable logic devices known as Field Programmable Gate Arrays
(FPGA). These devices offer a large (~1 million) array of gates that can be soft-wired to
implement a variety of functions of combinational and sequential logic [5]. A major
advantage these devices offer over their hardwired counterparts is that of fast
reconfigurability (<1ms), thereby making dynamically reconfigurable architectures a
reality. While the FPGAs are very successful in certain kind of operations, such as
regular, bit-level, data-flow oriented computations they are not so successful for certain
other kinds of operations, such as floating-point operations [6][7][8]. Therefore, efficient

dynamically reconfigurable architectures are composed of heterogeneous technologies.



The major challenge of the Adaptive Computing approach is in system design and
synthesis [2][4]. The complexity of the design process multiplies, as the system designer
needs to design and maintain a large number of different system architectures that exist at
different times in the lifetime of the operational system. To add to the complexity these
distinct system architectures are not entirely decoupled, as they share the same physical
resources. Optimization and trade-off decisions become a nightmare, as an architecture
that is optimal when designed for the requirements of a given mode, may not be optimal
when viewed in the context of other modes and the reconfiguration cost involved in
transitioning to and from this mode. It is clear that this complexity is unmanageable in
the absence of a system design and synthesis methodology.

The term Adaptive Computing Systems spans a very broad spectrum of systems.
This thesis restricts its focus to embedded, real-time, adaptive signal and image
processing systems. In the rest of this thesis the term Adaptive Computing Systems
refers to this subset, unless otherwise specified.

The next section of this chapter discusses the key issues in the research problem
and states the goal of this research. The chapter concludes with an outline of the rest of

the dissertation.

Issues in Design and Synthesis of Adaptive Computing Systems

The key issues in design and synthesis of adaptive computing systems are system
modeling, and design space exploration. This dissertation addresses these issues in order.
In order to synthesize adaptive computing systems the multi-modal behavior of the
system needs to be captured along with the computational algorithm and the resources

available for algorithm execution. The modeling process captures this information in
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system models that form a database of design information. The captured design
information is not a point design suitable for system implementation. In fact the design
information embodies a design space that needs to be explored for synthesis. The design
space exploration process involves searching through the design space to find designs
that satisfy the system constraints and are “best” with respect to one or more objective
function. Fast and efficient constraint satisfaction techniques are critical to design space
exploration in order to rapidly check the designs in the design space against the system

constraints. These key issues are further examined below.

System Modeling

Perhaps the most fundamental aspect of system design is modeling. Modeling of
adaptive systems poses several challenges. The prominent ones are:

* A single model of computation is inadequate to capture the semantics of adaptive
computing systems. For instance, finite-state machines may be used to represent the
multi-modal behavior, however, the computations (mathematical/signal-processing
operations) within each mode of operation may not be amenable to a finite-state
machine representation. A difficult issue then is to come up with a modeling
paradigm that can capture different aspects of an adaptive computing system in
appropriate models of computation and provide ways to represent interactions
between multiple aspects.

* Modeling design spaces instead of point-designs acquires special significance in
context of adaptive computing systems design. The assumption in modeling point-

designs is that all the optimization decisions can be taken in early stages of system



design. In adaptive system design optimization decisions are much more complex
due to the inter-dependencies between the computations in different modes of
operation and the reconfiguration cost in transitioning from one mode of operation to
another. Task-level optimizations or even mode-level optimizations are insufficient
as they still might result in an overall sub-optimal design. For adaptive computing
systems a flexible and large design space is desired that can provide adequate
opportunity for exploration, trade-offs and optimization. The challenge is again to
devise a modeling paradigm that enables a system designer to capture design spaces,
and characterize different alternatives in the design space.

* Constraints are integral to any design activity. In the targeted application domain
some of the interesting example constraints include timing constraints, power
constraints, area (chip and/or physical board area) constraints, cost constraints, among
other constraints. More complex constraints may crosscut multiple aspects of an
adaptive computing system. Correct designs must satisfy all system constraints. A
difficult issue is to develop a formalism (language) that allows a system designer to

express arbitrarily complex constraints as part of the system models.

Design Space Exploration

Design space exploration is a search through the design space. The objective of
the search is to find a design that in addition to meeting the requirement specifications
and satisfying the constraints, is optimal with respect to a given objective function
(fastest in time, or cheapest in cost, or least in area). With this definition the design space

exploration problem is very similar to a Constraint Satisfaction Problem (CSP) [26].



The time complexity of the exploration is determined by two factors: a) the size of
the design space, and b) the cost of checking individual designs for constraint violations.
An exhaustive search through a large design space is prohibitively time intensive. To
overcome this challenge, heuristics have been used in the past for conventional embedded
systems design to guide the search through the design space. Heuristics, however, do not
provide complete coverage of the search space. In addition, it is difficult to develop
effective heuristics for adaptive computing systems due to the multi-modality and the
inter-dependencies between computations and resources in different modes. The cost of
checking designs is determined by the constraint checking method employed. Simulation
and testing are one form of constraint checking methods, where performance attributes of
the design are estimated by extensive simulation and testing.  Analytical estimation is
another form of constraint checking method, where performance attributes of the design
are estimated analytically from the performance attributes of the design components. For
example, area (logic gate count) of an FPGA design can be analytically estimated by
adding up the areas of individual components in the design. Simulation and testing is
more accurate but time intensive, whereas analytical methods are fast, but not so
accurate.

The challenge is to develop a design space exploration method that is fast and
efficient yet offers complete coverage, while satisfying a large number of system

constraints.



This research attempts to address these two key issues in the design and synthesis
of adaptive computing systems. The following research statement outlines the objectives

of this research.

The goal of this research is to develop a system-level design and
synthesis methodology for adaptive computing systems that enables a designer
to model design spaces, explore and synthesize in the large design space while

satisfying a large number of diverse designer expressed constraints.

Outline

Chapter II reviews the state of the art in modeling of flexible design spaces,
design space exploration in system synthesis problems, and constraint satisfaction.
Prominent approaches of modeling design spaces are reviewed. Prominent algorithms
and approaches for design space exploration, the design dimensions explored by these
algorithms, and the complexity of the algorithm are discussed. The chapter also gives an
overview of the constraint satisfaction problem, and the popular constraint satisfaction
algorithms. Chapter III addresses the issue of system modeling. Semantics of adaptive
computing systems are discussed. Formalisms for representing different aspects of
adaptive computing systems are presented. The chapter concludes with the specification
of a modeling paradigm that defines the modeling concepts necessary for modeling
adaptive computing systems. A constraint language for specification of arbitrary
constraints is presented. Chapter IV provides a detailed explanation of the design space
exploration approach. A symbolic constraint satisfaction method is described that

represents design spaces symbolically, and applies constraints to the design space
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symbolically. The chapter concludes with the description of a design space exploration
tool. Chapter V gives a case study of the application of the design methodology to the
design of an adaptive computing system. Chapter VI examines the results of the research

and provides recommendations for future work.



CHAPTER I

BACKGROUND

This chapter gives an overview of the state-Of-the-art in the key issues in design
and synthesis of adaptive computing systems, summarized earlier. The goal of the survey
is to develop a better understanding of the key issues pertaining to system synthesis, and
also to create a perspective with which the work presented in this dissertation could be
evaluated.

The first part of this chapter surveys the techniques used in modeling of design
spaces. Languages and approaches that consider and provide the capability of capturing
design spaces are reviewed. The second part of this chapter focuses on the prevalent
techniques of design space exploration for system synthesis. The last part of this chapter
deals with the constraint satisfaction problem. A study of the constraint satisfaction
problem, and a summary of different algorithms for constraint satisfaction have been

presented.

Modeling of Design Spaces

Previously the importance of modeling design spaces to embedded computing
systems in general, and embedded adaptive computing systems in particular was
demonstrated. The research in modeling of design spaces in the embedded systems is
limited; however, the idea has found favor in other domains. Primarily two distinct
approaches exist for representing design spaces. Parametric design is one approach for

representing design space, where the design variations are abstracted in single or multiple
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parameters. Physically different designs may be obtained from the parameterized design
space by supplying appropriate value for the configuration parameters. A different
approach for creating design space involves explicitly enumerating design alternatives for
the components in the system design. The design space is a combinatorial product of the
component alternatives. Characteristically different designs may be obtained by selecting
a combination of alternatives for different components.

The section presents a review of design languages such as VHDL, and Dynamic
Architecture Description Languages, that directly support capture of design space. A
review of recent researches in software configuration management for creation and

management of software product families is also being presented.

VHDL

VHDL (Very-high-speed-integrated-circuit Hardware Description Language) is a
hardware description language [9]. VHDL, enables the creation of design spaces for
digital circuit design, in both flavors i.e. parametrically, as well as by explicit
enumeration of design alternatives.

Parametric design is enabled in VHDL by providing constructs for creating
parameterized modules. The configuration parameters of the module are exposed along
with the module interface description. In the module interface, the configuration
parameters are declared as generic, a VHDL keyword. In the module implementation, a
generate construct may be used for creating configurable modules. The generate
statement accepts a numerical parameter as an input, and can create and connect multiple
copies of a module based on the parameter value. Following is an example of a

configurable bit-serial multiplier design in VHDL.
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entity Ser_Mult is

generic (N : integer := 16);

port ( C, clr, sin, en : in std_logic;
D : in std_logic_vector (N-1 downto 0);
Q : out std_logic);

end Ser_Mult;

architecture behav of Ser_Mult is
Corrponent Ser_Add
port (A, B, clk, clr, en : in std_logic;
S : out std_logic);
end component;
signal cy : std_logic_vector (N downto 0);

signal p : std_logic_vector (N-1 downto 0);
begi n

--Generate and connect serial adders

A : for T in p'range generate

ser_add_1i : ser_add port map(A => p(I), B => cy(I+l),
clk => ¢, S => cy(I), clr => clr, en => en);
end generate A;

--Generate AND gates to perform multiply operation
Q generate : for I in p'RANGE generate

p(I) <= D(I) and sin;
end generate Q_generate;

cy (cy'LEFT) <= '0';
Q <= cy(cy'RIGHT);
end behav;

The configuration parameter N in this example configures the size of the
multiplier. An appropriate parameter value is supplied when the module is instantiated.

Explicit representation of alternatives is supported in VHDL by separating the
specification of interface of a component from its implementation. Interface of a
component is defined in an entity construct. Entities are described in terms of input and
output ports. Implementation of a component is defined in an architecture construct.
Multiple architectures can be supplied for an entity. For instantiation a specific
architecture has to be bound to the entity. The binding can be accomplished in the

instantiation construct itself, or can be separately specified in a Configuration script.
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Following is an example of an Even-Parity component with multiple architecture

definitions, and a configuration script that performs the binding.

entity Even_Parity iS
port
(Bvec : in Bit_Vector (7 downto 0);
Parity: out Bit);

end Even_Parity;

-- an architecture for the even_parity entity
ar chitecture Tree of Even_Parity is

signal Intl, Int2, Int3, Int4, Int5, Int6 : Bit;
begin 1Intl <= Bvec(0) Xor Bvec(l);

Int2 <= Bvec (2) XOr Bvec(3);

Int3 <= Bvec(4) XOr Bvec(5);

Int4 <= Bvec(6) XOr Bvec(7);

Int5 <= Intl XOr Int2;

Int6 <= Int3 XOr Int4;

Parity <= Intb5 XOr Inté6;
end Tree;

-- another architecture for even_parity entity
architecture Cascade Of Even_Parity is
signal Intl, Int2, Int3, Int4, Int5, Int6 : Bit;
begin 1Intl <= Bvec(0) Xor Bvec(l);
Int2 <= Intl XOr Bvec(2);
Int3 <= Int2 XOr Bvec(3);
Int4 <= Int3 XOr Bvec(4);
5)
6)

4

Int5 <= Int4 XOr Bvec(

Int6 <= Int5 XOr Bvec(6);

Parity <= Int6 XOr Bvec(7);
end Cascade;

-- configuration script binding one architecture to entity
configuration a_Config of a_system is
for an_Instance : Even_Parity
use entity Work. Even_Parity(Tree);
end for;
end a_Config;

In summary, VHDL supports the creation of design spaces for hardware designs
in an elegant manner by enabling parametric design, as well as by allowing representation
of design alternatives. The primary limitations of VHDL however are the inability to
specify performance metrics along with the alternative description in order to trade-off
and compare alternatives, and the primitive form of configuration mechanism available in

12



the language. There are no tools that can provide automatic configuration of VHDL
designs based on system constraints, and there is no mechanism to validate the
consistency of the instantiated configuration. Further, VHDL being a hardware design
language primarily is not suited for designing heterogeneous systems that consist of

interacting hardware and software components.

Dynamic Architecture Description Languages

Many architecture description languages have been developed for software
architecture specification, design and analysis [10][11][12]. Recently some of these
languages have been extended with constructs to enable capture and analysis of dynamic
software architectures. The dynamic behavior refers to the variability in composition of
interacting components during the course of a single computation. Allen argues the
separation of dynamic re-configuration behavior of architecture from its non-
reconfiguration functionality [10], and recommends extensions to Wright, an ADL
designed for steady-state architectures, to handle dynamic software architectures.
Medvidovic has presented similar ideas in his work on dynamic software architecture
representation using C2-style [12].

Wright represents architectural structure as graph of components and connectors.
Components represent architecturally-relevant units of computation and data storage,
while connectors represent the interaction between components. In Wright, components
and connectors are typed. Thus to define a system, one first declares a set of component
and connector types, termed as a Style. Then one declares a set of instances of these
types and the way in which they are assembled, termed as a Configuration. Components

in Wright have interfaces called ports. A port defines a logically separable point of
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interaction with its environment. Connectors also have interfaces called roles. The roles
of a connector identify the logical participants in the interaction represented by the
connector, and specify the expected behavior of each participant in the interaction.

Dynamic topologies can be described in Wright by extending the concept of a
configuration. Steady-state software architectures consist of a unique configuration that
represents the fixed topology of the software architecture. Allen proposes a Configuror,
to manage the changes in the architectural topology. The Style describes all components
that are available for use in the architecture. A Configuror script defines the behavior of
the Configuror. The behavior is defined similar to a finite state machine. Appropriate
events in the states trigger reconfiguration of the architecture. The architectural changes
are defined by a sequence of reconnection and dynamic instantiation/deletion of
components.

In summary, dynamic architecture description languages provide the capability of
creating a design space for software architecture design. In the Style description different
Components implementing the same interface may be specified. However, the dynamic
ADLs suffer from the same limitations as VHDL. The language does not support
attributing the components with performance metric, neither is there any tool support for
design space exploration or automatic configuration. In addition, ADLs are targeted
towards software architecture description and are not particularly suitable for describing

embedded heterogeneous systems.

Software Variants

Software alternatives or variants are used to create and maintain software product

families. Software variants have been the subject of attention in recent researches in
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software configuration management. It is understood that versatile management of
software variants can help software development process, by distributing the
development cost over many separate customized products in a product family adapted
from the same base product. In the absence of a proper variant management facility,
emerging needs to maintain a complex system with an ever-increasing number of variants
can easily become intractable.

There is not a single, general and widely agreed definition of software variants in
the software configuration management community. A broad definition explains variant
as a relation linking two software source objects indistinguishable under a given
abstraction. Another definition explains variants as alternative implementations of the
same specification [13], implying thereby that variants may be objects with interface as
the invariant part and different implementations as the variant part. This definition is
argued to be too restrictive [13], as it rules out different implementations of interfaces
that differ in irrelevant details.

Variant representation and management is one of the most cumbersome tasks in
software configuration management. There are two basic choices for the representation
of variant components in software configuration management tools: 1) Maintaining a
separate copy of the component for each variant (variant segregation); and 2) Maintaining
a single source object for all variants that are extracted as needed (single source variants).
Variant segregation stores variants separately in a source repository. The primary
disadvantage of variant segregation is the introduction of redundancy into the product’s
source library. Software variants are typically modified copy of some other source

objects. Often the modifications are small compared to the common data. This leads to
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maintenance difficulties, as multiple copies of the same data need to be maintained
separately. Another disadvantage is in the representation of variance of a single
component in multiple dimensions. An example is different Operating System variants
of a component and different user-interface variants of the same component. Owing to
these difficulties, variant segregation is better suited for representing variants that have
no or small source text in common with their siblings and that vary only within a single
dimension. Single source variant representation on the other hand stores all the variants
in a single source file. Meta-constructs guide the selection and extraction of different
variants from the same source file. Single source variant representation is a promising
variation scheme in programming languages that offer conditional compilation. The
main advantage of single source representation is that redundancy between different
variants of a given component can be entirely eliminated or minimized. A disadvantage
of single source variant representation is in the obfuscation of the source code by the
meta-constructs that control the instantiation of the different variants. Additionally, it is
difficult to guarantee the consistency of an instantiation.

In summary, software variants are typically source code variations and are
commonly used in creation of software product families. In that respect, variants are
analogous to design alternatives. The research in software variants brings forth some
interesting issues regarding variant management, and consistent instantiation of software
products created with software variants. Consistency issues have been addressed in some
researches by providing a configuration utility, that helps in instantiating consistent

products [13].
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Summary: Modeling of design spaces

In addition to the reviewed literature above, there are some other approaches
where the idea of capturing design spaces has found appeal. Generative modeling is a
technique employed by Ledeczi in modeling large parallel systems [14]. In his approach
a modeler can create a design structure and provide a procedural script that can be used to
replicate, connect, and scale-up the structure. The main argument is to save the user from
creating repetitive modeling structures, however in concept a flexible design space has
been captured, that can be used to generate customized designs, by executing the script
with appropriate parameters. Parameterized templates is a popular technique in some
object-oriented software languages for describing configurable software modules. The
parameters here are non-numeric, and typically the domain of the parameters is the data
type set of the language.

From the literature survey it can be concluded that the idea of creating design
spaces itself is not novel. Parametric design has been around for long, and have been
much popular in digital circuit design. The parametric approach is powerful when design
structures are regular, and the design variations are parameterizable, e.g. an 8-bit adder
vs. a 16-bit adder. Potentially infinitely large design spaces can be captured in an
extremely compact manner. However, not all design variations are parameterizable, e.g.
a bit-parallel vs. a bit-serial implementation of a multiplier. Such variations can only be
captured by explicitly enumerating the alternatives. This second approach of creating
design spaces by explicitly enumerating the design alternatives has not been formulated
or supported adequately, specifically in the embedded systems design community.

Considering the advantages that the modeling of design space offers in finding better,
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more flexible, and portable solutions, there is clearly a need for enabling modeling of

design spaces in an embedded systems design methodology.

Design Space Exploration

Design space exploration as defined previously is the task of finding a design
from a design space that meets the requirement specifications, satisfies the constraints,
and minimizes (maximizes) some cost (objective) function. Thus, in essence design
space exploration is a search problem. Many approaches appear in literature for design
space exploration. These approaches differ in the nature of design space explored, the
nature of constraints and the objective functions; however, primarily these can be
grouped into two categories: 1) Exhaustive search based; and 2) Heuristics based. Some

of the representative approaches from each of the two categories are reviewed below.

System Synthesis by solving Timing Constraints

In this approach developed by Kuchcinski [15], the problem of design space
exploration for embedded system partitioning and scheduling has been formulated as a
constraint satisfaction problem. In this approach an application is specified by a set of
constraints over the finite domain of integers. The constraints specify timing
requirements, process precedence relations, and resource constraints. A constraint
solving technique (CHIP: Constraint Handling in Prolog) is used to find a near-optimal
solution that satisfies the given constraints and minimizes a cost function.

The goals of the synthesis problem targeted by this research are fourfold: a)
partition a set of computational tasks (processes) over a set of processing elements

(processors/ASICS); b) partition the inter-process communication over communication
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resources (buses/links); ¢) derive an execution schedule of the processes on processing
resources; and d) derive a communication schedule of the inter-process communication
on shared communication resources.

An application is specified as a process graph. A process graph is a directed
acyclic graph; the nodes of the graph represent processes, and an edge of the graph
denotes a communication path between the processes represented by the end nodes of the
edge. Edges can have conditions on them, which implies that communication takes place
on those edges when the associated condition is satisfied. A process is activated when a
communication takes place on its input channels. A process activates communication to
another process, at the end of its execution. Each process has a deterministic execution
time that is dependent upon the resource over which the process executes.
Communication time is deterministic but is also dependent upon the underlying
communication channel. A communication between two processes on the same resource
is assumed to require no time.

The main theme of Kuchcinski’s approach is to model the process graph as a set
of finite domain constraints imposed on the timing of processes and the system resources.
The following finite domain variables are defined.

