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Abstract

Embedded Automotive systems are becoming increasingly compleasautth difficult to design and
develop. Model-based approaches are gaining foothold in this area, and incydasisgstem design and
development is being conducted with model-based tools, most notabp®&lenulink® and

Stateflow® from Mathworks Inc., among others. However, these &meladdressing only a limited aspect
of the system design. Moreover, there is a lack of integration betwesnttws, which makes overall
system design and development cumbersome and error-prone. Ebidyathese shortcomings we have
developed an approach, based on Model-Integrated Computing, a technology matuedecade of
research at ISIS, Vanderbilt University. The center-piece of gsoach is a graphical modeling language,
Embedded Control Systems Language for Distributed Processing. Adktrdeslators and tools have been
developed that facilitate the integration of ECSL-DP with industmydsrd Simulink and Stateflow tools,
and open the possibility for integration of other tools, by providing conveare extensible interfaces. A
code generator has been developed that synthesizes implementatioroodideration and firmware glue-
code from models. The approach has been prototyped and evaluated witlhim swade example. The
results demonstrate the promise of the approach, and points to intpdestctions for further research.
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1. Introduction

Embedded automotive systems are becoming notoriously difficult to desiigieaelop. Over the past
years there has been an explosion in the scale and complexity of thtesessywing to a push towards
drive-by-wire technologies, increasing feature levels, and inagaapabilities in the embedded
computing platforms. In order to address this level of complexity,utmretive industry has in general
embraced the model-based approach for embedded systems developmevey tloevapproach is
confined to only the functional aspects of the system design andtexsto a limited suite of tools, most
notably the Mathworks [3] family of Matlab®, Simulink® (SL), Stdb@f® (SF) tools. Undeniably
Simulink and Stateflow are very powerful, graphical systengdesiols for modeling and simulating,
continuous and discrete event-based behavior of a dynamical systenvddaivese tools by no means
cover the entire gamut of embedded systems development. Functisigal dewsoever difficult, is only
one aspect of embedded systems development. There are severedwiblex activities such as
requirement specification, verification, mapping on to a distributed phatfecheduling, performance
analysis, and synthesis, among others in the embedded systems developmssit Phederight side is that
there are tools which individually support one or more of these olvetapmental activities. The down
side is off-course a lack of integration among these tools and thevbtathfamily of tools, which makes
it extremely difficult to maintain a consistent view of the systanthe design progresses through the
development process, and also requires significant manual effortatimgrdifferent representations of
the same system.

Motivated by this severe shortcoming in the embedded automotive sydexelopment process,
cooperation was initiated between the Institute for Softwarerated) Systems (ISIS) at Vanderbilt
University and DaimlerChrysler (DC) AG in 2002 to investigate and dealaggpproach that specifically
addresses the deficiencies in the embedded systems developneessertaining specifically to
distributed embedded systems. The cooperation intended to leveragetredeady underway in this
direction at ISIS, and other research institutes. Specificallyntaet was to built upon Embedded Control
Systems Language (ECSL), a graphical modeling language develdS¢8 atrlier. This language
provides the ability to import existing SL/SF models and mak®a teailable via open and extensible
interfaces. However, ECSL addresses only the functional aspectbefided systems design. Thus, the
specific purpose of the DC and ISIS cooperation is to extend this languaddréss other aspects of
embedded system design mentioned earlier. This cooperation being limiteration and resources, does
not purport to cover the entire range of the embedded systems development poessr it endeavors
to design an open and extensible solution that could be enhanced with festreech.

This report describes our approach, prototyped as part of this coopebatsed on Model-Integrated
Computing (MIC) [1], a mature technology developed at ISIS, Vanderbiltdgsity over a decade of
research. The approach that we present is not designed to replace fldeahtiols in the development
process, but complement these tools as an integrator, by fagijibaterchange between the different tools,
and providing convenient and open interfaces with which it is possible to iegna tools with relatively
modest effort. The key ingredient of our approach is an extensilgbigahmodeling language that we call
Embedded Control Systems Language for Distributed Processing {BEFMWe surround this language
with a suite of translators and tools that facilitate the integratf this language in the embedded
automotive developments process, starting from functional specificiian to synthesis of executable
code for the distributed platform. We demonstrate the tool-chaircteased with an example — Rear
Window Defroster — that is complex enough to exercise the key cajeahilitthe tool-chain, and yet
modest enough to be able to evaluate it reasonably within the duwtan project.