T,: activation time of process P,

P, : execution resource of process P,

O, : execution time of process p; (depends on the execution resource p,)
T;; : activation time of communication between p; and p;

1

P, : communication resource of communication between p; and p;
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0; : communication time of communication between p; and p; (depends on the

communication resource ;)

The constraint satisfaction problem is to find an assignment of these domain
variables such that the constraints are satisfied. An optimal solution to the constraint
satisfaction problem is an assignment that minimizes a cost function. Some of the
constraints are implicit and derived from the process graph. Users can define additional
constraints over these domain variables. Some of the implicit constraints derived from

the process graph are shown below:
* Precedence constraint — If a dependency exists between process Pi and process

Pi in the process graph, then the activation and completion of Pi has to precede

the activation of i . This constraint is expressed with the following inequality:

I, +90, <1,

1)
Similar constraint expressions can specify real-time deadlines and other binary
timing relationships over process activation and completion times.

* Resource constraint — Two processes in the process graph can execute
concurrently when there is no data dependency between them. Concurrent
execution however is possible only when the processes execute on different
resources. This constraint is expressed with the following relation:

(ri+5i STj)D(Tj+5]-STi)D(,0i¢,OI-) 2

* Execution time constraint — A process may have different execution time
depending on the assigned resource. Execution time constraint defines the
selection of execution time value based on pj, the value of the assigned resource
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variable. The constraint is defined as an element construct, a primitive construct
available in CHIP.

dement(p,, [T, T,..... Ty ] 5) (3)

This construct constraints the value of 0, to be one of T, T,,,...,T,, based on the
value of p,, where T, T,,,..., T,y are constants.

Precedence constraint with communication — The precedence constraint
expressed earlier ignores the communication time. The inequality below
expresses the same constraint augmented with communication time. It is assumed
that the communication starts at the completion of the source process, and the
destination process is activated only when the communication is completed.

(ri +0, < rij)D(rij +5ij < rj) 4

Communication time constraint — The communication time between two arbitrary
processes depends on a communication resource assignment as well as on
assignment of processes. It is assumed that the communication time is negligible
when the communicating processes are assigned to the same resource i.e.

if (,OI :,OJ-) then (5” :O) else element(,oij,['I'ijl,'l'ijz,...,'l'ij,\,],d”) 5)

This synthesis problem is formulated as an optimization problem over constrained

domain variables. Each domain variable can be assigned a value from a finite domain, if

the assignment does not contradict with defined system constraints. The optimization is

defined as an assignment that minimizes a cost function. Two different cost functions

have been identified: 1) the number of resources for a fixed given system execution time,

and 2) the execution time for a given number of resources.
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A branch-and-bound algorithm with depth-first-search is used to generate partial
solutions. The CHIP constraint engine validates the partial solution. In case of an
inconsistency, the algorithm backtracks. The algorithm finds an optimal solution to the
problem, however, it is NP-complete with an exponential worst-case complexity.

The presented method is elegant in problem formulation and readability. New
constraints can be easily defined and considered in the system synthesis. However, the
exponential complexity of the synthesis method severely limits its ability in synthesizing
large systems. Additional, the process graph model used in representing system is
limited in representing large systems, as it does not support the concept of hierarchy.

An extension to this approach considers memory constraints also in embedded
system synthesis [16]. The resource definition in the extended approach includes the
code memory, and data memory. The process definition is augmented with code memory
requirement, and the communication is augmented with data memory requirement.
Additional constraints are defined, that express the dynamic data memory requirements
of processes for communication, and the static code memory requirements for process

code.

System Synthesis using Evolutionary (Genetic) Algorithm

Teich views system-level synthesis as an optimal mapping of a task-level
Specification onto a heterogeneous network of resources [17]. A genetic algorithm is
used to solve the optimal mapping problem.

In this approach, systems are represented in a multi-layered specification graph.
Several layers corresponding to different levels of abstraction are defined. The topmost

layer, problem graph, provides the algorithm description. The next layer, architecture
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graph, describes the architecture. The lowest layer, chip graph, gives a chip level
description of the system. Mapping edges relate the nodes in two neighboring layers.
Mapping edges express the relation ‘can be implemented by’. A specification graph
allows a flexible representation of the expert knowledge about useful architectures and
mappings. An implementation or a concrete mapping is defined by an activation of
nodes and edges in these graphs. Activation of nodes and edges defines the use of nodes
and edges in the implementation.

With this representation the design space is in the multi-layer specification graph
and the design space exploration problem is to find a sub-graph of the specification graph
that satisfies specific properties and is optimal with respect to an optimization goal.

Formally, a multi-layer specification graph Gg = (VS, ES) is composed of D sub-

graphs G, = (Vi = ) :1<i< D, and a set of mapping edges E,, that connect vertices in

neighboring dependence graphs. The following relations hold.

(6)

An activation ais defined as a mapping that assigns to each node and edge in the

specification graph a value of 1 (activated) or O (not activated) i.e. a:Vg U Eg — {0,1}.
An allocation a of a specification graph is the set of all activated nodes and edges

of the dependence graphs ie. a=a, Uag, where a, :{V []VS|a(V) :]}, and

a. ={e0Eale) =1
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A binding [ is a subset of all activated mapping edges i.e. S = {eD Ev |a(e) = 1}
A feasible binding constrains the binding set such that the allocation and binding
together form a consistent implementation. The following conditions ascertain
feasibility:
1. The edges in the binding set must map only activated nodes i.e.
Oe=(v,v)OB:vvla;
2. Each activated node in one dependence graph must be mapped uniquely to an

activated node in the next dependence graph 1.e.

OvOa,,vOV, : ‘eD Ble=(v,v),vOV,,

=1; and

3. The end nodes of an activated edge in a dependence graph must be mapped
such that: either there is an activated edge in the next dependence graph
connecting their corresponding nodes, or they should both be mapped to the
same activated node in the next dependence graph i.e.
Oe=(v,v;,)0ag,e0E (v, ,v_i)(vj ,v_j) D,B’,\Ti :V_jDe: (v_i,v_j)D E. .

A schedule 7 is a mapping that assigns an activation time for each node in the

problem graph such that all the precedence relations defined by the directed graph are

satisfied. Execution time of each node in the problem graph under a given binding [ is

defined by del ay(vi , ,8) . Formally,

TV, Z"

DeO(v,,v,)0E; 17(v;) 2 7(v,) +delay(v;, 5) 0

Given the specification graph a valid implementation is a triple (a, B, T). The

design space exploration problem is defined as the following optimization problem:
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Minimize h(a, B, T) , such that
a s a feasible allocation;
[ is afeasible binding;
T is a schedule; and
g,(a,.8.1)20:000{12,---,q}.
The optimization problem in this approach is solved using a Genetic Algorithm
(GA). A GA works on population of individuals, where an individual represents a
potential solution of the synthesis problem. The GA attempts to iteratively improve a
population by applying the principles of evolution, namely reproduction, crossover, and
mutation. An individual in a population is ranked by a fitness function. The GA
terminates after a Kyax generations of individuals and outputs implementations with the
best fitness values as the solutions. The GA is not guaranteed to find an optimal solution.
In the presented approach the GA solves only the allocation and binding problem.
Scheduling is addressed at a later stage, using a standard heuristic scheduler. The
individuals in the GA encode an implementation. For evaluation of the fitness of an
individual, the individual is decoded first and then evaluated according to the defined
fitness function. Random mutation and crossover could result in infeasible binding and
allocation. To avoid this problem a randomly generated allocation is partially repaired
using a heuristic.
The GA based approach can address larger problems compared to the constraint-
satisfaction based approach presented previously. However, the GA is not guaranteed to
find an optimal solution, or worse not even a good solution. The success of the GA

approach is based on the assumption that information shared between solutions by
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crossover may actually lead to an improvement of a solution. The validity of this

assumption depends on the structure of the design space.

System Synthesis using Mathematical Programming

Prakash & Parker introduce a mathematical programming based approach to
system synthesis [18]. In their approach, the synthesis problem is specified using a
number of linear integer constraints that must be satisfied while minimizing a cost
function. The linear constraints are solved using a Mixed Integer Linear Programming
(MILP) solver.

The application to be synthesized is represented using a task graph. Nodes in the
task graph denote a task. Tasks are attributed with the execution time that is dependent
upon the processor that executes the task. Arcs in the task graph denote communication
between tasks. Arcs are attributed with the volume of data transferred over the arc. The
task graph model also considers the possibility that a task may be able to perform a
fraction of the task even before all the inputs are available, and also the output can be
available even before the task finishes executing entirely. The inputs to a task are labeled
with a parameter that specifies the fraction of a task that can be completed before the
input must be available. Similarly outputs are also labeled with a parameter that specifies
the fraction of the task that must be completed before the output becomes available.
Delay associated with a data transfer depends on whether it is a remote transfer or a local
transfer. Processors and hardware communication links are attributed with a cost
parameter.

The complete mathematical programming model of the problem requires

specification of an objective function that has to be optimized and a set of constraints that
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have to be satisfied. The objective function can either be the total system cost or the
overall system performance. The set of constraints consists of the constraints that must
be satisfied for the overall task to be performed correctly as well as the arbitrary timing
and cost constraints imposed by the designer. For the correct operation of the system the
ordering implicit in the task graph and the data transfer must be observed, taking into
account the timing involved and the relations that express the conditions for complete and
correct system configuration. There are two basic categories of variables in the
programming model: Timing variables and Binary variables. Timing variables are real
variables that represent timing of critical events belonging to the following three classes:
1. Data availability timing variables
i. Input data availability
ii. Output data availability
2. Task execution timing variables
i. Task execution start time
ii. Task execution end time
3. Data transfer timing variables
i. Data transfer start
ii. Data transfer end
Binary variables are 0-1 variables that represent the implementation decisions
regarding the system configuration belonging to the following two classes:
1. Task to processor mapping variable

a 0,,: value of 1 implies task T, is allocated to processor P,

2. Data transfer type variable
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& Vaua: value of 1 implies data transfer from task T, to task T, is a

remote transfer.

A number of linear inequalities are formulated that express the restrictions on the
values of these variables, such that the task ordering implicit in the task graph is satisfied.
Other constraints are formulated that enforce exclusion in the usage of the processor and
the communication links.

The synthesis method relies on solving the problem formulation as a Mixed
Integer Linear programming model. A branch-and-bound algorithm is used to solve the
MILP model. The algorithm optimizes either the overall application execution time or
the architecture cost.

Mathematical programming based approaches provide an exact solution to the
optimization problem, however the approach gets rapidly intractable as the problem size

grows, as the MILP is a known NP-complete problem [24].

System Synthesis using Heuristic Vector Packing

Beck considers the synthesis problem as a configuration problem with the
objective of selection of hardware components and allocation of the software tasks to the
hardware [19]. The design space exploration consists of examining the hardware
component possibilities and examining the alternative allocations of software to hardware
components. The allocation problem is considered a packing problem and a number of
one-pass, greedy, heuristic-driven algorithms are considered for solving the packing
problem.  An extension to this basic approach considers hardware selection

simultaneously.
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The application software is represented as a synchronous data flow graph (SDFG)
[20]. It is assumed that resource requirements are statically predictable and the tasks in
the data flow are attributed with their resource requirements. Typical resource
requirements include %CPU utilization, memory, communication/data acquisition
channels, etc. The hardware is represented as a set of processing elements (PE)
connected by buses. A PE is attributed with a vector of capacity metrics. The elements
of the capacity vector are maximum CPU loading, maximum available memory, number
of communication/data acquisition channels, etc. A bus is attributed with the schedulable
bandwidth.

The allocation problem is formulated as a bin-packing problem. Each PE is
modeled as a vectorized bin, where the elements of the vector are the elements of the
PE’s capacity vector. A task is modeled as a vector object; the elements of the vector are
the task’s resource requirements for different resources. Communication channels are
modeled as scalar bins; the size of each bin is proportionate to its schedulable bandwidth.
Communication requirements of tasks are addressed when performing allocation. If two
communicating tasks are allocated to the same PE, then the communication requirement
of the task is considered zero; otherwise a message object is created to represent the
communication bandwidth requirement of the inter-task communication.

The allocation problem is to pack the vector objects corresponding to the tasks
into the vector bins corresponding to the PE’s and message objects corresponding to the
communication requirements into the scalar bins corresponding to the bus. The main
packing criterion is that bins must not overflow i.e. the objects should fit in the bin. A fit

is determined by evaluating problem specific feasibility constraints.
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The packing problem described above is an NP-complete generalization of the
vector packing problem [24]. Beck considers a number of greedy, one-pass, heuristic
driven algorithm for solving the bin packing problem. The first step in the packing
problem is to order the objects for packing. A number of different heuristics are
considered for ordering including random, decreasing on node size (compute intensive
first), decreasing on arc size (communication intensive first), and decreasing on node and
arc size (jointly compute intensive and communication intensive first). In the next step,
each object is packed on one of the bins. The selection of the bin for packing is also done
according to a heuristic. The heuristics considered include first fit, maximum level
(maximizes PE utilization), minimum level (minimizes PE loading), and minimum level
of the scalar bin (minimizes bus loading).

When the hardware is fixed, the above method addresses the synthesis problem.
In order to address the hardware selection and allocation jointly an extension is
considered to the original packing algorithm. The extended algorithm starts with a
minimum number of minimum complexity PE’s. Then the packing algorithm is invoked
to allocate the tasks to current hardware selection. In the event of a failure, a heuristic
driven design advisor makes a hardware selection change based on the current hardware
selection and the partial packing state.

This approach has been successful in finding near optimal solution on some
problem instances. However, the success of the approach depends on the effectiveness of
the heuristic for the particular application instance. No attempt has been made to assess

the schedulability of the allocation.
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Heuristic based Hardware-Software Co-Synthesis (COSYN)

Dave [21] describes a heuristic-based co-synthesis technique that includes the
allocation, scheduling and performance estimation as well as power and fault-tolerance
optimization. A clustering-based approach has been developed that clusters the task
graph, and considers a cluster for allocation thereby reducing the complexity of the
allocation algorithm. Following allocation, a cluster is scheduled and evaluated for
performance. The algorithm selects the first allocation that is schedulable and meet
deadlines. A slight variant to this basic approach has also been presented, that clusters
and allocates the tasks in such a manner as to optimize the overall power consumption.

The COSYN approach uses multiple task graphs for embedded system
representation. The tasks in the task graph are periodic. Different task graphs may have
different periods. Each task in the task graph can also be annotated with a deadline for
completion. For each task an execution vector is defined, that indicates the execution of
the task on different processing elements (PE). Resource constraints are defined as
preference vector of a task, which indicate if the task can be allocated and executed on a
given resource. An exclusion vector is also defined that indicates if two tasks can be
allocated to the same resource. The communication between tasks is represented by
edges in the task graph. For each edge a communication vector is defined, that stores the
communication time of the communication on different links. A number of different
attributes for PE’s are also defined.

A heuristic driven greedy algorithm is used for design space exploration and
synthesis. There are three main steps in the synthesis algorithm: 1) Clustering; 2)
Allocation; 3) Scheduling and Performance Estimation. Clustering involves grouping of

tasks to reduce the complexity of allocation. A single cluster is allocated to the same PE.
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Communication time between tasks on the same PE is assumed to be zero. The
clustering heuristic is to reduce the length of the longest path, where the length of a path
in the task graph is determined by the communication time of the edges and the execution
time of the intermediate tasks on the path. By clustering the tasks on the longest path the
communication time can be reduced. The exclusion constraints are taken into
consideration while growing clusters. A dynamic path clustering technique updates the
communication time dynamically as the clustering progresses, and uses this updated
communication time in forming new clusters. Following cluster formation a cluster
allocation procedure is invoked for each cluster. An allocation array is created for a
cluster that considers the resource constraints along with architectural hints. Each
allocation from the allocation array is evaluated for best fitness. This is done by
scheduling the cluster of tasks on the allocated PE. The schedule is evaluated for
performance in terms of deadline satisfaction, and best finish time. In the event of no
feasible schedule the allocation is discarded and another allocation is examined instead.
A variant of COSYN known as COSYN-LP uses power consumption instead of task
deadlines in clustering and allocation evaluation.

Being a heuristic driven approach COSYN is orders of magnitude faster
compared to the optimization based approaches for similar problems. Additionally, the
authors report near optimal solution for some problem instances. However, heuristic
based methods cannot offer completeness guarantees. The suitability of the algorithm is
dependent on the heuristic employed in cluster formation. There is no backtracking when

a particular cluster formation fails to find a feasible allocation.
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System synthesis by heuristic driven constrained partitioning

Gupta presents a hardware-software synthesis method that partitions a behavioral
specification into hardware and software implementations [22]. The derived partition is
required to satisfy the timing constraints. The partitioning method attempts to maximize
the overall system performance. A heuristic based iterative improvement algorithm is
used to solve this constrained partitioning problem. The details of the approach are
presented below.

The primary goal of the synthesis method is to partition a behavioral specification
for implementation into hardware and software. The target architecture consists of a
genera -purpose processor and an application specific integrated circuit. The partitioning
attempts to maximize the performance, while satisfying the timing constraints. A
partition cost function quantifies the performance of a partition using delays of the
operations, processor utilization, bus utilization, communication delay etc.

A hardware description language HardwareC is used to capture the system
functionality. HardwareC description consists of a set of interacting processes that are
instantiated into blocks using a declarative semantics. In general, the system model
consists of a set of hierarchically related sequencing graphs. Vertices represent language-
level operations and edges represent dependencies between the operations in this graph.
Execution of operations within a single graph is single rate, however operations across
graph models follow multi-rate execution semantics.  Operations to represent
synchronization to external events are called nondeterministic delay (ND) operations, and
present unknown execution delay. Timing constraints are specified to define specific
performance requirements of the desired implementation. Two kinds of timing

constraints are specified: 1) Min/max delay constraints that provide bounds on the time
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interval between initiation of execution of two operations; and 2) Execution rate
constraints that provide bounds on successive initiations of the same operation.
The synthesis problem is formulated as a constrained optimization problem.
From a given set of sequencing graph models and timing constraint between operations,
the problem is to create two sequencing graph models, such that one can be implemented
in hardware and the other in software and the following statements are true:
1. Timing constraints are satisfied for the two graph models
2. Processor utilization, P <1
3. Bus utilization, B< B,

and a partition cost function, f = f(S,,B,P™, m) is minimized

A heuristic driven iterative improvement procedure has been used to solve the
constrained optimization problem. The procedure starts with an initial solution, and
iteratively improves this solution by migrating operations between the partitions.
Migration of an operation affects its execution delay. It also affects the latency and
reaction rate of the thread to which this operation is moved. Operations for migration are
selected such that the move lowers the communication cost, while maintaining constraint
satisfiability. The processor and bus utilization constraints are also checked.

The drawback of Gupta’s approach is in its restricted target architecture. The
approach only considers a single processor, and a single ASIC in the target architecture.
Typical embedded systems are composed of much more diverse, heterogeneous
architectures. The problem of scheduling has also not been addressed. Better

partitioning can be obtained by considering partitioning and scheduling simultaneously.



System synthesis by heuristic driven extended partitioning

Kalavade [23] views system synthesis as an extended partitioning problem.
Extended partitioning differs from the more common binary partitioning problem where
the partitioning is restricted to partition among resources (mapping/allocation) and
partition in time (scheduling). Kalavade considers implementation selection jointly with
mapping and scheduling. Both extended and binary partitioning problems are
constrained optimization problem and have been shown to be NP-hard. A heuristic based
approach has been developed that employs an implementation-bin selection procedure for
selecting implementations and a heuristic based greedy algorithm for solving the reduced
binary partitioning problem.

The primary objectives of the synthesis procedure are: a) partition the tasks in an
abstract task-level specification of an application into hardware and software tasks; b)
schedule the tasks for execution; and c) select an appropriate implementation for a task
from multiple implementations.

The application is represented as a Directed Acyclic Graph (DAG), where nodes
represent tasks and edges represent data and control precedences between nodes. The
tasks in the graph can be mapped to either hardware or software. Implementation bins
are defined for each task for both software, and hardware mapping. The software
implementation bins retain different software implementation options of the task. The
different options are characterized by execution time and area (code size). The hardware
implementation bins retain different hardware implementations of the task. The hardware
options are characterized by execution time and hardware area.

The overall extended partitioning problem is formulated in terms of two sub-

problems.
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Hardware/software mapping problem — Given a DAG, area and time estimates for
software and hardware implementations of all nodes, communication costs, and a desired
latency, determine a mapping M of nodes to hardware and software, and the start time
for each node (schedule t), such that the area occupied by the nodes mapped to hardware

is minimum, and the desired latency requirement is met. The mapping problem is

combinatorial in the number of nodes (O(Z‘N‘ )).
Implementation-bin selection problem — Given a hardware implementation

curveCH,, that is a collection of hardware implementations with different area-time
characteristics, and a similar software implementation curve CS for a node i, and a pre-

determined hardware or software mapping, determine the implementation bin B, for the

node.

An iterative solution method has been presented that solves the two sub-problems
simultaneously. The first step of the algorithm solves the mapping problem on the free
(implementation bin not selected) nodes using a heuristic driven search algorithm. The
second step selects the implementation using another heuristic based algorithm for one
node with a given mapping. The steps are repeated until none of the node is free. The
mapping algorithm and the implementation bin selection algorithm are briefly described
below:

Global Criticality Local Phase (GCLP) — The GCLP algorithm traverses the
DAG and maps each node to either hardware or software, such than an objective function
is minimized. The important aspect of the GCLP algorithm is adaptive selection of the
objective function. The two objective functions finish time of the node and percentage
resource consumed, are mutually contradictory. To overcome this problem, an
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appropriate optimization objective is chosen at each step, based on a global criticality
measure. This measure signifies the time criticality. If the time criticality exceeds a
threshold then the algorithm considers finish time of the node as its minimization
objective. The global criticality alone however is inadequate, as it fails to capture the
characteristics of individual nodes. To accommodate node characteristics, local mapping
preferences are defined and are used to modify the criticality threshold.

Implementation Bin Selection (IBS) — The bin selection algorithm selects an
implementation bin for the current node, such that the timing constraints are met, while
assigning fewest possible free nodes to their high-area implementation bins. This is done
by estimating the number of free nodes that must be implemented by high-area (low-
latency) alternative in order to meet the timing constraints, for each possible
implementation bin of the current node. A bin is selected that assigns the fewest free
nodes to their high-area implementation. Tie among bins is broken with lower area
consideration.

Kalavade’s is the first approach to consider implementation alternative. However,
the notion of implementation alternatives is restricted to area-time trade-offs. Only
hardware/software mapping has been considered, task allocation has been ignored. This
is inadequate for distributed heterogeneous resource network, typical of embedded

adaptive systems.

Summary: Design Space Exploration
This section reviewed the representative research in system synthesis and design
space exploration. In critique of the reviewed research following observations can be

made:
37



The concept of the design space that has been considered in these researches is

overly restrictive. Only allocation of tasks to resources, and scheduling of tasks on

resources have been recognized as design degrees of freedom. Kalavade considers
alternative implementations of tasks; however, the implementation alternatives
considered are merely area-time trade-off alternatives. Prakash and Beck consider
resources also as one of the design degrees of freedom; however, their approach is
limited to multiplicity of resources only. None of the reviewed researches consider
algorithm alternatives, topology alternatives, and implementation alternatives that lend
design space flexibility and provide better optimization opportunities.

The design objectives of the synthesis methods reviewed are fixed and limited.

Most methods satisfy timing (precedence) constraints, while attempting to minimize a
single cost function. This is relatively inflexible as it restricts the designer from
considering trade-offs. For instance, a designer may be willing to relax the timing
constraint, if that results in a lower resource usage. Further, the designer is limited by the
set of objective functions and constraints handled by the synthesis method.

The design space exploration is limited in scalability or coverage. The exhaustive

search based methods presented in the survey have a limited scalability. They have been
able to explore effectively only in small design spaces (~10-20 nodes in task graph). In
contrast, the heuristics based and stochastic methods reviewed here report results from
exploration in much larger design spaces (~100-200 nodes). Some of these approaches
with effective heuristics have been able to find solutions not too far off from the optimal

solution. However, it is clear that these approaches do not offer complete coverage of the
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design space, and the success of the method is very closely tied with the efficacy of the

application/domain specific heuristic.

Constraint Satisfaction

Design space exploration as defined earlier is similar to a Constraint Satisfaction
Problem (CSP) [26]. This section reviews the constraint satisfaction problem, and
Summarizes some prominent constraint satisfaction algorithms.

Constraint satisfaction is an emergent software technology for declarative
description and effective solving of large, particularly combinatorial, problems especially
in the areas of planning and scheduling [25]. Recently, constraint satisfaction approaches
have found application in several research disciplines, including Artificial Intelligence,
Operations Research, Scheduling and Planning, VLSI Circuit Design, Electrical Network
Fault Location, Option Trading etc.

The main elements of a Constraint Satisfaction Problem (CSP) are:

* asetof variables X = {Xl, Xy e Xn}.
» for each variable X, a finite set D, of possible values (its domain).

* and a set of constraints.

A constraint is defined as a logical relation among several unknowns (variables),
each taking a value in a given domain. Thus, a constraint restricts the possible values that
a group of variables can simultaneously take. In this context, constraints have several
interesting properties:

* Specification of partial information: Constraints need not uniquely specify the

value of a variable.
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* Declarative: Constraints merely specify relationships among groups of variables.

They do not define a procedure to enforce those relationships.

* Additive: The order of application of constraints does not determine the end-
result.

* Non-directional: A constraint on two variables can be interpreted as a constraint
on variable X, given a constraint on variable Y and vice-versa

A solution to a CSP is an assignment of values to variables such that all the
constraints are satisfied. The size of the solution set of a CSP defines the degree of
constrained-ness of the CSP. If there are no solutions then the problem is said to be over-
constrained. If there are many solutions then the problem is said to be under-constrained
problem. The problems that fall between under-constrained and over-constrained are
classified as critically-constrained problems. The definition of critically-constrained
problems is somewhat subjective and the exact boundary between under-constrained and
critically-constrained problems is application/domain-specific.

The number of variables over which the constraint is expressed, define the -arity
of a constraint. Thus, unary constraints are those that involve just one variable. Unary
constraints can be satisfied simply by pruning the domain of the variable. Binary
constraints express a relationship between two variables. A CSP is known as a binary
CSP when all the constraints in the CSP are either unary or binary. Binary CSPs are
representative of all CSPs because any constraint of a higher -arity can be expressed as a
binary constraint [25]. Binary CSPs are represented as a constraint graph, where the

nodes represent variables and the arcs represent constraints between the variables



represented by the nodes. This is a useful representation because it enables the use of
powerful graph techniques on all CSPs.

There are four fundamentally different approaches to solving constraint
satisfaction problems:

1. Systematic search algorithms — Systematic search algorithms traverse the entire
search space formed by all assignments of values to variables and check each one
for constraint satisfaction. The systematic search algorithms are guaranteed to
find a solution if there exists one because of their exhaustive coverage of the
search space. However, their computational complexity in general, is exponential
in the number of variables. The prominent systematic search algorithms include
Generate and Test, and Backtracking [27].

2. Consistency algorithms — Consistency algorithms prune the search space by
detecting and eliminating inconsistencies at an early stage. If all the
inconsistencies have been eliminated then the pruned search space contains only
the solutions to the CSP. The consistency-enforcing algorithm makes any partial
solution of a small sub-network extensible to some surrounding network. Thus,
the potential inconsistencies are detected as soon as possible. In a binary CSP
consistency checks can be performed over nodes, arcs, and path of the constraint
graph [27].

3. Constraint Propagation — Typically, elimination of all inconsistencies is
expensive and therefore constraint propagation methods combine systematic
search methods with consistency algorithms to improve the overall computational

complexity. The performance of systematic search method is improved by
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4.

embedding consistency checks within the search procedure to prune the search
tree. Based on the degree of consistency check performed within the systematic
search procedure there are different constraint propagation algorithms. The
prominent constraint propagation algorithms include Backtracking, Forward
checking, and Look Ahead [28].

Heuristic and stochastic search — These methods rely on domain-specific
information in the form of heuristics and/or statistical behavior to guide the search
procedure. The search is not exhaustive and no completeness guarantees can be
made; however, the search is much faster and if the heuristic is effective then it
generally returns correct results. Typical heuristic search algorithms employ a
greedy local search strategy that uses a “repair” or “hill climbing” metaphor to
move towards a more complete solution. The prominent heuristic search

algorithms include Hill Climbing, Min-Conflicts, and Tabu search [28].

Summary: Constraint Satisfaction

It is possible to map and solve the design space exploration problem as a CSP as

demonstrated in [15] by Kuchcinski. However, Kuchcinski restricts the concept of
design space to resource allocation, and scheduling dimensions only. When design
spaces are composed of alternatives in a hierarchical representation there is not a clear
direct mapping to a CSP. A new kind of constraint satisfaction problem may be
envisioned in which a design module with alternatives can be considered as a CSP
variable, the domain of the variable being the set of alternatives. With this view the
solution of the CSP has to find assignment to the variable from the domain. However,

the challenge comes up when the alternatives themselves are composed in a complex
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hierarchical manner with sub-alternatives. One possibility is to flatten the representation,
enumerating the alternatives. However, this results in a combinatorial growth of the CSP.

Further, the constraint satisfaction algorithms developed in CSP research are
search algorithms that are either exhaustive, or heuristic driven, or stochastic. All of
these algorithms trade scalability with coverage in the same manner as the reviewed

design space exploration techniques.



CHAPTER III

SYSTEM MODELING

Developing a model for an industrial-strength software system prior to its
construction or renovation is as essential as having a blueprint for large building [29].
This chapter will focus on the concepts required to provide a modeling environment for
adaptive computing systems. A rigorous modeling paradigm is an essential requirement
of a modeling environment. In a synthesis methodology, the modeling paradigm is
determined primarily by the synthesis goals, the execution semantics of the target system,
the target architecture, and the constraints — operational as well as physical. The chapter
starts out by formally specifying adaptive computing systems addressed by this
dissertation. For an environment to successfully support the modeling of systems, the
environment must faithfully reproduce the domain specific concepts, relations, and
composition principle routinely used by the designers [30][31]. For that reason familiar,
well-understood modeling formalisms are employed for representation of different
aspects of an adaptive computing system. The chapter explores existing modeling
formalisms that can be extended and combined to represent adaptive computing systems.
An important notion relevant to system design and synthesis is the creation of a design
space. Most state-Of-the-art design methodologies employ modeling paradigms that
support modeling of point-designs for systems. This chapter develops the concept of
creating flexible design space by modeling design alternatives. The last section of this
chapter puts all the concepts together in a modeling paradigm used in the creation of a

Domain Specific Modeling Environment (DSME) in accordance with the Multi-Graph
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Architecture (MGA) [30]. A constraint language for expressing system constraints is

also described.

Multi-modal Structurally Adaptive Computing (MSAC) Systems

The target systems of this research are embedded real-time, adaptive signal and
image processing systems. Specifically, a mode-based structural adaptation of the system
is considered. This section elaborates upon the semantics of mode-based structural
adaptation, and concludes with the requirements for a modeling paradigm.

The target systems operate in a dynamic environment that imposes varying
functional and performance requirements on the system. It is assumed that the
operational space of the system is bounded and can be characterized into finite, discrete
modes of operation. The system reconfigures (adapts), when transitioning from a mode
of operation to another to satisfy the distinct requirements per mode of operation. Mode
transitions are triggered in response to stimulus from the environment in the form of
events. The system adaptation policies are expressed in the transitions and the transition
rules. The modes of operation, transitions, and transition rules together constitute the
operational behavior of the system.

The functional requirements in each mode of operation define the complex
signal/image processing computations that the system has to perform, and the
performance requirements specify the constraints that the computations in a given mode
must satisfy. The computations are implemented as a set of computational components,
concurrently executing over a network of heterogeneous processing elements ranging
from processors (RISC/DSP) to configurable hardware (FPGA), and communicating via

signals or dataflow. The network of heterogeneous processing elements constitutes the
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execution resource set of the system. The set of computational components, the
communication topology between the components, and the resource allocation together
define the computational structure of the system. System configuration refers to the
computational structure of the system, and the reconfiguration in transitioning from a
mode of operation to another involves changing the computational structure of the
system, hence the term mode-based structural adaptation.

From the above description four closely-coupled yet distinct aspects can be

identified that factor into the design of an MSAC system. These are:

1 The operational behavior;

2. The execution resources;

3. The computational structure per mode of operation; and
4. The constraints.

In order to design and synthesize systems, all these aspects and their interactions
must be modeled explicitly and formally. There are rich modeling formalisms for
modeling each of these aspects independently. The challenge is to augment these
modeling formalisms and combine them in an integrated modeling environment such that
design engineers working with different aspects can work with formalisms familiar to
them and yet cooperate and meaningfully exchange information with each other.

The sub-sections below formalize the different aspects listed above and identify
the modeling formalisms that will be augmented and used for modeling each of these

aspects in the modeling environment.
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Operational Behavior

Formally, the operational behavior of an MSAC system can be expressed as a 5-
tuple.

{M,E,T,TC,m;} (8)

where,
M is a finite set of modes of operation;
E is a finite set of events;

T OM xM is the set of transitions;
TC:E° xT o {true, fal se} denotes the trigger conditions on transitions, E”

being the power set of E; and

m, UM is the initial mode of operation.

The operational semantics can be described with a directed graph known as mode
transition graph. The nodes of this graph represent modes of operation of the system,
and the edges of the graph represent transitions. Edges are labeled with trigger
conditions, a Boolean expression over the events e[]E. Events are Boolean variables
that are set to signify a change in the operating environment. An event is said to occur
when the variable is set. Events may occur asynchronously, and multiple events may
occur simultaneously. At any point of time the system is in some mode of operation
MUM . A transition is enabled when the system is in a mode of operation represented
by the source node of the arc denoting the transition, and the trigger condition associated
with the transition is satisfied. The operational behavior of the system is deterministic

i.e. at any time no more than one transition is enabled simultaneously. An enabled
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transition is taken by the system and the destination of the transition becomes the current

mode of operation. Figure 1 shows a mode transition graph.

Figure 1: A mode transition graph

The operational semantics discussed above may be modeled with the Finite State
Machine (FSM) representation, a modeling formalism popular for representing
behavioral specifications. The FSM representation describes behavior in terms of states,
transitions, and events. The modes of an MSAC system map directly to the states in an
FSM representation. However, the FSM representation can be unwieldy for large
systems when the number of modes and transitions are large. Extensions have been
proposed to the FSM representation to introduce hierarchy and concurrency by Harel
[33]. In a hierarchical FSM, a state may be further refined into another FSM. Hierarchy
simplifies the visual representation and makes the FSM representation more intuitive.
Further, use of hierarchy promotes top-down design practices and varying levels of
granularity when modeling system behavior. In a concurrent FSM, multiple FSMs, each
of which is sequential may be composed concurrently and the current state of the system
is a tuple defined by the current state of the individual composing FSMs. Concurrent

FSMs may be flattened; however the state space of the flattened FSM is a cross product
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of the state spaces of the composing FSMs. Concurrency in the FSM representation is
extremely valuable in capturing fine-grained parallelism. Use of hierarchy and
concurrency together in the FSM representation can modularly capture very large state

spaces.

Execution Resources

Formally, the execution resources may be expressed as a set R of resources
(processing elements) available for system execution. For the purpose of this dissertation
this abstraction is sufficient, however, for the purpose of generating executable artifacts,
the inter-connect topology of the network is of interest. The resource network can be
described with an attributed directed graph known as resource network graph. The nodes
of this graph represent the resources, while the edges of this graph represent a physical
communication channel between the resources. Communication channels are
unidirectional by default; a bi-directional channel is indicated with two edges in opposite

directions between the communicating nodes. Figure 2 depicts a resource network graph.

Figure 2: A simple network of resources
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Architecture Flow Diagrams (AFD) developed by Hatley and Pirbhai form a
suitable basis for modeling the physical architecture of a system [34]. Architecture Flow
diagrams is a block diagrammatic representation consisting of Architecture Modules, and
Information Flow Channels. An architecture module may be a physical module i.e. a
processing element (DSP, RISC, FPGA, ASIC), a storage element (Memory), a sensor or
an actuator element (AD/DA). An architecture module may also be a composite module
that can be used to create hierarchical architecture descriptions. An information flow
channel represents a physical communication channel between the architecture modules.
This basically captures the as-built topology of the target architecture, along with
parametric information about processing capacities, communication bandwidths, and

storage capacities.

Computational Structure

Formally, the computational structure of the system may be expressed as a 3-tuple
{P.F.A )

where,

P is the set of computational processes (components);

F O PxP is the set of dataflow between processes; and

A:P - R is the resource allocation. Each process is assigned to a processing
element.

The semantics of the computational structure can be described with an attributed
directed graph known as process graph [36]. The nodes of this graph are computational

processes. The edges of this graph represent communication (dataflow) between
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processes. Conceptually the processes operate continuously and concurrently
transforming infinite sequence of input data to infinite sequence of output data. The
processes communicate via exchange of data tokens. The communication is
asynchronous and the tokens are buffered in FIFO queues. The processes in the process
graph are distributed and executed over the set of resources R. Owing to the
heterogeneity of the resources, some processes may be implemented as hardware
functions and others may be implemented as software functions. When implementing the
processes as software functions executing on a sequential processor, the concurrency is of
a conceptual nature and in reality the processes are scheduled for execution periodically
by a runtime infrastructure. The process is scheduled for execution when all the inputs to
the process are available. An execution of the process consumes data tokens on the

inputs and produces data tokens on the outputs. Figure 3 shows a process graph.

@)
®)

2 &

Figure 3: A simple process graph

The above semantics can be captured as a Dataflow Model, a modeling
formalism, particularly suitable for modeling image and signal processing computations
[36]. The basic dataflow model does not support hierarchical representation. However,

many extensions have been proposed that introduce hierarchy in the dataflow model [37].
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In these extensions a dataflow block may be refined to contain another dataflow. The
basic dataflow execution semantics have been extended to hierarchical dataflow.

The basic dataflow model captures a single solution for implementing a particular
set of functional requirements. As emphasized earlier, however, point solutions obtained
by suppressing alternatives lead to sub-optimal and inflexible designs. A need for
capturing design spaces, by modeling alternatives explicitly was demonstrated earlier.
This research extends the dataflow representation to enable representation of design
alternatives. With this extension a dataflow block may be decomposed in two different
ways. The first type of decomposition is a hierarchical decomposition in which a
dataflow block can contain a dataflow model. The second type of decomposition is an
orthogonal decomposition, in which a dataflow block contains more than one dataflow
block as alternatives. In this case the container block defines only the interface of the
block and is devoid of any implementation details. The dataflow blocks contained within
the container define different implementations of the interface specifications. With these
extensions i.e. hierarchy and alternatives, a dataflow model can modularly capture a large

number of different computational structures together to form a configuration space.

Constraints

Constraints play two important roles in this research. Primarily, constraints are
used to: a) establish linkages and describe interactions between the elements of the
different aspects of an MSAC system viz. modes of operation, computational processes,
and resources; and b) express restrictions over the composite properties of a

computational structure.
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The different aspects of an MSAC system are closely coupled together, and there
are complex interactions that must be represented and enforced. For example, the
functional and performance requirements are driven by the mode of operation, and hence
the selection of appropriate computational alternatives, and the allocation of resources to
computational processes is typically mode dependent. An English language expression

of such a constraint would be: “when current mode of operation is mode X, then
select alternative A of functionality F, and allocate resource R to

alternative A”. Typically there are consistency and typing restrictions when

composing different alternatives of different functionality e.g. “alternative Al of
functionality F1 must be composed with alternative A2 of functionality

F2 and a single resource R1 must be allocated to both Al and A2 . These
types of constraints take the form of a relationship between different elements. Complex
relationships can be created by combining primitive relationships with first order logic
connectives.

The second form of constraints express restrictions over the composite properties
of a computational structure. A common example of such a constraint would be a
maximum limit on end-to-end latency of a complex computational structure, or a bound
on the power consumption of a computational structure. These are composite properties,
as they are not inherent to the computational structure, but are composed from the
inherent properties of the basic components of the computational structure. For example,
the end-to-end latency of a complex computational structure is the sum of latencies of the
basic building blocks of the computational structure. This form of constraint restricts the
selection of alternatives and their composition. Typically, the two forms of constraints

are combined together.
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Object Constraints Language (OCL), a part of the Universal Modeling Language
(UML) suite, forms a good basis for expressing the type of constraints shown above [38].
OCL is a declarative language, typically used in object modeling to specify invariants
over objects and object properties, pre- and post- conditions on operations, and as a
navigation language. This dissertation extends a subset of OCL to express the type of
constraints referred to above. The extended constraint language is specified later in this

chapter.