This report consists of the following sections: Section 2 provides amieweof the embedded systems
development process, and highlights the specific activities ineel@pment process that will be
supported by ECSL-DP and the associated tool-chain. Section Jodsdtre modeling language ECSL-



DP. Section 4 describes the tasks performed and the technical desigoarietgenerator component.
Section 5 describes in brief the Rear Window Defroster example, anppieation of the ECSL-DP tool-
chain to this example. Section 6 concludes this report and offers soggédsti future work. An Appendix
introduces the meta-modeling concepts used in GME, which are employed inShedeEOmeta-models.



2. Embedded System Development using ECSL-DP

Figure 1 below depicts the conceptual view of activities in amzative embedded systems development
process. Each rounded block denotes a particular activity withidehelopment process. Arrows indicate
the workflow between different activities in the sense that infoomagenerated during a certain activity
will be necessary or has an impact on another activity (ending affowgxample, the mapping of
software components to ECUs requires information about the existing EGasding the hardware-
topology and component design. Activities can roughly be grouped in three Bléatcbvare Design’,
‘Software Design’, and ‘Mapping’. ‘Requirements Engineering’ is not within tope of this project,
although it is the basis for most of the modeling and development iastiitode Generation’ is shown in
the conceptual development process assuming a model-based approatbbvikdbr synthesis of
functional code, in the absence of which this step can be viewadrasal ‘Code Implementation’.

fHardware Desigrm KSoftware Desigh

(Refinement)

HW-Topology Design J | Structural Design

2 1 J v
L ¢ \([ Mapping \/ ¢

Component Ik
Firmware Mapping | Behavior

K Implementation Ij i K Implementation j

Communication
Mapping

\_

e
N

Firmware ECU Intearation Behavior
Code Generation 9 Code Generation

v

System Code
Generation/Integration

,__________
e

Code Generation

Figure 1: Activities in modeling distributed systems — Conceptal

The intent in the development process is to enable a hardware indepesigmbéithe functional
software in order to support maximum reuse of software entitiesefdre, it is a major goal for hardware
and software design to be developed in parallel and mostly indepgnaoieaéich other.



We briefly elaborate upon the key developmental activities below:

L]

Software Design— deals with: a) structural design, b) component design, and c)
functional/behavioral design. The Software design in this viélevis a top-down design
approach. Structural design refers to the hierarchical decompositioa efrtbedded system into
subsystems and sub-subsystems, from a functional viewpoint. SW Corhdesigm is another
form of decomposition which is not independent of the functional decompositioeybovbrings
into bear more of the classical embedded software concerns sugai-tise requirements, real-
time tasks, periodicity, deadline, scheduling, etc., and the compdesigh is performed with
primarily these considerations. The functional design or behavior imptatian refers to the
elaboration of the leaf elements of the hierarchical structusijén terms of a synthesizable
realization.

Hardware Design— includes the specification of ECU-s in a net-work and their conneetitins
busses, defining an architectural topology of the distributed embeddftmplaRefinements of
this activity include design of individual ECU-s, selecting the procesdetsrmining the memory
and I/O requirements. If custom hardware elements are used thity acty also require
implementation of elements of the Firmware for the ECU.

Mapping — includes activities involving both software and hardware objentgxmple,
decisions regarding the deployment of certain complete or pamtietiéns to hardware nodes
which are part of the network and the assignment of signals to bus messages.

Code Generation/Implementation -involves creation of low-level coding artifacts, which
include RTOS configuration, firmware configuration code, behaviorpléementation of the
components, etc.

The conceptual diagram captures an abstraction of the design process. thstabstraction into reality, a
number of tools are needed that support one or more of the activities sin the conceptual diagram.
Figure 2 below overlays the conceptual developmental process withaléseNote that this diagram does
not show all the tools used in design process, only the ones relevant for thisidisclisese supporting
tools include:

GME/ECSL-DP: This is the Generic Modeling Environment [2], a meta-progranemabdeling
tool developed at ISIS, Vanderbilt University, tailored to supporEtB8L-DP modeling
language. Note that tailoring here does not refer to source code maualificatireation of a
specific version of GME, but simply loading a paradigm definititen (Bpecified with meta-
models), in a running instance of GME.

ECSL-DP/CG: A specialized code generator that produces various producticactstie.g.
source code, configuration files, etc) from ECSL-DP models.

ML2ECSL : Import translators that allow importing Simulink and Stateflow nuho the
ECSL-DP modeling environment.