The different aspects formalized above can be put together to form a formal

definition of an MSAC system. Formally, an MSAC system can be defined as an 8-tuple:

D ={M,E,T,TC,m,,R,C,MC} (10)
where,
D denotes an adaptive computing system;
C is a set of system configurations (computational structures) specified above;
and

MC:M - C is the mapping function that associates each mode of operation
with a configuration. A mode transition in the operational behavior implies a system

reconfiguration.

This concludes the specification of the adaptive computing systems addressed by
this research. The next section describes a modeling paradigm defined for the creation of

a modeling environment.



Modeling Paradiem

The Multi Graph Architecture (MGA) provides a unified software architecture
and framework for creating a Model Integrated Program Synthesis (MIPS) environment
[32][30]. The core components of the MGA are a customizable Graphical Model Editor
for creation of multi-aspect domain-specific models, Model Databases for storage of the
created models, and a Model Interpretation technology that allows creation of domain-
specific, application-specific model interpreters for transformation of models into
executable/analyzable artifacts. The details of the MGA are presented in Appendix A.
The created environment is domain specific and includes tools and functionality for
creation and storage of system models, and generation of executable/analyzable artifacts
from system models.

The customization and creation of a domain specific MIPS environment involves
a careful analysis of the needs of the domain engineers, the components and the
composition principles used in the domain, and the target applications. For an
environment to successfully support the creation of systems, the environment must
faithfully reproduce the concepts employed by design engineers. The previous section
addressed the requirements of an adaptive computing system design environment and
identified the modeling formalisms that must be employed for modeling and designing
adaptive computing systems. This section addresses the instantiation of the modeling
concepts and formalisms in an MGA based MIPS environment.

In the MGA technology, the modeling concepts to be instantiated in the MIPS
environment are specified in a meta-modeling language. A metamodel of the modeling
paradigm is constructed that specifies the syntax, static semantics, and the presentation

semantics of the domain specific modeling paradigm. The metamodel captures
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information about the objects that are needed to represent the system information and the

inter-relationship

between different objects as a UML class diagram. The meta-modeling

language also provides for the specification of visual presentation of the objects in the

MGA graphical model editor.

The MGA based Adaptive Computing System design environment divides the

modeling process into four categories in accordance with the aspects of an MSAC system

identified earlier:;

a

Operational Behavioral Modeling — In this first category, the
operational behavior of an MSAC system is modeled. The designer can
specify the operating modes of the system M, the legal transitions
between modes T, the conditions for transition TC, and system events
E in an extended Finite State Machine formalism. The modeling
category also enables association of a mode of operation with a
computational structure.

Computational Structure Modeling — In this category, the computational
structures set C of the system is modeled. Multiple dataflow models
may be created, each customized for a particular mode. Alternately, a
single dataflow model may encapsulate multiple structures using
aternatives.

Execution Resource Modeling — In this category, the set of resources R
available for system execution are modeled. Along with the physical
processors, configurable hardware (FPGA), 1/0, memory devices, the

interconnection topology is also modeled.
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d. Constraint Modeling — A textual constraint language has been provided
that allows for expression of interactions and linkages between
modeling objects in same or different categories, and expression of
performance constraint over computations. The constraint language is
derived from OCL as specified earlier.

The metamodel of these modeling categories, and the constraint language is

described below.

Operational Behavior Modeling

Behavioral models capture the operational behavior of the system. As identified
earlier a Discrete Finite State Machine representation, extended with hierarchy and
concurrency, is selected for modeling the dynamic behavior of the system. This
representation has been selected due to its scalability, universal acceptability, and ease-
of-use in modeling. Figure 4 illustrates the behavior modeling aspect of the metamodel
of the modeling paradigm. The objects used for creating a hierarchical, parallel, finite
state machine representation and their inter-relationships are expressed as a UML class
diagram in this figure.

The primary object in a finite state machine representation is a state. Sates define
operational modes of the system. Hierarchy is enabled in the representation by allowing
States to contain other States. Attribute of this object defines the decomposition of the
state. The State may be an AND state, when the state machine contained within the State
is a concurrent state machine. The State is an OR state, when the state machine contained
within the State is a sequential state machine. If the State does not contain child States

then it is specified as a LEAF state. In MGA there are two kinds of modeling objects,
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models and atoms. Models are compound objects that may contain other objects. Atoms
are atomic objects that have no internal decomposition. States are complex object with
an internal decomposition and hence States are mapped to MGA models.

In addition to states in a finite state machine representation, transitions define the
potential conditions required for the system to change states and the destination state.
Transition objects in the modeling environment are used to model a transition from one
mode to another. The attributes of the transition object define the trigger and the guard
condition. The trigger and guard are Boolean expressions. When these Boolean
expressions are satisfied the transition is enabled and mode change accompanied with
system reconfiguration can take place. Transitions are mapped to MGA atom, as they
have no internal decomposition. To denote a transition between two States two
connections have to be made, one from the source State to a Transition object, and
another from the Transition object to the destination State. Unfortunately MGA does not
support direct connect between MGA models. Connection in MGA can be made only
between atoms or ports. Ports are atomic object contained in a model and used as a link
part. Thus, in order to enable transition connections between States, port objects have to
be inserted in the State. The InputTransition object and the OutputTransition object have
been provided for this reason. Sometimes, transition between two States at different
levels of the hierarchy has to be specified. This is enabled in the MGA by referencing the
OutputTransition object of source State or the InputTransition object of the destination
State. Reference is an MGA modeling artifact that is used to create a pointer-like link to
models or atomic objects. In the metamodel a reference is represented as an association

class. In the FSM formalism, the initial state is denoted by drawing an arrow without
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source to a state. In the MGA technology connections without a source cannot be
specified. Therefore, a connection is made from an InitialTransition object to an
InputTransition port of a State to denote the initial state.

In addition to states and transitions, the FSM representation includes events.
These can be directly sampled external signals or complex computational results. In the
modeling paradigm Event objects capture the event variables. Events are mapped to
MGA atoms.

The computation to be executed in a mode of operation is defined by associating a
mode with a computational structure. In the modeling environment this association is
expressed by referencing a processing object (described later) in a State. The references
allow a single computational structure to be applied to any number of modes, or allow all
modes to have separate computational structures.

In addition to the above objects a State may also contain Constraint objects. A
constraint object is an atomic object with a textual attribute that is used to specify a

constraint expression in the constraint language specified later.

59



-src 1 |

TransitionObjects

TransitionConnection

-dst

Transition

-Trigger : String
-Guard : String

Initial Transition Constraint

-Expression : String

R
-transitions 0..* -nitial 0.1 -cgnstraints 0.*
InputTransReference EventReference
N /
\\ /
N /
N /
\\ /
. . /
0..1 -inputTransition _localEvents
\\
\\
InputTransition N Event
-inputTransRef
A 1 N—]
State
- -4 -Description : String -€
-outputTransRef L Decomposition : Intege L
OutputTransition A StateReference|
< \
0..*// 0.* -stateHURefs*
g 1 | *-states 0.*
P .
7
// \
-outputTransition 1 - -stateHookvp 0.1
Ve \
// \\
7 \
7
OutputTransReference - -7 StateHUReference
el -procRef | 0..1
ProcessingReference

ProcessingObjects
-Description : String

Figure 4: Metamodel of operational behavior modeling
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Computational Structure Modeling

This modeling category is used to describe the computational structure. A
dataflow representation with extensions for hierarchy and alternatives has been selected
for modeling computational structure. This representation describes computations in
terms of computational processes and their data interactions. To manage system
complexity, the concept of hierarchy is used to structure computation definition. The
representation is extended to enable capturing explicit design alternatives. This extension
allows a designer to represent extremely large configuration spaces in a highly modular
and scalable manner. Figure 5 illustrates the computational structure modeling aspect of
the metamodel of the modeling paradigm. The different objects and their inter-
relationship are described below.

The computational structure is modeled with the following classes of objects:
Compounds, Primitives, and Templates. These objects represent a computational process
in a dataflow representation. DataPorts are used to define the interface of these
processes, through which the processes exchange information. DataPorts are specialized
into InputPorts that represent inputs to a computation, or QutputPorts that represent the
outputs from a computation. The attributes of the DataPort objects characterize the data
that can be exchanged with the component. Attributes specify data type, data rate, data

format, and data size.
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Figure 5: Metamodel of computational structure modeling

A Primitive is a basic element representing the lowest level of processing that is

modeled. A Primitive maps directly to a processing function that will be implemented as
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either a hardware macro or a software function. Primitive objects are annotated with
attributes. These attributes capture measured performance, resource (memory/area)
requirements, and other user-defined properties. Specifically, Latency attribute captures
the pre-determined latency of the primitive, Area attribute captures the gate count when
the primitive is a hardware macro, and code size when the primitive is a software module,
and Throughput attribute captures the pre-computed data processing throughput of the
component. The ScriptName and FileName store the name and the location of the
module, and the ResourceType attribute specifies the implementation technology of the
primitive i.e. RISC CPU, or DSP, or FPGA, or ASIC, etc.

A Compound is a composite object that may contain Primitives, other
Compounds, and/or Templates. These objects can be connected within the compound to
define the dataflow structure. Compounds provide the hierarchy in the structural
description that is necessary for managing the complexity of large designs.

A design alternative is used in the modeling process to allow the specification of
multiple algorithm/architecture alternatives for a given process. The Template object is
used to capture the design alternatives. Templates have a well defined interface
represented with the Ports and can contain one or more alternative. These alternatives
can be either Compounds or Templates or Primitives, thus allowing hybrid hierarchies of
alternatives and subsystems. When alternatives are used, the algorithm structural models
describe a huge number of potential design implementations. The selection of
appropriate alternative for design implementation is left to the design space exploration

and synthesis tool.
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When implementing a design a computation must be mapped to a physical
resource. The designer can provide the mapping specifications by referencing a resource
within a processing object. It must be noted that mapping specifications are not
mandatory. A designer may leave these unspecified, in which case the resource
allocation is considered another dimension of the design space flexibility and is resolved
by the design space exploration tool.

The processing objects may also contain Constraint objects to express user-

defined constraints in accordance with the constraint language specifications.

Execution Resource Modeling

This category models the resources available for the system execution. The
resources are modeled in terms of physical hardware components and the physical
connections among them. Figure 6 shows the resource modeling aspect of the metamodel
of the modeling paradigm.

The top-level object in a Resource model is a Network of components. A
Network may contain: 1) General-purpose processor elements (such as DSPs or standard
RISC/CISC processors) represented by a Processor object; 2) Programmable logic
components (such as FPGAs) represented by a FPGA object; 3) Dedicated hardware
components for fixed functions (ASICs) represented by an ASIC object; 4) Memory
devices represented by a Memory object; 5) Sensors that are hardware acquisition devices
represented by a Sensor object; and 6) Actuators for hardware effectation interface
represented by an Actuator object. Networks have a hierarchical decomposition i.e.

Networks may contain other Networks.
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-PortNumber : Integer PhysicalConnection
-Protocol : Integer
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-resources Resource -constraints Constraint
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Figure 6: Metamodel of execution resource modeling

Networks and components have ports. These are represented with a PhysicalPort
object in the modeling environment. A PhysicalPort represents a physical
communication port that can be attached to a communication channel. The attributes of
the PhysicalPort object define the specifics of the communication protocol associated
with the communication channel. Communication links between components are

represented by connecting the PhysicalPorts of components.
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The attributes of the components capture the inherent performance attribute of the
processing element. For example, Processor attributes include processor type, clock
speed, memory and other resources; FPGA attributes include FPGA type, clock speed,
and the programmable gate (logic block) count; Memory attributes include memory size,
and memory width. The resource models capture the “as-built” topology of the network

of resources.

Constraint Modeling

The Constraint objects mentioned earlier have a text attribute for specification of
constraints. Constraints are specified in a language that is an extended subset of OCL.
The specified constraint operates in the context of the object that contains the Constraint
object. A constraint expression can refer to the context object and to other objects
associated with the context object and their properties. The context object can be referred
to by the OCL keyword self. Associated objects can be referred to by navigation, an
OCL concept. Role names are used to navigate and access associated objects. For
example, the expression self.parent evaluates to the parent object of the context
object, similarly self.children evaluates to a set of children object of the context
object. The following associations are enabled for navigation in the derived constraint
language:

* parent —evaluates to the parent of the context object in the hierarchy.
» children —evaluates to a set of children objects of the context object in the object
hierarchy. When invoked with the name of a child as an argument the expression

evaluates to a specific child object e.g. self.children (“childx”) evaluates
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to an object with the name childX contained in the context object. The modeling
environment enforces unique names for all objects in a single context.
* project —evaluates to a project object that is the root container of all the objects in
the system model.
* resources—evaluates to a set of resource objects contained in the system model.
* modes —evaluates to a set of the operational modes of the system.
* processes —evaluates to a set of the processing objects of the system
A constraint expression can either express direct relation between the objects by
using relational or logical operators, or express performance constraints by specifying
bounds over object properties. Object properties can be referred to in a manner similar to
associations. The following property constructs are enabled in the derived constraint
language for expression of constraints:
» |atency —evaluates to the latency attribute of a processing object
* area—evaluates to the area attribute of a processing object
* power —evaluates to the power consumption of a processing object
* implementedBy — evaluates to an alternative of a template processing object
selected for implementation
* assignedTo — evaluates to the resource that a processing object is assigned or
mapped to.
There are four basic flavors of design constraints that can be expressed in the
modeling environment using the derived constraint language: (a) compositional

constraints, (b) resource constraints, (c) performance constraints, and (d) operational
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constraints. More complex constraints can be expressed by combining these basic

categories of constraint with first order logic connectives.

Compositional constraints

Compositional constraints are logic expressions that restrict the composition of
alternative computational blocks. They express relationships between alternative
implementations of different components. These are essentially compatibility directives
and are similar to the type equivalence specifications of a type system. Therefore,
compositional constraints are also referred to as typing constraints. The compositional
constraints are specified with the implementedBy property of a template object. For

example,

constraint compositional () {
(self.children(“FFT"). implementedBy =
self.children (“FFT”) .children (“FFT_HW"))
implies

(self.children("1FFT"). implementedBy =
self.children(“lI FFT").children(“lI FFT_HW))

}

expresses a compatibility directive between two alternative processing blocks FFT and
| FFT. The compositional constraint can also take an imperative form, when the
implementedBy property of a template object is assigned to a particular implementation
alternative e.g. {self.implementedBy = self.children (“FFT_HwW”)} (the constraint

is expressed in context of the FFT template object).
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Resource constraints

Resource constraints relate computational blocks to resources. These are
basically assignment directives that assign a resource to a processing object. The
resource constraints are specified with the assignedTo property of a processing object.
For example, {self.assignedTo = project.resources(“FPGA_1")} is an imperative
resource constraint. More complex resource constraints may be formed by combining

resource and compositional constraints e.g.

constraint resource () {

((self.children (“FFT”) .implementedBy =
self.children(“FFT").children(“FFT_HW))

i mplies

self.children (“IFFT”) .implementedBy =

self.children(“lI FFT").children(“l FFT_HW))

and

(self.children("FFT"). assignedTo = project.resources (“FPGA_1"))
and

(self.children(“1FFT"). assi gnedTo = project.resources (“FPGA_2"))

}

Performance constraints

Performance constraints express non-functional requirements that the synthesized
system must obey. These are expressed as bounds over the composite properties of
computational blocks. The following performance attributes have been considered for
constraint specification.

0 Timing — expresses end-to-end latency constraints, specified over the
entire system, or may be specified over a subsystem e.g. (self.latency
< 20).

0 Area — expresses bound over the area of a system or a subsystem
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(self.area < 105). The area is defined for a hardware component to be
the logic block count and for a software component to be the code size.

0 Power — expresses bound over the maximum power consumption of a
system or a subsystem e.g. (sel f.children(“Miltiplier_32").power

< 100).

Operational constraints

These constraints express conditions relating design configurations to operational
modes. Mode-specific design requirements, composition preferences and allocation
restrictions can be specified with these constraints. The previously specified constraints

are applicable in all modes of operation. The operational constraints conditionalize these

constraints ~with a  mode of operation e.g. { (systemMode () =
project.modes (“"TerminalTracking”)) implies (self.latency < 10)}.
Conclusions

This chapter reviewed the key concepts required in modeling multi-model
structurally adaptive computing systems and demonstrated an instantiation of these
concepts in an MGA based Model-Integrated Design Environment.  Specifically,
modeling formalisms for modeling the operational behavior, modeling the computational
structure, and modeling the resources were reviewed. An instantiation of these
formalisms, extended to the specific needs of MSAC systems, in the MGA based Model
Integrated Environment was specified as a metamodel. A constraint language extended
from a subset of OCL has been presented for the expression of user-defined operational

and performance constraints.
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An important contribution of this dissertation is in modeling of design spaces by
explicit modeling of alternatives. The dataflow modeling formalism was extended with a
template object, that defines an interface along with multiple potential implementations
of a functionality. Templates can be used to capture algorithm alternatives, architectural
alternatives, and technology alternatives. With templates it is possible to create
application designs that are not specifically tied to any particular architecture, or
technology, thus enabling the issue of application and technology evolution, at least from
a system integration perspective. The design spaces created by capturing
characteristically different design alternatives, gives the environment and the designer,
the freedom to explore and search for the “best” design that satisfies a given set of

constraints. A tool for exploring these design spaces is discussed in the next chapter.
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CHAPTER IV

CONSTRAINT BASED DESIGN SPACE EXPLORATION

The objective of design space exploration for system synthesis is to find a single
design, or a set of designs from the design space that satisfies the system constraints and
maximizes (minimizes) an objective (cost) function. The exact exploration strategy
depends upon the synthesis objectives and the nature of the design space in terms of the
dimensionality of the space, continuity of the space, and other defining characteristics of
the design space. In general, the design space exploration methods can be primarily
grouped into two categories: a) exhaustive search based, and b) heuristics based. Some
representative approaches from each category were reviewed in Chapter 2. It was
observed that when design spaces are large none of the reviewed methods is effective.

Metaphorically, searching for a single design in a large design space is akin to the
proverbial “needle in a hay stack”, and the complexity of search in such design spaces is
dominated by the size of the design space. This dissertation develops a novel approach to
the design space exploration in large design spaces. There are two core concepts in the
developed approach:

a) Progressive pruning of the design space by constraint satisfaction, and

b) Symbolic methods for constraint satisfaction

The main idea behind progressive pruning is to avoid a single stage search in a
large design space. Instead, the design space is iteratively pruned through the application
of constraints. The granularity of the constraints is progressively improved. In the early

stages of design space pruning, when the design space is extremely large, coarse-
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granularity constraints are applied. In subsequent stages, when the design space is much
smaller fine-granularity constraints are applied. This technique is based on the
assumption that coarse-granularity constraints can be easily evaluated and a fast
constraint satisfaction procedure can be developed for satisfying coarse constraints. The
fine-granularity constraints, on the other hand have to be evaluated by a more intensive
constraint satisfaction procedure such as performance simulation or embedded testing.

Figure 7 illustrates the idea of design space exploration by progressive pruning.

i Symbolic
~10%° Options p ?oglcal N g 0arse ) Constraint
ertormance Constraints Satisfaction
i Fine Performance High-Level
100-1000 Options Constraints Simulation
. Final Performance Low-_LeveI
5-10 Options E<timati (Device)
imation Simulation
, Embedded Physical
1-2 Options Teti ng M easurements

Figure 7: Progressive design space pruning

While a single coarse-granularity constraint may be easy to evaluate against a

single design, verifying all the designs against a coarse-granularity constraint in a large
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design space can still be highly compute-intensive. This complexity is inherent due to
the enumeration of an exponentially large design space. To overcome this challenge a
symbolic constraint satisfaction method was developed. The highlight of the symbolic
constraint satisfaction method is the ability to apply constraints to the entire design space
without enumerating individual designs. Symbolic analysis methods represent the
problem domain implicitly as mathematical formulae and the operations over the domain
are performed by symbolic manipulation of mathematical formulae. Recently, symbolic
analysis methods based on Ordered Binary Decision Diagrams (OBDD) [39][40] have
found much success in solving a large number of problems in digital system design, finite
state system analysis, combinatorial optimization, artificial intelligence, and
mathematical logic [41]. These symbolic analysis methods employ Boolean algebra as
the underlying mathematical formalism. The symbolic constraint satisfaction method
developed in this dissertation is based on OBDDs. OBDDs are basically a data structure
for symbolically representing Boolean functions. A powerful suite of graph algorithms
accompanies the OBDD data structure, and provides for fast symbolic manipulation of
Boolean functions. OBDDs are further described in Appendix B.

The rest of this chapter describes in detail the symbolic constraint satisfaction
method and a design space exploration tool that enables interactive and iterative design

space exploration through symbolic constraint satisfaction.

Symbolic Constraint Satisfaction

The symbolic constraint satisfaction problem considered here is a finite set
manipulation problem. The design space for MSAC systems, as can be seen from the

definition in Chapter 3, is a finite set that is primarily a cross product of mode space and
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configuration space. The mode space and configuration space in turn are finite sets
composed of their respective constituent elements. Constraints are relations in this
product space. Constraint satisfaction is restriction of the design space with the
constraints. This can be summarized as follows:

* M xC —design space

. O(m, C) — constraints

-« (Mxc), ={(mc)mDOM,cOC,(mc)00(m,c)} - constraint satisfaction

Solving this finite set manipulation problem symbolically requires the solution of

two key problems:

1. Symbolic representation of design space, and

2. Symbolic representation of design constraints.

Symbolic Design Space Representation

e e e e
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Figure 8: Symbolic Constraint Satisfaction

75



The symbolic constraint satisfaction is simply the logical conjunction of the
symbolic representation of design space with the symbolic representation of design
constraints. Figure 8 illustrates symbolic constraint satisfaction. The next sections
describe the symbolic representation of design space, and symbolic representation of

constraints.

Symbolic Representation of Design Space

The key to exploit the power of symbolic Boolean manipulation is to express a
problem in a form where all of the objects are represented as Boolean functions [40]. By
introducing a binary encoding of the elements in a finite set all operations involving the
set and its subsets can be represented as Boolean functions. Consider a finite setD. An

element d[JD can be uniquely encoded as a vector of N binary values, where

n :|_|092|D|-|. The encoding is denoted by a function 0:D - {0,1}”, mapping each

element of D to a distinct n-bit binary vector. The function f(d)= |_| v, 0o, (d),

I<i<n

where Vv, :1<i < n are Boolean variables, o,(d) is the i-th bit in the encoding, and the

product operator denotes logical conjunction, represents the element d [JD symbolically.

The set D may be symbolically represented as U f(d), where the union operator
0dOD

denotes logical disjunction. This forms the general approach towards representing finite
sets symbolically. A fixed-length encoding scheme has been used above to encode the
elements of the set. However, when sets are hierarchically composed a variable length

prefix-based encoding scheme may be preferable.
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In order to represent the design space symbolically, the elements of the design
space had to be encoded as binary vectors. An encoding scheme was developed after a
careful analysis of the problem domain, taking into consideration the hierarchical
structure of the design space. The choice of encoding scheme has a strong impact on the
scalability of the symbolic manipulation algorithms [40][41]. The design space as
mentioned earlier is a product of the mode space and the configuration space. The two
spaces can be encoded separately and represented symbolically and the design space can
be symbolically composed. The following sections describe the encoding and symbolic

representation of the two spaces.

Encoding and symbolic representation of the mode space

The mode space captures the behavior of the system and is constructed as a
Hierarchical Parallel Finite State Machine (HPFSM) as described in Chapter 3. The
structure of a HPFSM can be shown as an AND-OR-LEAF tree. In this tree the leaf
nodes represent the LEAF-states of the system and the intermediate nodes represent the
AND-states and OR-states. The distinction between an AND-state and an OR-state is
made by using visually different branching shapes. Figure 9 below depicts a HPFSM and
its structure in an AND-OR-LEAF tree representation.

Unlike a finite state machine, where a system is in a single state at any given point
of time, the current state of the system in a HPFSM is a configuration of states that
includes exactly one sub-state of an OR-state and all sub-states of an AND-state. The
state configuration should not be confused with the system configurations in the
configuration space. A state configuration is essentially a well-formed path in the AND-

OR-LEAF tree representation of the state machine from the root to leaf (leaves) in the
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tree. A well-formed path originates from the root and consists of a unique trail branching
from an OR-node and multiple simultaneous trails branching from an AND-node. For
example, {S, S2, S21, S211, S22, S23, S232} is a well-formed path, and so is {S, S1,
S11} in Figure 9 shown above. The basic goal of the encoding scheme is to assign a
unique encoding value to each configuration, which translates to a unique encoding value

for each well-formed path in the tree. A similar approach is used for encoding HPFSM in

[42]

(s N

S1

S23 (231
j

Figure 9: An HPFSM and its AND-OR-LEAF tree representation

This is accomplished by assigning an encoding value to a node that uniquely
identifies the choices made in traversing a well-formed path from the root to the node.
Since the path to a node contains the path to its parent, encoding of every node is prefixed

by its parent’s encoding. When the parent of a node is an OR-node then |_Iog2 n—|

additional bits are required to distinguish the node from its n—1 siblings. When the

parent of a node is an AND-node no such distinction is required as a well-formed path
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contains the node along with all its siblings. However, it must be noted that a well-
formed path splits into multiple trails from an AND-node, and different group of bits are
required to identify choices made when traversing each of these trails independently.

A notion of orthogonality may be defined here. Two nodes in the tree are said to
be orthogonal to each other when the nearest common ancestor is an OR-node, otherwise
the nodes are said to be non-orthogonal. For example, S11 and S21 in Figure 9 are
orthogonal. Orthogonal nodes do not exist together in any well-formed path and
therefore they may share/reuse the same group of bits in the binary vector for encoding
(with different values). Non-orthogonal nodes may not share the same bits.

The total number of bits used when nodes are encoded as above can be

determined as follows. Let totalm(d) be the number of bits required to encode a node

d and the sub-tree rooted at it, and let )((d)denote the children of node d. Then,

0 LEAF
total ,(d) =1 > total, (x) AND (12)
xCx(d)
max total, (x)) +10g, ()] OR
xx(d)

and,
N,, =total (0,,) (12.
where, N, is the total number of bits required for encoding the mode space, and [ is

the root state in the HPFSM. Figure 10 shows the AND-OR-LEAF tree of Figure 9
annotated with encoding values. An underscore in the encoding value denotes that the

particular bit is a ‘don’t care’ for the node.
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Figure 10: Encoding of the HPFSM of Figure 9

The mode space when represented as an HPFSM can be defined as the set of all
state configurations in the HPFSM. This set can be composed recursively in the

following manner: Let, SateConfigs(d) be the set of all configurations that include a

state d, path(d) be the path to state d in the tree, and x(d) be the set of children of d

Then,
{path(d)} LEAF
StateConfigs(d) = Xﬂ StateConfigs(x) AND (13)
x(d)
|JStateConfigs(x) OR
xx(d)

and SateConfigs([J,,) is the set of all configurations that include the root state, which in

fact is the mode space.

The symbolic representation of the mode space represents the set

SateConfi gS(D m) as a Boolean function. Given the binary encoding for the nodes this

set may be composed symbolically using N, Boolean variables. Let, StateConfigs(d)
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be the Boolean function denoting the set StateConfigs(d), o(d) denote the encoding of
d with o,(d)0{01x} being the i -th bit in the encoding, and x denoting don’ care, and

m :1<i < N, be Boolean variables. Then,

mOo,(d) LEAF
{1<isNyfn{o; (d)2x}
SateConfigs(d) =3 Xﬂ SateConfigs(x) AND (14)
x(d)
| JStateConfigs(x) OR

LXOx(d)

The Boolean variables m are referred to as mode variables in the later sections. The

Boolean function StateConfi gS(D m) is the symbolical representation of the mode space.

Encoding and symbolically representing the configuration space

The configuration space captures the computational structure and is constructed as
a hierarchical dataflow graph with alternatives, as described in Chapter 3. The dataflow
is associated with a network of resources in defining the computational structure. The
hierarchical dataflow with alternatives together with the resource network can define
modularly a very large configuration space. The scalability of this representation in
capturing large design space can be estimated through the following expressions. With a

alternatives per template, and n templates per compound, composed in a m-level deep
hierarchy this representation can define: a‘" design configurations, where

k =(km_1+1)><n, and k;, =n, using just (a>< n)m primitives. As an example, with

m

nN=4, a=3, and m=3, a total of 1728 primitives can represent 3¥ design

configurations!
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The structure of the hierarchical dataflow with alternatives is similar to the
structure of the HPFSM and can be represented as an AND-OR-LEAF tree. A compound
in the hierarchical dataflow implies inclusion of all its children in a configuration and is
therefore represented as an AND-node. The template component on the other hand
implies selection of exactly one of its children in a configuration and is therefore
represented as an OR-node. The primitive component has no internal decomposition and
is represented as a LEAF-node. Figure 11 shows a hierarchical dataflow with alternatives

and its equivalent AND-OR-LEAF tree representation.

P11 _l_, P21 || P23 | @
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Figure 11: Hierarchical dataflow and its AND-OR-LEAF tree representation

The encoding of the configuration space basically follows the same argument as
forwarded for the encoding of the mode space. However, a configuration in the
configuration space in addition to being a well-formed path in the tree representation of
the dataflow also includes resource assignments of primitives. The encoding scheme
therefore must uniquely identify the resource assignments. Moreover, each primitive is

characterized with performance attributes such as latency, area, power, cost, etc.
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Therefore, the encoding scheme must also include performance attributes in order to
uniquely characterize a configuration. The encoding of the configuration space thus has
three parts: a) structure (well-formed paths), b) resource assignments, and c) performance
attributes. The following sections elaborate upon these individually.

a Encoding the structure — This encoding is exactly the same as that of the mode

space. The total number of bits required to encode the structure are

N, =total S(D S) , where [ is the root of the dataflow hierarchy, and the function

total , is defined similar to function total ,, above i.e.

(o LEAF

total (d) =4 > total (x) AND (15)
xx(d)
| maxtotal, () +[log, |/(d) | OR

Figure 12 shows the AND-OR-LEAF tree of Figure 11 annotated with the

encoding values under the structure encoding.

Bobooo e

Figure 12: AND-OR-LEAF tree of Figure 11 annotated with structure encoding
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b. Encoding the resource assignments — Let, R be the set of resources available for

system execution, and y(p) be the set of resources that can be potentially
assigned to a primitive p, then y( p) UR and y(p) # @. In order to uniquely
identify the resource assignment of a primitive [I ng|y( p)|—| bits are required for

each primitive. The total number of bits required to encode the resource

assignments are N, =total, (D S), where the function total, (d) is as follows:

-

[log,|/(d)]  LEAF

total, (d)=4 >'total, (x) AND (16)
xx(d)
Xrg){e?zj()(totalr(x)) OR

It must be noted here that by using exactly [Iogz|y(p)|—|-bits to encode the

potential resource set of a primitive, the encoding value of a resource is made

specific to the primitive, and may be different for different primitives. In contrast

by using [I OgZ|R|—| -bits for encoding the potential resource set the encoding value

of a resource can be made unique over all primitives. The trade-off is in the
number of bits used against the encoding effort. Figure 13 shows the AND-OR-
LEAF tree of Figure 11 partially annotated with the encoding of the resource
assignment of the primitives. The boxes represent resources, and the dashed

arrows indicate potential assignments.
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Figure 13: AND-OR-LEAF tree of Figure 11 annotated with resource encoding

C. Encoding the performance attributes — Various attributes characterize the

performance of a processing primitive. These attributes assume numeric values
from a finite domain. The domains may be continuous; however, for the purpose
of encoding the domains must be discretized. By choosing a large number of
quantization levels, quantization errors may be minimized. The tradeoff is in the
number of bits required for encoding the domain. For the purpose of illustration
only latency attributes are being considered, however the encoding may be
similarly extended for other performance attributes. When the domain of latency

attributes is quantized into L levels, then |_I 09, L-| -size binary vector is required

to encode the latency attribute of each primitive. The total number of binary

vectors required for encoding the latency attributes are N . = Vec (D S), where

vec, (d) is defined as follows:
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(1 LEAF

vec (d)=1 Y vec(x) AND (17)
xx(d)
max(vec; (x])) OR

L

Note that the orthogonal nodes share the same binary vector for encoding their
latency attributes. The total number of bits required for encoding the latency
attributes is the number of binary vector times the size of each vector i.e.

N, = N X (|_ log, (L XN, o )—D Note that the size of the bit vectors representing

latency attributes is increased to prevent overflow when adding the latency

attributes. At most N attributes are added.

Thus, the total number of bits required to completely encode the configuration
space are N, = N+ N, +N,. N, depends on the structure of the hierarchical dataflow
representation and is generally small; N, depends primarily on the number of resources
and is generally small; N, however depends primarily on the domain size of the latency
attribute and can be large. The impact of N, and N, on the scalability of the approach

is considered in a subsequent section.
The configuration space is a set of all configurations. This set may be constructed

recursively in the following manner: Let, Confi gS(d) be the set of all configurations

including a node d, and Z(d) be the latency of d (defined for leaf nodes only). Then,

(path(a)y(d){eld) LEAF

Configs(d) =4 [[] Configs(x) AND -
LXLXJ é:onfi gs(x) OR
xx(d)
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Note that the definition of a configuration has been extended to includes resource
assignments as well as performance attributes. Only latency attribute is being shown here

for convenience. The set Confi gS(D S) is a set of all configurations that include the root

of the dataflow hierarchy, and thus represents the configuration space.
The symbolic representation of the configuration space represents the set

Confi gS(DS) as a Boolean function. Given the binary encoding for the nodes this set
may be composed symbolically using N_. Boolean variables. Let Configs(d) be the
Boolean function denoting the set Confi gs(d). Let o°(d)denote the encoding of d

under the structure encoding, o' (r,d)denote the encoding of resource r Dy(d) under

the resource encoding, o' (d)denote the encoding of d under the latency encoding, and

each of the encoding function above subscripted with i denote the i-th bit in the
respective encoding. Alsolet S :1<i<Ng, r,:1<i<N,,and |, :1<i < N, be Boolean

variables. Then,

([ _ _
s o (d)] DL r.0c” (a,d)
{]sist}lm_{luis(d):tx} amLyJ(d){JsisN,}n{a; (a.d)ex}

0 |, 00} (d
[{]sile}lm_{la.' (d)¢><0}- ( )]

Configs(d) =+ ﬂ Configs(x) AND (19)
xUy(d)

LEAF

|JConfigs(x) OR

xx(d)

L
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The Boolean variables s are referred to as structure variables, ; are referred to as

resource variables, and |, are referred to as latency variables, and collectively these are

referred to as configuration variables. The Boolean function ConfigSiDsj is the

symbolic representation of the configuration space.

OBDD representation of the design space

The Boolean function Designs = SateConfigs([ ) DConfigs( ) represents the

design space symbolically. The first step in representing this function as an OBDD is to
determine the ordering of the introduced Boolean variables. The size, and hence the
scalability, of the OBDD representation is highly dependent upon the variable ordering.
Determining an optimal ordering for an OBDD representation is an unsolved
problem [41]. However, heuristics are generally effective in most problem domains. The
general rule of thumb applied here is to use a notion of dependency. For example,
selection of mode determines the usable configurations; therefore, mode variables are
ordered before configuration variables in the ordering. With this ordering mode variables
are evaluated before configuration variables, and when mode variables are bound this
rules out large parts of the configuration space in the decision diagram. Among the
configuration variables, the structure variables are interleaved with the resource variables,
and latency variables are ordered after these. Within both the mode variables and the
structure variables, lower index is given to the variables introduced with the nodes higher
in the hierarchy. This follows the same argument of being able to rule out larger parts of
the space formed by the hierarchy instead of maintaining and propagating the alternatives
to a deep level. The latency variables can basically be grouped into N,
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|_| 09, (L XN o )—| -bit binary vectors. Within each vector the most significant bit receives

the lowest index in the ordering. Further, the bits of all the vectors are interleaved
together e.g. the most significant bit of all the vectors is grouped together and is ordered
before the next most significant bit of all the vectors grouped together. Once the variable
ordering is fixed, the Boolean function representing the design space is mapped to an
OBDD representation in a straightforward manner.

The next step in symbolic constraint satisfaction is to represent the design
constraints symbolically. The next section describes the symbolic representation of

constraints.

Symbolic Representation of Constraints

Recall from Chapter 3, four basic categories of design constraints may be
expressed in the modeling environment. Symbolic representation of each of these basic

categories of constraints is described below.

Compositional constraints

Compositional constraints express logical relations between processing blocks in
the hierarchical dataflow representation. Let, [, :d,[Jd, be a constraint over processing
blocks d, and d; relating them under relation [J, which is one of conjunction,

disjunction, implication, or equivalence. Symbolically the constraint can be represented

as a relation over the symbolic representation of the processing blocks. Thus, the

Boolean function [, = Configs(d, JOConfigs(d,) represents the constraint [

C

symbolically.
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Figure 14 below shows a compositional constraint expressed on the hierarchical

dataflow graph of Figure 11 and its symbolic representation.

0,:Pl1= P31

Configs(P11) = -5 [,
Configs(P31) = -,

0, = Configs(P11) = Configs(P31)
0, =5 0-s, 0-5, 05 Os,

Figure 14: Compositional constraint

Resource constraint

Resource constraints relate processing blocks to resources. Symbolic
representation of resource constraints is accomplished by expressing the relation over the
symbolic representation of the processing block and resource. Thus, a resource constraint

[, :dOr over processing blocks d and resource rDy(d) can be symbolically

represented  with  the Boolean function D_r:Configs(d)]f(r,d), where

f(r,d)= D r DG D_r represents the constraint [J, symbolically.
I<i<N,

r d #x
Figure 15 below shows a resource constraint expressed on the hierarchical

dataflow graph of Figure 11 and its symbolic representation.
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0_____ 1 00___ _01___ 10___
0, : P11URL

Configs(P11) =~ O-s,
f(RLPLY)="-r,

0, = Configs(P11)= f(R1, P11)
0, == 0-s, 041,

Figure 15: Resource constraint

Performance constraints

Performance constraints are more challenging to solve symbolically than the
previously specified categories of constraints. There are two primary drivers of the
complexity: 1) A system-level property has to be composed from component-level
properties in a large design space, and 2) The property being composed is numeric, and
may admit a potentially very large domain. Representing a large numeric domain
symbolically as a Boolean function and performing arithmetic operations symbolically is
a challenging problem with serious scalability concerns.

Different performance attributes may compose differently. The next section

elaborates upon the general approach in solving constraints on simple additive attributes.
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Additive attribute refers to those attributes that can simply be added together to compose
the system-level attribute from components. Subsequent sections discuss specific

performance attributes that are the focus of this dissertation.

Basic approach

Recall that while encoding the configuration space binary vectors are assigned to
primitives to encode their attributes. It was noted earlier that orthogonal nodes might
share the same binary vector. This is reasonable because orthogonal components are

exclusive and are not simultaneously present in a configuration.

—_— —_

Consider the Boolean expression f =v, +v,+.--+v,  where, f and

—

V,:1<i< N, are n+[log, N |-bit binary vectors, and ‘+ denotes Boolean

I Vec

representation of arithmetic sum over binary encoded numbers. Then let,

h=({f =v, +v, +---+v,_|0Configs(d,)) (20)

Vj :1<i<Nygc

The function h is satisfiable when each configuration denoted by a particular assignment

—

of the configuration variable is uniquely paired with an assignment to f that is a binary
representation of the sum of the attribute of all primitives contained in that configuration.
This is so because ConfigS(DS), encodes the attribute value of the primitives in
appropriate binary vector, conditionalized with appropriate configuration. Forming the
conjunction of the arithmetic expression with the configuration representation restricts
the arithmetic expression to only those values that represents the sum of the values
encoded in the configuration representation. The variables of the binary vectors are

existentially quantified out from this expression.
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The function h can be restricted further by constraining f i.e.

h=(ho(f <)), (21)

f
The restricted function h' is satisfiable only for those configurations for which the sum of
the attribute of all primitives contained in that configuration is less than or equal to « .

Thus h' is a restriction on the configuration set and serves to constrain the configuration
space. Further, with f and v, :1<i< N, variables existentially quantified h' is a
function exclusively over the structure variables in the symbolic representation of the

configuration space. Thus, a relation over the attributes of primitives is effectively

composed into a relation over the elements of the configuration space.