SL/SF. These are the Simulink and Stateflow tools.
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Figure 2: Activities in modeling distributed systems — With Tools

In the above figure, the supporting tools listed above provide suppanefdetelopmental activities as
shown in the table below:

Tool Activity
SL/SF Simulink and StateflomGOTS) are used for the initial construction of the functional

design, and behavior implementation. Note that the ECSL-DP has semantic and
syntactic constructs that allows the creation of functional desigrehawithin the
GME/ECSL-DP environment, however, the intended usage of the tookssiieh
that SL/SF is used for the functional design. This is consistent withates ©bjective
of ECSL-DP playing the role of integrator.

ML2ECSL This is an information/data interchange taaddel transformer) for importing SL/SF
functional design models into the GME/ECSL-DP environment. This &millthtes
easy integration of ECSL-DP in the existing development process tiohtés\SL/SF.




GME/ECSL-DP| The key element of the tool-chaimodeling environment) facilitates various modeling

activities, including:

mapping.

GME.

1. Annotation of structural design, SW-component design, and behavior
implementation to supply information needed by the code generator.

2. Creation of HW-topology design models, ECU-design models, and firenwar
implementation design models.

3. Creation of deployment models that capture component and communicat

The activities are performed in a model-based, graphical way usingphadilities of

on

ECSL-DP/CG Theode generation tool produces code for firmware, ECU integration, and behavi

designer, if necessary.

from the models. This code is in addition to hand-crafted code that isesipglihe

The above discussion can be summarized with the following ECSL-Dfehawl (see Figure 3),

supporting the development process described above.

SL/SF

J

GME
ECSL-DP

ECSL-DP/CG
v

Design Artifacts

r'd

A

Initial Design Construction
(Modeling and Simulation)

System-level Design

(HW modeling, SW annotation,

mapping)

Generation

Figure 3: Tool chain for Embedded Systems using ECSL-DP

The tool chain shown above uses and extends existing tools that have beereddwe &S earlier,
except for SL/SF which is a COTS tool. The ML2ECSL translator cisnsigshe MDL2XML and
XML2ECSL tools, ECSL-DP is an extension of the ECSL modeling lang@agkthe ECSL-DP/CG

derives from the previously developed ECSL code generator.



3. ECSL-DP Modeling Language

The ECSL-DP modeling language is based on the existing ECSL modelnge as noted earlier.
ECSL is a graphical design modeling language, which has design conaodlastsi the ones in SL/SF.
Specifically, it supports (1) dataflow-diagram oriented modeling ofesijows, and (2) hierarchical state
machine diagrams to model finite-state behavior. ECSL wadapegtin an earlier ISIS research effort [4]
to overcome the shortcomings of an SL/SF dominated development procesiadlyewith the following
capabilities:

« Add annotations and additional information, such as timing behavior, memow, gsagrete
data-typing, etc. that cannot be represented in SL/SF models natively

* Allow experimenting with code-generators, to provide different opétion, different
programming language and different RTOS bindings for the embedded soffivarepen
architecture of GME allows such experimentation, which is déficult to do in the SL/SF
context natively.

¢ Render SL/SF models/data openly accessible, with an intuitiveh&Pis automatically generated
from a precise meta-model of the SL/SF model, for model maripula

« Allow development of integrated tool-chains that enable analysisyarbesis of code from
models, as well as overcome limited SL/SF support for integration

ECSL however falls short on aspects of embedded development proegastréd distributed systems,
most notably:

§ ECSL supports modeling only the functional and behavioral aspeetali#dded control systems
§ ECSL does not support componentization or task modeling
§ ECSL does not support platform modeling

ECSL-DP leverages off the existing capabilities of ECSL and inbeglsemantic and syntactic constructs
for addressing the above limitations, by extending the ECSL languathe. Hest of this section, we first
describe the ECSL modeling language, which now forms a subset aE8le BP, and then we describe
the extension elements

3.1 The ECSL Modeling Language

ECSL is a graphical language supported by GME. For GME, a modetiggdge is defined in terms of
meta-models that capture the abstract syntax of the languagelusioative purposes, Figure 4, and
Figure 5, below show the (GME-style) meta-models of ECSL

Following the concepts in SL/SF, the ECSL models fall into two moategories: 1) Simulink models,
and 2) Stateflow models. The ECSL paradigm uses model containgrsHolr der >>s, in GME
terminology) to separately specify these two categories:

e theSi mul i nk folder (which contain§yst ens corresponding to Simulink models), and

« theSt at ef | owfolder (which contain$t at es corresponding to Stateflow models)