Representing linear arithmetic constraints
The basic approach presented here relies on a scalable symbolic Boolean
representation of linear arithmetic constraints of the form k >2a+b+---+m, where « is
a constant and a,b,...,m are non-negative integer variables. In the following section an
approach for symbolically representing linear arithmetic constraints of the form shown
above is presented. A approach presented below was originally developed in [43].
First let a=aa,...a,, b=bb,...b

C=cC,C,...C,, be unsigned n-bit binary

n>
representation of three non-negative integer variables, with each of a, b, ¢ as a

Boolean variable. The linear arithmetic constraint ¢ =a+b over these variables can be

represented as a Boolean function in the following manner. Define cr, (k) and cr, (k) as

the predicates for the carry-bit from a, ...a, +b, ...b, being 0 and 1 respectively. Then,
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1 k>n
CrO(k)_{cro(k+l)D(a_k Ob, Oc, Oa, Ob, Dck)Dcrl(k‘*l)D(a_kDEDCk) k<n

(22)
and,
or (k): 0 k>n
Y er, (k+2) Ola, Ob, O, )Oer, (k +1) Ofa, Ob, Tc, Da, Ob, 0c,) k<n

(23)
The function fg =cr, (1) represents the linear arithmetic constraint c=a+b as a
Boolean function. The size of the OBDD representing f is shown to be <10n in [43]
when the variables are ordered highest bit first and interleaved c,,a,,b, at each bit thus.

Thus, the representation is highly scalable. The linear arithmetic constraint can be
extended to more variables by using temporary variables. For example, the linear
arithmetic constraint C:d =a+b+cC can be represented as two separate constraints

C, :temp=a+b and C,:d=temp+c. Let temp=tt,...t;, f. be the Boolean
function representing C,, and f. be the Boolean function representingC,, then

fo = (fq Ofe, )Di 11y, Tepresents C. It should be noted that there may be an overflow in

representing the arithmetic sum. In order to avoid the overflow, each n-bit variable must

be extended and represented as n+[log, N, |-bit number, where N, is the number of
variables in the sum. Experimental results indicate that the size of the OBDD
representing the complete linear arithmetic constraint is O(anp ), where Nis the number

of bits in the binary representation of each non-negative integer variable, N, is the

\

number of non-negative integer variables, and 0 is a constant such that 1< p< 2.
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Next consider linear arithmetic constraint of the form a=b. This can be
represented symbolically as a Boolean function in the following manner. Define

predicate eq(k) to denote equality of two n—k+1 bit numbers a,a,,,...a, =b,...b,,

n

and gt(k) to denote a,8,,,...a, > b, ...b,. Then,

()=1" «n (29
78, O, Deqlk +1) ksn
and,
t(k): O_ B k>n 25
J a Ob, Ogt(k +1)0a, Ob, k<n

The function f, = eq(l) U gt(l) represents the constraint a=b as a Boolean function.

The size of the OBDD representing f can be shown to be <10n. In the above Boolean

representation, a can be substituted with a constant and the size of the resulting OBDD is
even smaller. The overall linear arithmetic constraint of the form k = a+b+---+m, can
be represented symbolically by  forming Boolean  representation  of
C,:temp=a+b+-.--+m and C, :k 2temp separately and then taking the conjunction

of the two, and quantifying the binary variables representing temp i.e.

Q:quhkmﬁ

Latency constraints

The basic approach presented above demonstrates composition of system level
properties from the properties of primitives when these properties compose additively.
Composition of system-level latency from the components is not so straightforward.

When the components are connected to form a pipeline, latencies of all the components
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can be added up to form the system level latency. However, when the components are
connected to form multiple parallel data paths then it is not sufficient to sum up latencies
of all the components in the system to form the system level latency. Additionally, when
computations are distributed over multiple heterogeneous resources, the system-level
latency depends not only on the data dependencies, but also on the resource allocation
and the scheduling. Solving system-level latency constraints in the presence of these
dependencies is a challenging problem. While OBDD’s can be used to incorporate all the
dependencies including resource allocation and scheduling in solving the latency
constraints, the scalability of the method becomes susceptible and results in an
exponential blow-up in the OBDD representation. The symbolic representation of
latency constraints presented in this dissertation addresses only the structural data
dependencies and ignores resource allocation and scheduling while solving latency
constraints. This in effect assumes that all computations that have no data-dependency
may execute concurrently. Thus the approach results in a best-case approximation of the
system-level latency. In an early stage coarse-grained constraint satisfaction this
approximation is reasonable. The pruned design space can be further refined by using
fine-grained constraint satisfaction methods if so desired. It must be noted here that the
symbolic constraint satisfaction method does not incorrectly rule out any design that may
potentially meet the latency constraint with some resource allocation and scheduling
arrangement. Only the designs that do not meet the latency constraint even with the best-
case approximation are pruned out from the design space. In the next paragraph, the

algorithm that composes system-level latency is discussed.
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There are two main steps in the algorithm: 1) Symbolic representation of the base
constraint, and 2) Splitting and extending the base constraint to incorporate the parallel
paths in the data flow graph

1. The first step of the algorithm consists of symbolic representation of the base

constraint, where the base constraint is formed under the assumption that the
latency values of all the non-orthogonal components add-up to form the
system-level latency. This is done as per the approach for representing linear

arithmetic constraint as described in the previous section. This is a constraint

_—

of the form x=v,+v,+.--+Vv, , where V,:1<i<N, are the non-

orthogonal latency vectors. The subsequent steps in the algorithm work with
a symbolic representation of this base constraint.

2. This step of the algorithm concerns with exploring the data-dependencies in
the data flow graph and suitably modifying the base constraint. The
algorithm recursively traverses the hierarchical data flow graph. The main
action happens at the compound node in the dataflow graph. There are two
possibilities at a compound node: 1) There is a path in the data flow at the
node that includes all the components; or 2) There are many intersecting/non-
intersecting paths and none of the paths include all the components. In the
first case the base expression need not be modified as the latency property of
all the components is already considered in the base constraint. In the second
case, the base expression needs to be modified to account for multiple parallel
paths. This is done by considering a path in the sub graph contained in the

compound. All the components that are not on this path in the sub-graph do
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not contribute to the latency along this path. Therefore, in the base constraint
the latency vectors corresponding to these components are substituted with a
constant value of ‘0’ and these variables are quantified out. Thus the reduced
base expression is narrowed down to sum the latencies of components
included only on this path. Then the components in the path are hierarchically
traversed with this reduced base expression to further reduce it down the
hierarchy. The same procedure is repeated with all the paths in the graph.
The reduced base expression along each path is conjuncted together to reflect
that all the paths must satisfy the system level latency constraint. The

complexity of this algorithm is dependent upon the number of paths in the

graph.

The complete Boolean expression thus formed consists of many sub-expressions

each of which is an arithmetic sum constraint on the latency variables of the primitives in

a data path through the dataflow graph. When conjuncted with the Boolean expression

representing the configuration space, the configuration space is restricted to only those

alternatives, the latency values of which satisfies the sub-expressions representing data

paths. The latency variables are quantified out from the product Boolean expressions.

The resultant Boolean expressions over the structure variables represent the constrained

design space.

Area, Cost, and Power constraints

Area, cost, and power compose additively. Thus, given these properties for the

components in the system, the system level property can be composed by simply adding
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up the property-value of individual components. The basic approach prescribed for
solving constraints on additive properties can be used without any modification for

composing constraints on these properties.

Operational constraint

Operational constraints relate configurations with modes.  If, [0, :mOd is an

operational constraint relating mode of operation m with processing blocks d then the

Boolean function D_0= StateConfigs(m)DConfigs(d) represents the constraint [

0
symbolically.

Apart from these basic constraints, complex constraints may be formed by
combining one or more of these constraints with first order logic connectives. The
symbolic representation of the complex constraints can be accomplished by composing
the symbolic representation of the basic constraints.

The symbolic constraint satisfaction approach described above has been
implemented in a design space exploration tool. The next section describes the

prominent features of the design space exploration tool.

Design Space Exploration Tool

The prominent features of the design space exploration tool include the ability to
interactively and iteratively apply constraints. The effect of various constraints upon the
design space can be visualized in this tool. The tool maintains multiple contexts and it is
possible to revert to a previous context. Whenever constraints are applied and the design

space is pruned a new context is created. The subsequent pruning is performed in this
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new context. To “undo” an applied constraint one can simply revert back to the previous

context. The depth of the context stack is user programmable.

Design Space Exploration Tool x|
* File  Apphy

constraints | prucessesl mu:u:lesl remurcesl

Conztraint | Cateqgory | Contest | Exprezsion
Rezource_Constraint niSpace ATR_Toplewel Old constraint implementation(] { [ chi
Rezource_Constraint IniSpace ATR_Toplewvel _OId constraint implementation(] { [ chi
Composzability_Constraint niSpace ATA_Toplewvel _Old corstraint implementation(] £ [ [chil
PC_lmplementation_2 niSpace Find_Peaks constraint implementation]] § [ chi
W PC_lmplementation_2 niSpace Find_Peaks constraint implementation]] § [ chi
PC_lmplementation_2 niSpace Find_Peaks constraint implementation(] § [ chi
W {ModuleLatencyConstraint niSpace Correlate_Image constraint implementation(] § latency
RezoruceConztraint niSpace Spectral_Carrelation constraint implernentation) L [ chi
W Cdu_|mplementation niSpace Spatial_Carrelation constraint implernentation) L [ chi
PC_Implementation UniSpace Spatial_Carrelation constraint implementation(] { [ chi
KN i

Figure 16: Design Space Exploration Tool

The design space exploration tool has a multi-pane graphical front-end. The first
pane is a checklist box, that is filled up with all the constraints are present in the model.
There is a check box in front of every constraint in the list. The user can check the box to
select the constraints to apply. More than one constraint can be selected for applying.
The second pane of the user interface shows the structural space as a tree. Different icons

are used to distinguish between a compound (AND) node, a template (OR) node, and a
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primitive (LEAF) node. A box at the bottom of the pane displays the size of the structure
space composed in the tree hierarchy. The third pane of the user interface shows the
behavioral (mode) space also as a tree. The last pane of the user interface shows the
resources in the model. The menu of the user interface has options for applying a
selected set of constraint, applying all constraints, or reverting to a previous context.
Figure 16 shows a screen shot of the tool in operation.

When the user selects a group of constraints to apply, the tool evaluates the
constraints to determine the highest node in any hierarchy (structure or behavioral) that is
affected by the constraint. If the group of constraints affects more than one hierarchy
simultaneously (example: an operational constraint) then the entire design space has to be
encoded. If the group of constraints affects only a single hierarchy (example: no
operational constraint in the group), then only that hierarchy is encoded. This is done in
order to keep the OBDD representation manageable at each stage, as well as to speedup
the constraint application, because the OBDD algorithms are sensitive to the size of the
OBDD representation. Additionally, when the group of constraints has no performance
constraint, the performance property variables are not included in the encoding of the
structure space. This is a big improvement because it significantly reduces the number of
Boolean variables required to represent the configuration space. After creating the
representation of the space, the constraints are encoded and the space restricted with the
results. The current design space is evaluated against the restricted representation to
determine the pruning of the space. A new context is created and only those nodes that
were not pruned are propagated in the new context. The constraints that were applied

earlier and if the nodes affected by the constraints are pruned, then the constraint is
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declared “dead”, and is not admitted in the new context. The panes of the user interface

are updated according to the new context.

Conclusions

This chapter explored the key issues in constraint based design space exploration
and presented a symbolic constraint satisfaction method developed for pruning and
exploration of large design spaces. The highlight of the symbolic method is its ability to
check and enforce constraints in a large design space without enumerating the members
of the space. Owing to this the symbolic method has excellent scalability and extremely
large design spaces (in the order of 10*) have been pruned and explored using this
method. The chapter also demonstrated a method for solving linear arithmetic constraints
over the attributes of an object hierarchy symbolically using OBDD’s.

It must be emphasized here that the performance constraint validation performed
by this method is at a coarse level of granularity i.e. the method operates on analytical
estimates of the performance metrics, devoid of low-level architectural details. If a fine
grained and detailed verification of performance constraint is desired then a designer
must resort to conventional detailed, low-level architectural simulators. However, it
should be noted that these simulations are time intensive and can simulate only one
design at a time, thereby mandating the enumeration of the design space.

A key point about the constraint based design space exploration is the order of
constraint application. The end result, i.e. the final pruned design space, is independent
of the order of constraint application, however, the time complexity and even the
scalability of the exploration is dependent in a non-deterministic manner on the order in

which the constraints are applied. In fact there is a potential for an exponential blowup of
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the OBDD representation, a phenomenon that is a common challenge for OBDD based
algorithms, for some order of constraint application. The dependence of the scalability of
the exploration method on the order of constraint application is a complex problem and

needs to be investigated further.
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CHAPTER V

CASE STUDY

This chapter presents a case study in the application of the adaptive computing
system design and synthesis framework developed in this research. An embedded, real-
time, Adaptive Missile Automatic Target Recognition (AMATR) system has been chosen
as the target of the case study. The complexities of the changing computational
requirements and constraints associated with the AMATR system are a good test of the
tools developed here. The first section provides a functional and operational
specification of the AMATR system. Some simplifying assumptions about the system
have been made for the purpose of demonstration in this case study. The subsequent
sections demonstrate the modeling, exploration and pruning of the design space for

synthesizing the system.

Adaptive Missile Automatic Target Recognition System

The core of the AMATR system is an Automatic Target Recognition (ATR)
algorithm. ATR is an image processing algorithm for classification of target objects in an
input image. The core processing of the algorithm is based on correlation filtering. An
input image is correlated with template filter images corresponding to different target
classes. The peaks in the correlation surface are indicative of regions in the input image
that may correspond to target objects. These regions of interest in the input image are
further processed and classified by using a Distance Classifier Correlation Filtering

(DCCF) algorithm. This correlation based distance classifier algorithm uses a global
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transformation filter to transform the images into a canonical space. The properties of the
transformation filter are such that inter-class distances are maximized and intra-class
distances are minimized under the transformation, which improves distortion tolerance
and discrimination capability of the algorithm simultaneously [44]. The distance of the
transformed image from the transformed class filters in this space gives a relative metric
to identify the target class in the input image. Figure 17 shows the high-level block

diagram of the ATR algorithm.

Input Image \ Pre- Cross- Peak- ROI
Stream / processing correlation detection extraction

Template
Filters

Cross- Distance- Class- Target class >
correlation Calculation Determination osition

Distance
Classifier
Filters

Figure 17: ATR high-level block diagram

The ATR is a computationally intensive algorithm. With a refresh rate of 30
frames/sec with each frame being a 128 %128 pixels wide, 8-bit deep image, an estimated
10-15 GFLOPS are required to process the images in a real-time fashion. Moreover, the

fact that the system is embedded within a missile, tightly coupled with a closed-loop
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tracking and guidance system, imposes a wide range of operational and physical
constraints on the AMATR system. There are real-time constraints owing to the close
coupling with the physical closed-loop guidance system; there are physical constraints on
the size of the hardware due to the limited room available for electronics in the missile;

there are power constraints both due to the short battery life, and limited heat dissipation

capacity.
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Figure 18: Operational scenario of the AMATR system

Figure 18 depicts the operational scenario of the AMATR system. In an
operational lifecycle the missile can undergo a large number of different modes of
operations. For instance, prior to launch the missile is on the rails of launch vehicle, and
the seeker onboard the missile is scanning the scene for potential targets. This mode is

designated an on-platform-target-acquisition mode. If a target is found and locked on to,
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the missile may be launched to track the target. This mode is designated a locked-on-
target-tracking mode. Alternately, the missile may be launched without a lock and must
continue acquisition in a free flight until a target is obtained. This mode is designated a
free-flight-target-acquisition mode. The free flight ends when a target is identified and
locked on to. In the event of loss of track, due to obstruction or maneuvering, the missile
reverts back to target acquisition. As the missile covers the distance to the target, the
nature of tracking changes and it enters different modes of operations that reflect tracking
at different distance-range from the target. Just prior to impact, the missile is in an aim-
point-tracking, which is the terminal mode of operation.

These different modes of operation in a missile’s operational lifecycle are
characterized by different computational requirements, both in terms of functionality as
well as performance and power. The computation in target acquisition modes is
throughput critical, when a sensor image with many different potential targets has to be
scanned and annotated with potential target identities, priorities and locations. The
computation in tracking modes is latency critical, when an image with a single or a few
targets is scanned primarily for determining the location changes of the locked target, to
drive the closed loop tracking and guidance system. The power has to be managed over
the operational lifecycle i.e. power is tightly budgeted prior to missile launch when there
is limited heat dissipation capacity and early on in the operational lifecycle when the
battery has to be conserved. Closer to the aim-point power budgeting is not critical.

The next section illustrates the modeling of these operational and computational
characteristics, along with the target hardware platform, and the constraints in the

modeling environment.
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Modeling AMATR System

The modeling and design space creation process involves iteratively constructing

the previously described categories of models that capture system design information.

seek—ta_rj et-cmd
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Figure 19: AMATR Behavioral Models

Operational Behavior

The first stage of modeling of a multi-mode adaptive system is defining the
operational behavior of the system. This information is captured in the Behavioral
Models. Figure 19 shows the top-level behavioral models for the AMATR system. The

operational behavior described previously is captured with modes, transitions, and events.
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The gray boxes represent modes of operation, and different icons represent transitions
and events. The figure also illustrates the use of hierarchy in managing complexity. In
the top-level model the different types of tracking and acquisition behavior is abstracted
in a single tracking mode. The internal composition of the tracking mode is revealed in
the figure in inset. Multiple entry points into the tracking mode are specified. Depending
on the entry point the system may enter long-range-tracking or long-range-acquisition
modes. The transition from tracking to acquisition mode is enabled when the track is
lost. The transition from long-range-tracking to medium-range-tracking, and medium-
range-tracking to short-range-tracking is enabled when the proximity sensors signal

distance closure.

Computational Structure

The next stage in the modeling process is defining the computational structures
for implementing the functional requirements of the different modes of operation.
Defining the computational structure is challenging, as the designer has to simultaneously
manage the requirements of multiple modes of operation, and has to analyze and evaluate
alternate ways of composing the desired functionality. The ability to capture alternatives,
and explore and evaluate the different system configurations at a later stage, assists the
designer in meeting this challenge. When modeling the computational structure of the
AMATR system primarily three forms of alternatives emerge: 1) functional alternatives,

2) algorithm alternatives, and 3) implementation alternatives.
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Figure 20: AMATR Functional Alternatives

Functional Alternatives

In the short-range and aim-point tracking modes a single target is being tracked,
and the primary result desired from the computation is the target location. The ATR
problem in this mode is a single-target-single-class problem, because the target class is
already identified and the correlation goal is to determine the location of the target in the
image. In this mode the results from the ATR subsystem are coordinate translated and
fed to the tracking and guidance subsystem. On the other hand in the long-range and
mid-range acquisition modes multiple potential targets are sought, and the primary result

desired from the computation is the identification of multiple targets in the scene. The
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ATR problem in this mode is a multiple-target-multiple-class problem. The results from
the ATR subsystem, in this mode are first processed to select the highest priority target,
and the location of the highest priority target is coordinate translated and fed to the
tracking and guidance subsystem. Thus, the ATR subsystem in these modes of operation
is functionally different, however, its interfaces to the seeker and the tracking and
guidance subsystem remain the same. These are considered functional alternatives.

Figure 20 illustrates the use of functional alternatives in modeling the AMATR system.

Aleorithm Alternatives

Recall that the core processing in the ATR algorithm is correlation based. Image
correlation can be performed in spatial domain where each pixel in the correlation surface
is calculated by shifting the template filter over the input image, and computing the sum
of pixel products in the overlap region. Alternately, image correlation may be performed
by transforming the input image into spectral domain with a Fast Fourier transform
(FFT), performing a conjugate product with the spectral domain representation of the
template filter, and transforming the product back to spatial domain using an Inverse Fast
Fourier transform (IFFT). Functionally the alternatives are equivalent, however each has

different performance characteristics. Spatial domain correlation is computationally
more expensive than spectral domain correlation; i.e. O(N4) vs.O(N2 log, N).
However, spectral domain correlation operates on entire image, and has latency on the
order of O(N ?log, N) ops, whereas with spatial domain correlation partial results can be
obtained every O(NZ) ops. These are considered algorithm alternatives. Figure 21

illustrates the use of algorithm alternatives in modeling the AMATR system.
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Figure 21: AMATR Algorithm Alternatives

Implementation Alternatives

Many algorithms in the AMATR system such as, Cross-Correlation, FFT, IFFT,
Matrix Multiplication, Peak-to-Surface-Ratio calculation, etc. can be implemented as

floating-point software subroutine, or a fixed-point software subroutine, or a digital
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circuit. These are considered implementation alternatives. Figure 22 illustrates the use

of implementation alternatives in modeling the AMATR system.