! In the following discussion the knowledge of the meta-modeling approadhiru€ME is assumed. The
Appendix: Metamodels for Graphical Languages provides a briefsuyn while the GME software
distribution contains the precise documentation as well as a detdibeidit



The two diagrams show the meta-models for the ECSL paradigm. Egchrdieepresents a portion of the
meta-model, which follows the GME conventions: a folder clasate models of the same category in
one container. Cross references among the meta-model portionewaealale. if a meta-model element
appears on one diagram, in another diagram one refers to it by having acdelael@ment of the same
name but with a stereotype of the form <<...Proxy>>. For example, in FgthmeBl ockRef Pr oxy (of
stereotypec<Ref er encePr oxy>>) meta-model element, refers to, and is the same meta-modehéleme
asBl ockRef (of stereotypec<Ref er ence>>) on Figure 4.

In the following discussion we briefly describe both the meta-mpaigions. On each diagram, one can
find a number of classes with various attributes. The attributesvitlie GME conventions (i.e. their type
comes from the type hierarchy for attributes in GME), and theindieative of the GUI technique for
setting the attribute (instead of the actual type of the data). Irlitemrmalst GME attribute types are treated
as strings, without further interpretation. Note also that the meta-scajgiure the abstract syntax for the
models. As such, they may contain elements that seem like graptricpbnents (e.d.i ne), but their
semantics is tied to the semantics of the underlying modeling language.{i:@e means a dataflow
connection between ports of blocks). How model elements are gotisaiélized in GME is determined by
their stereotypes, for details see the GME documentation.

3.1.1  Simulink portion

The Simulink portion of the meta-model supports the dataflow-odemntdeling of dynamical systems.
The following description elaborates upon the depiction in Figure 4. Therébplentainer for Simulink
models is thési mul i nk folder. Note that a folder does not have any composition semantgsiritply a
container for organizing models. As such the top-level container of iBkmabdels with a well-defined
composition semantics is reallysgst emwhich is a <#bdel >> (in the GME terminology) contained in
theSi mul i nk folder.Syst ens are hierarchical as can be observed from the containment relation
between th&yst emclass, and thBl ock class which is an abstract generalization of3et emclass.
Syst ens are semantically equivalent to the SL concept of SubSystems, and hasitamn semantics are
that of the dataflow model of computation [5]. ThuSyat emclass defines a dataflow relation between
the containedl ocks (which may beSyst ens, Pri m ti ves, orRef er ences), using the_i ne
association class, that associd®est s of Bl ocks. Note thatBl ocks, Port s andConnect or s are
abstract base types (i.e. they cannot be instantiated, thus there are helemeéets directly
corresponding to themil ocks are subclassed infyst ens, Ref er ences, andPri m tives. The
Ref er ence class (not to be confused with theRef er ence>> concept and stereotype of GME)
represents an imported block (a library block in SL/SF), whiteiam t i ve is a basic block, that has a
concrete implementation, and it exists in the local conBixtcks also contairPar anet er s and

Annot at i ons. Par anet er s define configurable properties of a block, for example Ghie parameter
of theGain primitive, allows configuration of the gain factor with which the blogiplifies the input.
Annot at i ons are documentation concept that allows a developer to annotate and itsait te
comments in an essentially graphical specificatfornot at i ons do not have any operational
semantics.

Por t s are subclassed intenabl ePort s, Tri gger Port s, | nput Port s, andQut put Port s, each
of which corresponds to equivalent modeling concepts in SL/SF and hasntheaaantics.

Connect or s are sub-classed inRor t s andBr anchPoi nt s. TheConnect or abstraction is simply
a meta-modeling convenience, which allows abstracting all erttiteé<an participate in a dataflow
association, specified with the ne association class. Notice that the association tlase is
stereotyped as a €onnect i on>> and implies a specific visualization as connecting lines in GME.
Thus,Li nes denote dataflows amorgj ocks within aSyst em(via theirPor t s and intermediate

Br anchPoi nt s).



We purposefully, ignore thBl ockRef class in this description as its role will be clarified in the
subsequent description on the Stateflow portion of the ECSL meta-model.

An observation must be made here regardindgtrenchPoi nt concept. ABr anchPoi nt is an artifact
of the Simulink graphical visualization and layout mechanism, anddagerational semantics. An
oversight on part of the early ECSL developers led to the inclusion of thisgtand=CSL, which could
be removed in a future refinement.