Prulﬂ/

tiply,

Blima Ima

2DIFFT_Floating_Point

) — fima  Ima =]

2DIFFT_Fixed_Point

Bllma Ima

2DIFFT_HW

Figure 22: AMATR Implementation Alternatives

The configuration space is composed in this manner by capturing all functional,
algorithm, and implementation alternatives. The modeled Primitives in the configuration
space are typically pre-existing library components. The captured configuration space

encapsulates many possible configurations with widely different characteristics for

113



implementing the computational requirements of different modes of operation. The
selection of appropriate configuration for the different modes of operation is done based

on the design constraints in the design space exploration process.

Execution Resources

The next stage in the modeling process is defining the target platform for
execution of the specified functionality. The hardware-processing engineers capture the
architectural details in the resource models, concurrently with the definition of the
behavioral and computational structure models. Essentially the specifics of the
architectural modules along with the topology are captured directly. Figure 23 shows the
top level of the Resource models. This figure shows the 2 DSP processors, 1 RISC

processor, and 1 FPGA, and 1 A/D for image acquisition.
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Figure 23: AMATR Resource Models
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As the last phase of the modeling process, system constraints are expressed.
Constraints are specified both to express the design correctness criteria, as well as to help
guide the constraint based design space exploration.
constraints expressed while modeling the system may not be enforced. The user driving
the interactive design space exploration determines the set of constraints to apply. All the
four forms of constraints (compositional, resource, performance, operational) are
employed extensively in the AMATR system. The table below shows representative

constraints. The label column specifies the name of the constraint. The context of the

Constraints

constraint, and some remarks are specified as comments in the constraint expression.

Table 1: Constraints in the AMATR application

LABEL | CONSTRAINT
Cl constraint algo_consistency () {
// spectral/spatial processing consistency
// constraint applied in multiple contexts
((children (“Correlate_Image”) .implementedBy () =
children (“Correlate_TImage”) .children (“Spectral_Correlation”))
inplies
(children (“Matched_ Filter”) .implementedBy () =
children (“"Matched_Filter”) .children (“Spectral Matched Filter”)))
and
((children (“Correlate_Image”) .implementedBy () =
children (“Correlate_Image”) .children (“Spatial_Correlation”))
inplies
(children (“Matched Filter”) .implementedBy () =
children (“"Matched_Filter”) .children(“Spatiall Matched Filter”)))
}
c2 constraint datatype_consistency () {

// floating/fixed point consistency
// constraint applied in multiple contexts
(((children(“Find_Single_Peak”) .implementedBy () =
children (“Find_Single_Peak”).
children (“Find_Single_Peak_ Floating_Point”))
inplies
((children (“Extract_Region”) .implementedBy () =
children (“Extract_Region”) .
children (“Extract_Region_Floating_Point”)))
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and
(((children (“¥Find_Single_Peak”) .implementedBy () =
children (“Find_Single_Peak”) .
children (“Find_Single_Peak_Fixed_Point”))
i mplies
((children (“Extract_Region”) .implementedBy () =
children (“Extract_Region”).
children(“Extract _Regi on_Fi xed_Point”)))
}

constraint multi_target_five_class () {
// mode based function selection
// context: ATR_TopLevel.Core_Processing
(systemMode () = project () .modes (“ATR_TopLevel”).
children (“tracking”).children(“long-range-acqui sition”))
inplies
(self.implementedBy () = children(™MultiTarget_FiveClass”))

}

constraint multi_target_three_class () {

// mode based function selection

// context: ATR_TopLevel.Core_Processing

((systemMode () = project () .modes (“"ATR_TopLevel”).
children(“tracking”).children(“m d-range-acquisition”)) or

(systemMode () = project () .modes (“ATR_TopLevel”).

children (“tracking”) .children (“short-range-acquisition”)))

inplies

(self.implementedBy () = children (“MultiTarget_ThreeClass”))

}

constraint single_target_single_class() {
// mode based function selection
// context: ATR_TopLevel.Core_Processing
(systemMode () = project () .modes (“ATR_TopLevel”).
children (“tracking”) .children (“short-range-tracking”))
inplies
(self.implementedBy () = children(“SingleTarget_Singl ed ass”))

}

constraint single_target_three_class () {
// mode based function selection
// context: ATR_TopLevel.Core_Processing

((systemMode () = project () .modes (“ATR_TopLevel”).
children (“tracking”) .children (“mid-range- tracking”)) or
(systemMode () = project () .modes (“ATR_TopLevel”).
(

children (“tracking”) .children (“long-range-tracking”)))
inplies
(self.implementedBy () = children(“SingleTarget_ThreeClass”))

}

constraint embedded_impl () {
// images from seeker, results to tracking system
// context: ATR_Toplevel
(children (“Image_Source”) .implementedBy () =
children (“Image_Source”) .children (“Seeker_ IF"))
and
(children (“Results_Processor”) .implementedBy () =
children (“Results_Processor”) .children(“Tracking_ System”))

}

constraint seeker_if assgn() {

// resource selection

// context: ATR_TopLevel

(children (“Image_Source”) .implementedBy () =
children (“Image_Source”) .children (“Seeker_IF"))

implies
(children (“Image_Source”) .children (“Seeker_TIF”) .assignedTo () =
project () .resources (“"A/D Converter”))
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}

constraint psr_on_hw() {

// resource assignment and alternative selection

// multiple context

(children(“Find_Single_Peak”) .implementedBy () =

children(“Find_Single_Peak”) .children(“Find_Single_Peak_HW"))

and

(children(“Fi nd_Si ngl e_Peak”). children(“Fi nd_Si ngl e_Peak_HW) .
assignedTo() =
project () .resources (“Altera FPGA TIM Module”))

}

C10

constraint lr_acqg_areaf() {

// area is in units of K-gate equiv

// context: long-range-acquisition

(systemMode () = self)

implies

(project().processes(“ATR TopLevel ").

children ("Core_Processing”) .children("MultiTarget_FiveClass").
area() < 100)

}

C11

constraint lr_acqg_lat() |

// latency is in units of ms

// context: long-range-acquisition

(systemMode () = self)

implies

(project().processes(“ATR TopLevel ").
children("Core_Processing") .children("MultiTarget_FiveClass").
latency () < 70)

}

C12

constraint lr_acqg_pow() {
// power is in units of mwW
// context: long-range-acquisition
(systemMode () = self)
implies
(project().processes(“ATR TopLevel ").
children ("Core_Processing”) .children("MultiTarget_FiveClass").
power () < 127)

C13

constraint mrsr_acq_area() {

// area is in units of K-gate equiv

// context: mid-range-acquisition, short-range-acquisition
(systemMode () = self)

implies

(project().processes(“ATR TopLevel ").
children("Core_Processing") .children("MultiTarget_ThreeClass") .
area() < 100)

}

Cl4

constraint mrsr_acq_lat () {
// context: mid-range-acquisition, short-range-acquisition
// latency is in units of ms
(systemMode () = self)
implies
(project().processes(“ATR TopLevel ").
children ("Core_Processing”) .children("MultiTarget_ThreeClass").
latency () < 60)

C15

constraint mrsr_acq _pow() {

// context: mid-range-acquisition, short-range-acquisition
// power is in units of mW

(systemMode () = self)

implies

(project().processes(“ATR TopLevel ").
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children ("Core_Processing”) .children("MultiTarget_ThreeClass").
power () < 97)

}

Cl6

constraint lrmr_trk_area()

// area is in units of K-gate equiv

// context: mid-range-tracking, long-range-tracking

(systemMode () = self)

implies

(project().processes(“ATR TopLevel ").

children ("Core_Processing") .children("SingleTarget_ThreeClass").
area () < 200)

}

C17

constraint lrmr_trk_lat () |

// context: mid-range-tracking, long-range-tracking

// latency 1s in units of ms

(systemMode () = self)

implies

(project().processes(“ATR TopLevel ").

children("Core_Processing") .children("SingleTarget_ThreeClass") .
latency () < 30)

C18

constraint lrmr_trk_pow() {
// context: mid-range-tracking, long-range-tracking
// power is in units of mW
(systemMode () = self)
implies
(project().processes(“ATR TopLevel ").
children ("Core_Processing") .children("SingleTarget_ThreeClass").
power () < 127)

}

C19

constraint sr_trk_area() {

// area is in units of K-gate equiv — FPGA capacity is 100K gates
// context: short-range-tracking

(systemMode () = self)

implies

(project().processes(“ATR TopLevel ").

children("Core_Processing") .children("SingleTarget_SingleClass") .
area () < 300)

}

C20

constraint sr_trk_lat () {
// latency 1s in units of ms
// context: short-range-tracking
(systemMode () = self)
implies
(project().processes(“ATR TopLevel ").
children ("Core_Processing”) .children("SingleTarget_SingleClass").
latency () < 20)

}

constraint sr_trk_pow() {
// power is in units of mW
// context: short-range-tracking
(systemMode () = self)
implies
(project().processes(“ATR TopLevel ").
children("Core_Processing") .children("SingleTarget_SingleClass") .
power () < 127)

118




The constraints reflect the criticality of power in acquisition modes, and latency in
tracking tracking modes. Three performance constraints have been defined for each
mode that bound the power, area, and latency. The area constraints specify the available
logic gate count on the FPGA. In the early acquisition modes the FPGA’s are shut down
to reduce the power consumption, which is indicated in the tighter area constraint in the
acquisition modes. The next section describes the application of these constraints for

design space exploration and pruning.

Constraint based Design Space Exploration

The models are analyzed with the design space exploration tool to explore the

design space. The initial design space in the AMATR system is 3.9%10%®. The
previously specified constraints are iteratively applied to reduce the system design space.
Subsequent to the symbolic constraint satisfaction based design space exploration, the
designer can continue with the exploration of the remaining design space using
performance simulation and multiple fine-grained simulations. Typically, the design
space exploration requires several iterations. Constraints have to be modified and refined
to arrive at the desired solution. The final outcome of the design space exploration is a
few design configurations that can be tested and implemented.

The table below shows one iteration through the symbolic constraint satisfaction
based design space exploration. The table lists different constraints and their impact on
the design space. The size of the OBDD representation of the design space before and
after constraint application is also shown. The column labeled application time shows the

time taken for satisfaction of the specified constraint.
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Table 2: Constraint application over design space

L DESIGN DESIGN OBDD | OBDD | APPLICATION
A SPACE SPACE SIZE SIZE TIME (IN MS)
B |SIZE SIZE (PRE) | (POST)

E |(PRE) (POST)

(Lil 3.86x10%® | 1.93x10* | 138 144 10

C2 |1.93x10® | 333x10% |144 165 20

C7 | 3.33x10% | 4.07x10* | 165 167 20

C8 | 4.07x10* | 4.07x10* | 167 167 20

C9 | 4.07x10% | 1.34x10% 167 149 20

C10 | 1.34x10* | 1.33x10* |149 272 40

C12 | 1.33x10% | 1.27x10% 272 122 691

Cl1 | 1.27x10% | 1.27x10% 122 122 20

C13 | 1.27x10" | 1.17x10% 122 249 30

C15| 1.17x10"® | 1.16x10" |249 270 221

Cl4 | 1.16x10° | 1.16x10% 270 148 481

C16 | 1.16x10" | 1.13x10% 148 359 40

C17 | 1.13x10"® | 2.68x10% 359 7783 2894

C18 | 2.68x10* | 4.13x10% 7783 111 3796

C19 | 4.13x10%° | 4.13x10% 111 148 40

C20 | 4.13x10° | 1.35%10° 148 117 90
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C21| 1.35x10° 3.87x10° 117 107 30

C3 | 3.87x10° 3.27x10° 107 111 40

C4 | 327x10° | 1.94x10° 111 133 40

C5 |1.94x10° |1.94x10° 133 137 40

C6 |194x10° | 6.46x10* |137 136 40

Notice that the constraints have been applied in a particular order. The order of
constraint application has an impact over the scalability of the approach as well as the
outcome of the design space pruning. In the early stages of design space exploration,
compatibility, and resource constraints are applied. These constraints being simple
logical relations are relatively easy to symbolically apply and result in a reduction of the
design space. Performance constraints are applied later, when the design space size is
smaller. The performance constraints are applied in the order of their criticality, to mode-
specific functional alternatives. For example, in the acquisition modes the power
constraint is applied before the latency constraint. Latency constraint not being critical
can be progressively tightened to find the least latency designs. In contrast, in the
tracking modes latency constraints are applied before power constraints.

The design space exploration tool does not maintain a single monolithic OBDD
representation of the design space. Subsequent to an application of constraints, the
pruned design space is re-encoded and the OBDD representation re-generated with this
new encoding. This helps to keep the OBDD representation manageable at each stage.
The subsequent paragraphs depict the results tabulated above graphically as bar charts,

and present an analysis of the results.
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Figure 24: Design space size (log scale) vs. applied constraints

Figure 24 shows a plot of the design space size on a log-scale against the applied
constraints. It can be seen from the chart here that the design space size stays relatively
constant and then reduces in discrete steps. This can be attributed to the fact that the
applied constraints are localized to a particular functional alternative. Each functional
alternative forms a sub-space of its own, and the application of constraint reduces that
sub-space; however, size of the design space is dominated by the largest sub-space.
When all the sub-spaces of the functional alternatives have been pruned, there is a sudden
reduction in the size of the design space. Operational constraints are applied towards the
last phase of exploration. The associations of modes of operations with the different

functional alternatives are expressed in these constraints. This keeps the overall
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representation manageable, as there are no dependencies between the mode and
configuration variables in the early stages of design space exploration.

Figure 25 shows a plot of the size of the symbolic representation of the design
spaces against the applied constraints, after a constraint is applied. It can bee seen that
the OBDD representation size is generally small and stays manageable throughout the
exploration. There is a small growth in the representation size going from one constraint
to another, because a large number of “don’t cares” are converted to “cares”. There is a
single large peak that is caused by a power constraint applied to the sub-space formed by
the single-target three-class problem. This constraint resulted in a significant reduction in

the design space size, and after pruning and re-encoding the representation size is small

again.
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Figure 25: Symbolic representation size (OBDD nodes) vs. applied constraints
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Figure 26 shows a plot of the constraint application time in milliseconds against
the applied constraint. It can be seen that in general, the time for symbolically satisfying
constraints is proportional to the size of the design space representation. The peaks in this
plot correspond to tight constraints. The worst-case time is nearly 4 sec, which for a
design space of size 10715 is orders-Of-magnitude better than strict enumeration. The
timing results shown here were obtained on a 700 MHz Pentium III processor with 256

MB-RAM.
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Figure 26: Constraint application time (ms) vs. applied constraints

Applying constraints in this manner the design space has been reduced to

approximately 6.46x10" designs. This is still a large number of designs, however, most
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designs in this design space differ merely in resource allocation. In this particular
application presented in this case study, most of these resource allocations are equivalent.
Therefore, the designer can randomly pick any one. However, in other application
scenarios the design space may be pruned further. Further exploration of the reduced

design space may be performed with more expensive simulation and testing.
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CHAPTER VI

SCALABILITY STUDY

This chapter presents a study in the scalability of the developed approach. For the
purposes of the study an experimental setup was created, that generates design spaces
controlled by a few parameters. The resulting design spaces were represented and
explored symbolically, and instrumented for the representation size, and constraint
application time. The subsequent sections elaborate upon the experimental setup and the

scalability results.

Experimental Setup

Figure 27 shows the structure of the design space generated for the scalability
experiment. For simplification, modes and resources were left out of the experiment.
Thus, the generated design space consisted only of the elements in the structural
hierarchy viz. compounds, templates, and primitives. Four parameters govern the
structure of the experimental design space. The parameter L determines the number of
levels in the generated structural hierarchy. The root level, level 0, contains the root node
in the hierarchy, which is always a compound. The terminal level, level L, contains only
primitives. The intermediate levels may contain templates or compounds, but no
primitives. A template in the generated hierarchy can contain only compounds as its

children, except at level L —1, when primitives are the only children. The parameter N,.

governs the number of children of a template. A compound can contain compounds or
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templates as its children, except at level L —1 when primitives are the only children. The

parameters N_ and N, control the ratio of templates and compounds in a compound.

The total number of children of a compound is N, + N,.
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Figure 27: Experimental Setup

The design hierarchies generated in this experimental setup are full and dense, as

primitives are allowed only at level L. This in general reflects a worst-case scenario. In

typical designs, primitives are present at intermediate levels.
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The parameter N, and N, control the orthogonolity of the design space. Larger
N, or N, implies a larger number of design choices per component, and thus larger
number of orthogonal designs. The parameter N_. governs the problem size, or the size
of a point-design in the design space. Larger N_ implies larger number of non-

orthogonal components per design.

Analysis of Results

Two different scalability questions were investigated in this study: a) scalability
of the symbolic representation, and b) scalability of symbolic constraint application. The

next two sections present and analyze the results for each of these scalability concerns.

Scalability of the symbolic representation

Data sets in this study were obtained by generating design spaces with a fixed

value of L, N_, and N, and varying the N_. L, the levels in the design hierarchy, was
fixed at 4, and N, the number of alternatives per template was fixed at 10. Two different

data sets were obtained with N,, the number of template children in a compound, fixed at

2 and then 3.

Figure 28 shows the size of the design space plotted on a log-scale against N_. It
can be seen that the size of design space grows exponentially with N_. This can be
attributed primarily to the increase in size of individual designs as N, is increased. It
should also be seen that design spaces with same N, but a larger N, are much larger.

This growth can be is attributed to the increase in the orthogonality of the design space.
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Design spaces on the order of 10" were generated and represented symbolically in this

experiment.
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Figure 28: Design space size (log scale) vs. N

Figure 29 shows the size of the symbolic representation of the design space
plotted against N_. The size of the symbolic representation is given in terms of the
number of OBDD nodes in the representation. It can be seen from the plot that the
symbolic representation of the design space is highly scalable. The two plots i.e. design
space size (log scale) and symbolic representation size are near proportional, which

indicates that the symbolic representation size is O(logDesignSpace). This scalability

can be attribute to the density of the design space. While many encoding variables are
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required to represent the design space symbolically, owing to the density of the design

space most are don’t care’s, which results in a smaller representation.
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Figure 29: Symbolic representation size (OBDD nodes) vs. N¢

The direct implication of this high scalability is that the symbolic application of
logical and relational constraints remains highly scalable, while the design space is
under-constrained. With the increase in degree of constraint the representation size
increases, and the scalability is comprised. The iterative nature of the design space
exploration helps to counter this scenario. Pruning and re-encoding the design space at
intermediate steps of design space exploration, reduces the intermediate representation

size and improves the overall scalability of the symbolic constraint application.
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Scalability of symbolic constraint application

As stated earlier, owing to the scalability of the symbolic representation, the
symbolic application of logical and relational constraints is highly scalable. However,
the scalability of the arithmetic constraint application cannot be deduced from the
scalability of the representation. In this section we investigate the scalability of the

symbolic arithmetic constraint application.
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Figure 30: Design space size (log-scale) vs. N

The experimental procedure involved generating design spaces controlled by the
parameters described above. For this experiment, area attribute of every primitive in the
generated design space was assigned a random value between 0 and 127. An area

constraint was expressed at the root node in the hierarchy that expressed a bound on the
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composite area. Data sets were obtained by generating design spaces with L fixed at 3,
and N, fixed at 4, and varying N_. Two different data sets were obtained with N, fixed
at 2 and then 3. The generated designs were subject to the area constraint expressed at
the root node.

Figure 30 shows the size of the design space plotted on a log-scale against N..

Design spaces on the order of 10" were generated and instrumented for constraint

application in this experiment.
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Figure 31: Largest design size (number of components) vs. N

Figure 31 shows the largest design size in terms of the number of components in a

point-design plotted against N_. It can be seen from this plot that the generated point-

designs are very large, involving nearly a 1000 components per design.
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Figure 32: Largest intermediate symbolic representation size (OBDD nodes) vs. N¢

Figure 32 shows the size of the largest intermediate symbolic representation in
terms of OBDD nodes while applying the area constraint against N.. When a constraint
is applied to the design space, the symbolic representation of the design space goes
through a large number of intermediate steps. The final size of the symbolic
representation of the constrained design space may be small, however, the scalability of
the constraint application is determined by the largest intermediate size. Therefore, the
plot here shows the largest intermediate representation size instead of the finally
constrained representation size. It can be seen from the results below that the growth in

the largest intermediate representation size is linear in N_, but near exponential in N, .
Thus, it can be concluded that the symbolic arithmetic constraint application scales well
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with the increase in point-design size. However, it has limited scalability with respect to

the increase in orthogonality of the design space.
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Figure 33: Constraint application time (ms) vs. N¢

Figure 33 shows the constraint application time plotted against N_. It can be seen

from the figure that the constraint application time is generally proportional to the largest
intermediate representation size. This result also explains the choice of using the largest
intermediate representation size as an indicator of the scalability of the symbolic
constraint application.

CHAPTER VII

RESULTS AND FUTURE WORK
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Results

The current research in design space exploration for synthesis of complex
computational systems is very limited in scope. The concept of design space in these
researches is restricted to resource allocation and scheduling of computational tasks.
Embedded systems, particularly heterogeneous, adaptive systems admit much richer and
higher-dimensional design spaces. Designs in such design spaces may differ not just by
way of allocation and scheduling of computational tasks, but also in the implementation
of computational tasks. Functionally equivalent components of a design may differ in
algorithm, architecture, implementation technology etc. Current synthesis methods fail to
capture and exploit this richness in the application domain, thereby resulting in inflexible
and sub-optimal system designs.

Even with a restricted scope, design space exploration is a computationally
complex problem. The constrained optimization problem that design space exploration
can be cast into is a NP-hard problem [24]. Exploration and synthesis in a complex,
higher-dimensional design space is a much harder problem. Optimal search methods
have poor scalability and cannot be used for synthesis in large spaces. Heuristic based
search methods can be employed; however, it is difficult to develop effective heuristics
for dynamically adaptive systems, where the performance requirements, resource
availability, and functional goals change over time.

The design methodology presented here overcomes these limitations of current
design and synthesis methods. The modeling environment enables creation of large,
flexible design spaces with explicit modeling of alternatives. Retaining alternatives,

which otherwise would have been eliminated at an early stage in a localized decision
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making, till the stage of system synthesis improves the potential for finding a more
optimal solution. In addition, capturing technology variants of an implementation as
alternatives enhances the adaptability and portability of a design to a new hardware
platform.

The constraint based design space exploration and pruning method developed
here is valuable from several perspectives. The constraint language that has been defined
allows for expression of arbitrary complex user-defined design objectives. Multiple
design goals may be specified as constraints, combined together in different ways and
satisfied simultaneously. When design space is pruned based on constraints it
automatically implies that all the designs in the pruned design space are correct with
respect to the criteria specified in the applied constraints. The iterative and interactive
design space exploration allows the designer to exercise different trade-off scenarios.
Different constraints may be selectively applied or relaxed, and the tool allows the
designer to visualize the effect of the applied constraint.

The OBDD based symbolic constraint satisfaction method is a novel contribution
of this research. The primary advantage of the symbolic constraint satisfaction method is
that it offers complete coverage of the design space at a low computational cost. In
general the symbolic constraint satisfaction method is highly scalable, and extremely
large design spaces have been explored and pruned using this method. The exponential
growth of OBDDs remains an unsolved problem and may cause the symbolic constraint
satisfaction to become intractable in a non-deterministic manner. Experience indicates
that exponential growth may occasionally occur when satisfying performance constraints.

A simple workaround to this non-deterministic exponential growth is to impose a limit on
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the maximum number of nodes that may be created in the OBDD implementation
package, which causes the OBDD algorithms to gracefully terminate when the node limit
is crossed.

It must be emphasized that the constraint based design space exploration
developed here is not an optimization technique. The approach does not guarantee in any
way “best” or optimal designs. The approach is geared towards progressive pruning of
the design space based on the specified constraints, and the only guarantee that can be
made is that the designs remaining in the pruned design satisfy all the constraints that
have been applied. The end product of the design space exploration is not necessarily a
single design and the quality of the remaining designs is subject to the constraints that
have been applied.

While this research focused on design and synthesis of mode-based structurally
adaptive computing systems, the techniques developed here have a wider scope and
applicability. Other component-based design approaches may benefit with explicit
representation of alternatives, and constraint based design space exploration.

The design space representation and exploration methods presented here are part
of a larger framework developed for design, synthesis, and implementation of mode-
based structurally adaptive computing systems. Additional tools in the integrated
framework provide further capabilities for system simulation and system generation. The
generated system is deployed in concert with a runtime environment that provides
reconfiguration capabilities. Details of the additional tools and the runtime environment
can be found elsewhere [2][3][4]. The integrated framework has been used in design and

implementation of several representative systems including the AMATR system.
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Future work

The outcome of this research is a prototype environment for design and synthesis
of multi-mode structurally adaptive computing systems. The methods and tools
developed have been successful in addressing the specific needs of this class of systems,
however, the research also uncovers several areas where further research and
development is desired, to enhance the usability as well as the applicability of the tools.
There is scope for future enhancements both in the modeling of design spaces, as well as
in the design space exploration. The following sections introduce some potential future

work in these areas.

Modeling of Design Spaces

In the course of this research several issues were identified, that would improve
the coverage and applicability of the modeling environment developed in this research.
Some of these may be easy to offer as extensions to the existing modeling environment
and others would require further research in terms of the impact on the overall design and

synthesis methodology.

Modeling computations

The computations to be performed in the different modes of operations are
modeled as dataflow. Dataflow as a model of computation is successful in capturing
typical signal/image processing computations. However, dataflow is not the natural
model of computation for many other types of computations e.g. control-dominated

computations, state-based computations. Typically, when composing such computations
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as a dataflow, the engineer resorts to hidden semantics i.e. by creating very large grained
dataflow blocks and hiding all the “non-dataflow” activity/composition within the blocks.
This diminishes the composability and verifiability of the system, and it renders the tools
unattractive for modeling such computations. It is desired that the modeling environment
support multiple models of computations for capturing the computations in different
modes of operations. The interaction semantics must be clearly defined, when
components in different models of computations interact. There have been some efforts
in this area [46], and the modeling environment may be extended to support multiple

models of computations.

Modeling resources

The modeling environment and design space exploration assumes a fixed resource
set and topology. In many design scenarios the resources are not pre-defined and one of
the objectives of design space exploration is to determine an optimal resource set and
topology for the given application. For such scenarios it may be possible to extend the
concept of modeling alternatives to resource modeling. A resource space may be
modeled with alternatives to capture multiple different hardware architectures. To the
design space exploration, this introduces another degree of freedom that raises the
complexity of the exploration method. The constraint language needs to be extended to
be able to bind the resource space, and express complex associations between

computations and resources.
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Parametric modeling

The modeling environment supports creation of design spaces with explicit
enumeration of alternatives. Parametric design as described in the background survey is
also a powerful technique for creation of design spaces. Both parametric as well as
enumerative approaches have their areas of strength. Parametric approaches are
extremely powerful when the design structures are regular and it is possible to
characterize design variations with parameters. On the other hand explicit alternatives
are useful, when designs are widely different and it may not be easily possible to
parameterize the variations. For creation of flexible design spaces a better approach may
be to enable both parametric as well as enumerative approaches. The primary challenge
with parametric design spaces is in the potentially infinite design spaces that can be
created. To bind and prune parametric design spaces may be much more complex and

challenging.

Constraint representation

Over the course of this research it has been observed that managing constraints
that have been distributed over a large hierarchical model becomes a challenge itself.
Constraints are defined over the models with respect to a specific application scenario,
hardware architecture, and other design objectives. When retargeting the modeled
system to a different scenario, the previously specified constraints are no longer valid.
Discovering all the constraints that have been sprinkled over the models and modifying
them is cumbersome at best. New constraints may be specified; however, it is difficult to
guarantee that the newly specified constraints are consistent with the previously specified

constraints. The problem that is being observed with distributing constraints over a large

140



hierarchical model is similar to the code “cluttering? ...” problem being considered by
researches in aspect oriented programming. Constraints as being considered in this
research are clearly a separate aspect from the functional and behavioral aspects, and
often they crosscut. A new research is being proposed that isolates the specification of
constraints in a separate aspect [47]. All the system constraints can be specified in this
separate aspect, and a process known as weaving automatically distributes the constraints
over the models at the design space exploration time. Thus, the constraints are not
directly linked into the models, and when a new scenario or hardware architecture is
presented it may be described with new constraints in this separate aspect. There is one
more important aspect of this new direction of research. In the constraint satisfaction
approach presented system level properties are always composed bottom-up from
component level properties for the purposes of constraint satisfaction. This new research
on the other hand envisions considering system-level properties and distributing those
over sub-systems, which involves decomposition instead of composition. By merging
these two approaches i.e. composition and decomposition the scalability of constraint

satisfaction may be improved.

Constraint-based Design space exploration

Phase transitions and design space exploration

Recently, some interesting results have been obtained in the study of complexity
of some NP-complete problems, most notably constraint satisfaction, k-sat, etc. These
studies reveal that while the worst-case complexity of this class of problems may be

exponential, the typical case complexity is not necessarily exponential. Results indicate
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that an order parameter can be defined, and the really hard problem instances occur
around particular critical values of these order parameters [45]. Moreover, the critical
values form a boundary that separates the problem space into two regions. Problem
instances in either region are low complexity. The change that occurs in the
computational complexity of the problem instances going from one region to another is
similar to the phase transition phenomena in physical systems. Hence, such studies in
computational complexity are generally referred to as phase transitions in computations.
The results in phase transition studies may have some relevance to the constraint
based design space exploration. Phase transition studies in constraint satisfaction indicate
that phase transition in the computational complexity of constraint satisfaction occurs
going from the under-constrained to the over-constrained problems. Thus, in constraint
satisfaction problems the under-constrained and over-constrained regions are separated
by a critically constrained region, which is characterized by hard problem instances. The
progressive pruning that takes place in the constraint based design space exploration
presented involves going from an under-constrained design space with a large number of
potential designs to an over-constrained design space with a few feasible designs. An
interesting question that may be asked is about the existence of a critically constrained
region in design space exploration. If there is a critically constrained region, is it possible
to avoid the critically constrained region? Can an order parameter be determined for the
constraint based design space exploration? Investigating these and similar issues may

form the direction of a future research.
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Composition of system-level properties

This research demonstrated the composition of system-level latency, power, cost,
area, etc. from component-level properties, which is essentially an additive composition.
However, many more system-level properties such as signal jitter, noise levels,
reliability, may not necessarily compose additively. Reliability for example composes
multiplicatively from component-level reliability. Throughput of a pipelined data path is
the min throughput of the components on the data path. Throughput of parallel data paths
on the other hand is the sum of throughput of all data paths. A research interest would be
to generalize and formulate different composition “styles” and explore the possibility of
composing these properties symbolically. It is clear that this type of composition may
not be entirely accurate; even so, symbolic composition may be valuable in quick and
coarse estimation of these system-level properties. There are further issues with the
scalability of such symbolic composition. Multiplicative composition is clearly not a
good candidate for symbolic methods. Results indicate that irrespective of variable
ordering multiplication when represented as a Boolean function over binary vectors has

an exponential complexity [39].

Hierarchical constraint satisfaction

The design spaces that the presented approach addresses are composed
hierarchically, and the current approach when satisfying constraints explores the entire
hierarchy and checks constraints at the lowest level in the hierarchy. The scalability of
the presented approach is sensitive to the depth of hierarchy. It might be possible to
improve the scalability of the exploration and constraint satisfaction by limiting the depth

of exploration. When limiting the depth, some approximations have to be made about the
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properties of the sub-system and its design space at that depth. This to some extent
weakens the design space exploration described here, as completeness guarantees are
voided. However, in some situation the designer may be willing to sacrifice

completeness in favor of faster results. The exact trade-off scenarios need to be explored.

Embedding design space exploration

Structurally adaptive systems are being considered for fault management. The
main theme is to create multiple designs for a system, each of which is customized
specifically to compensate for one or more fault scenarios. In the presence of a fault the
system can adapt by reconfiguring with a different configuration. The primary difference
from multi-mode systems is the non-determinism. The system behavior can be
determined and characterized a priori for multi-mode systems. The fault behavior of a
system on the other is not predictable. With a good diagnosis and observation it may be
possible to narrow down the fault mode to a small set; even then, it may not be possible
to determine whether it is a single fault or group of faults. In such situations retaining a
smaller design space at runtime may be advocated. An embedded design space
exploration may be used to determine the most appropriate system configuration, with the
fault scenario expressed thru constraints. Many issues need to be investigated in order to
arrive at an embeddable design space exploration. The first concern is the representation
of design space. Some results from the research in embedded models and generators may
be of relevance here. The representation must be compact and minimal, yet amenable to
exploration and rudimentary analysis. The biggest concern still is the exploration
approach itself. OBDD based symbolic methods are powerful for constraint satisfaction;

however, memory and resource usage of OBDDs does not lend them directly to an
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embedded implementation, where compute resources and memory is at a premium. The
exponential blow-up of OBDDs is clearly a problem and must be addressed or avoided.
Results from phase-transition studies may be relevant i.e. if an order parameter can be
estimated from the problem and constraint characteristics to avoid the critically
constrained region. Constraints also may be annotated with priorities in order to establish
the criticality of a particular constraint to a situation. Non-critical constraints may be

relaxed.
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Appendix A

MODEL INTEGRATED COMPUTING

Model-integrated computing (MIC) is an approach developed and matured over a
decade for design and synthesis of computer based systems. A key feature of these
systems is the tight integration of the information processing architecture with the
physical environment. This tight integration introduces significant challenges for the
underlying design technology. In MIC integrated, multiple-view, domain specific models
capture information relevant to the system being designed. Models explicitly represent
the designer’s understanding of an entire system, including the information-processing
architecture and the operating environment. Integrated modeling explicitly represents
dependencies and constraints among various modeling views.

The particular type of MIC discussed here is Model Integrated Program Synthesis
(MIPS). MIPS uses integrated models to capture design information, and from the
models generate executable or analyzable artifacts. A process known as Model
interpretation is used to extract information from the models and translate the
information into a format usable by the execution environment or different analysis tools.
The model interpretation is essentially a semantic translation that applies the execution
semantics to the models contained in the MIC database. The Multigraph Architecture
(MGA) provides a unified software architectures and framework for building MIPS
environments [30]. The created MIPS environments are domain specific and include
tools for creation, analysis and storage of models, and interpretation and generation of

executable artifacts from models.
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The core components of the MGA include a meta-programmable Graphical

Model Editor (GME) for model creation, Model Database for model storage, and Model

Interpreters for model transformation and program synthesis. Figure 34 shows the

overall MGA architecture. The creation of a domain specific MIPS environment in the

MGA architecture involves the following steps:

1.

Systems and domain experts conduct domain analysis and specify a
modeling paradigm, which can capture key aspects of the system. The
modeling paradigm is comprised of the concepts, relationships, model
composition principles and constraints that are specific to the domain.
In MGA the modeling paradigm is specified in a meta-modeling
language.

Using the formal representation of modeling paradigms, a domain
specific modeling environment is created. = The meta-language
representation of the modeling paradigm is used to generate
components of the meta-programmable Graphical Model Editor (GME).
This step is mostly automated by MGA meta-tools.

Domain experts specify and implement Model Interpreters. Model
Interpreters perform a mapping between the domain model objects and
the execution environment model objects. Different model interpreters
are also created for mapping the domain. Thus, the architecture allows
different analysis and synthesis tools to share design information that is
common without requiring the tools to use the same modeling

paradigm.
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Figure 34: The MGA Functional Components

Application synthesis in the customized MIPS environment involves the

following steps:

1 Domain and application engineers build integrated, multiple view
models of systems to be designed and implemented. The multiple view
models typically include requirement and design models, are based on
formally specified semantics, and support performance, safety and
reliability analysis processes.

2. Domain and application engineers analyze the models according to the
nature and needs of the domain. The analysis is typically supported by
generic tools (i.e. simulation and reachability of behavioral models).

The domain specific models are translated into the input languages or
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input data structures of the connected analysis tools. The model
translation is completed by the MGA model interpreters.

If necessary, the validated models are used for the automatic synthesis
of software applications. MGA is useful for providing customizable,
domain specific, visual model editors. MGA also provides a framework
for gaining access to the information contained in the models and for
providing interfaces to analysis tools or a run-time support system.
MIC, and in particular MIPS, provides an excellent framework for

development of advanced software systems.
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Appendix B

ORDERED BINARY DECISION DIAGRAMS

Ordered binary decision diagrams, introduced by Bryant, are a canonical
representation of Boolean functions [39]. The canonicity is an upshot of the ordering
restrictions imposed on the Binary Decision Diagram representation introduced by Lee
and Akers. OBDDs represent Boolean formulas as directed acyclic graph. This
representation is not only more compact than the traditional truth table, sum-of-product
representations, but is also more suitable for performing logical operations over Boolean
functions efficiently. These properties make OBDDs a suitable data structure for
symbolic Boolean manipulation.

An OBDD represents a Boolean function as a rooted, directed acyclic graph.
There are two kinds of nodes in the graph, terminal (leaf) nodes and non-terminal
(internal) nodes. Every non-terminal node in an OBDD is labeled with a variable of the
Boolean function. There are exactly two arcs leaving a non-terminal node, labeled with
‘1" and ‘0’ respectively, directed towards its two children. There are exactly two terminal
nodes in an OBDD labeled with ‘1’ and ‘O’ representing the truth value of the function
represented by the OBDD. These terminal nodes are also referred to as Sinks. The
directed acyclic graph represents a type of decision tree. Value of the Boolean function
for a given assignment of variables can be determined by tracing a path from the root to
one of the terminal nodes, following the edges indicated by the value assigned to the

variable. The function value is given by the label on the terminal node.
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OBDDs as the name suggests impose a strict ordering on the variables that is
manifest in the structure of the directed graph. It is required that for every non-terminal
node, its labeling variable is higher ordered than the labeling variables of either of its
non-terminal child under the variable ordering. A direct consequence of this requirement
is that while evaluating a function for a given assignment by traversing the path from the
root to one of the terminal nodes each variable is evaluated only once. The variable
ordering has strong implications on the size of the graph. The effects of the variable

ordering are described further in the following paragraphs.

Figure 35 OBDD representation of (a+b).c {ordering: a <b < c}

OBDDs form a reduced, canonical representation. For a given variable ordering,
different OBDDs representing the same function are isomorphic. This property allows
efficient equivalence testing. Logical operations such as conjunction, disjunction,
negation etc. are implemented as graph algorithms on the OBDD structure. The space

and time complexity of these algorithms is polynomial in the size of the OBDDs, given
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by the number of OBDD graph nodes. For reasonable sized OBDDs, this implies that
symbolic manipulation of represented Boolean function remains feasible. Figure 35

depicts the OBDD for the Boolean function f =(alCb)Cc.

Effects of variable ordering

For most functions, the size of the OBDD representing the function is strongly
dependent on the variable ordering. The OBDD size for a function, can be exponential in
the number of variables for some choices of variable ordering, while for other choices of
variable ordering it may be linear in the number of variables [40]. Thus, a poor variable
ordering can drastically increase size and thereby time required to perform operations on
that OBDD.

Figure 36 illustrates the impact of variable ordering by showing two OBDDs with
representing the function f =(alCb)C(cCd)C(elC f), with variable ordering
a<c<e<b<d<f and a<b<c<d<e<f. The OBDD on the right requires 6
nodes, whereas the OBDD on the left require 14 nodes to represent the same function.

Intuitively, this effect of variable ordering on the OBDD size can be reasoned as
follows. The size of the OBDD is related to the branching in the OBDD. In the worst
case, each branch of a non-terminal node leads to a unique non-terminal, except the nodes

at the last level (labeled by the lowest ordered variable) which branch to one of the two
terminal nodes. The size of the OBDD in this worst case is O(2"), where n is the

number of variables in the Boolean function. The size of the OBDD starts going down
from this worst case if there are early branches from the nodes at a higher level to the

sink. This is dependent upon how early one can deduce information about the function
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value after reading variables in a given order. So for the example presented above, in the
second ordering one can deduce the function value, after reading pairs of variables,

whereas in the first ordering one can make no such deductions.

Ordering:a<c<e<b<d<f Ordering: a<b<c<d<e<f

Figure 36 Comparison of OBDD size for different variable ordering

Variable ordering in most OBDD implementations is static and remains the same
throughout the application. Some heuristics can assist an OBDD user in deciding
variable ordering for a particular problem domain. Generally, common sense and
dependency observations guide these decisions.

Some OBDD implementations support dynamic variable ordering. In these

implementations, variables are automatically reordered, based on some heuristic to find
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an improvement in the size of the OBDDs. The heuristics for variable reordering that
have been proposed can be distinguished into two categories: global reordering heuristics
and local reordering heuristics. Sfting is a common local reordering method that swaps
adjacent variables to improve the overall representation [41]. Window permutation
extends the sifting method by performing the variable swap within a larger window [41].
If window size equals the number of variables, then it can be considered a global variable
reordering. Global reordering has greater potential gains but is usually more time

consuming. Dynamic variable reordering is attractive in some applications.
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