Annotation
| ==Atam==
[
Text: field
BlockRer Fararneter
=<References= Parafreter | 2 atarrs=
[
‘I’ Value : field
Biock Fort
==mModel=» ==Atorm==
BlockType :  field fixed_point_target_size: enum
Description ; field fixed_point_target_type:  enum
Priority : field floating_point_target_type : enum 4 EnableFort
Tag: field 77| units enum ==Atom»>
Marne : field fixed_point_target_signed : enum StateswWhenEnabling - enum
0.
BranchPoint TringerFort
ancthin: ==pAtom== ==Atam==
TriggerType . enum
. InputPort
Prirmitive System simulink L =Atom=>
==Model== ==hodel== ==Falder== Mumhber: field
Deadline : field Mame : field
ExecutionTirme : field 3 QutputPort
Pariod : field ==Atome>
Mumber: field
o
Reference Line ) Connector
==Model== <=Connection== [______ L E’S‘ ==Atoms==
SourceType . field Mame : field
SourceBlock:  field

Figure 4: ECSL meta-model - Simulink portion

3.1.2 Stateflow portion

The Stateflow portion of the meta-model supports the statechkrtrstyleling of hierarchical finite state
machines, the semantics of which are described in [6]. Please réfgute 5 for the following
description. Thest at ef | owfolder containsst at e <<Mbdel >>s, which are root models for
hierarchical state machines, and is equivalent to the State concepBacBBt at e can contain a
number ofDat a, andEvent objects — each of which has the same semantics as the equival@mtsamc
SF, and subclasses of the (abstraicnsConnect or (as in “transition” connector) class. The
subclasses ofr ansConnect or includeJuncti ons, Transl nPorts, TransQut Port s,
TransStart (asin “transition” input and output ports and starting poitis}t or y, and

Connect or Ref s (which are<<Ref er ence>>s pointing to objects derived from the

Tr ansConnect or base class)St at es containTr ansi ti on <<Connect i on>>s. These
connections connect two objects (derived fromfhansConnect or class), and represent the state
transition concepts of the hierarchical finite state machine. Thatip®al semantics of transition is the
same as those of transitions in SF; however, the graphical representégicn b SF, transitions are



visualized as a line between the participating states. In E©&kver, a transition is between

TransQut Port andTransl nPort of the participating states. The introduction of these ports is an
artifact owing to a limitation in an early version of GME that did flotaaconnections directly to models.
The current version of GME allows making such connections, and there$bieuid be possible to remove
these ports in a future refinement of ECSL and consequently ECSL-DRoAdsdistinction exists in the
graphical representation of cross-hierarchy transitions. SF alloweections cutting across hierarchy,
since the SF visualization of hierarchical finite state maching$lédtened diagram. In GME however, this
is not feasible since there are no graphical means of depicting donsdmttween objects that are not
contained in the same parent. Therefore, ECSL relies on the use ofeesenghich are effectively
pointers to objects that exist elsewhere. In order to represent ehomghy transition in ECSL, a
developer must create a reference tolthans| nPort of the destination state in the parent state of the
source state, and then make a transition connection betweenaheQut Port of the source state, and
the referredir ansl| nPort .

A St at e model also containsBl ockRef <<Ref er ence>>, which points to 8| ock (contained in a
Syst em described above). This mechanism provides the linkage betweatefid® model and a
Simulink model. Within the Simulink hierarchy a state machinmepsesented asy st em that has
Port s. ThesePor t s have the same name as the input and oldpué variables in the state machine
model. ThisSyst emobject contains Bri mi t i ve S-Function Block, which is referred in tBeat e,
thus denoting the correspondence.

B thata . Stateflow BlockRefProxy
am ==Falder== ==ReferenceProxy==
ArrayFirstindex : field a
ArraySize field 3 0 Transition
DataType field - ==Zonnection==
Description ;. field Transtion P
Initialvalue :  field x| Action: - fleld
Max - fiald B GL_lard . field
Min - field 4 Trigger: field
Scaope enurm State
Units field ==Maodel==
Mame : field - dst |0 Ere |07
Cecomposition . enum |substate
Lahel field [0 ConnectorRef TransConhnector
Event 3 3§ 1 Fon e“‘”E’EI ==Reference== ==Atom==
==Atormes B
Description ; field -
Scaope enum
Trigger: enum Histary 0.7
Marme : field -
Histary
Junction |07 ==Atom==
Junction
Trans Start |07 ==Atarm ==
TransStart
==Atom==
TranzInPort (0.7
TransinFort
==Mtom=s=
Tran=0utPort (0.7
TransOutPort
==Atome=s=

Figure 5: ECSL metamodel - Stateflow portion



3.2

ECSL-DP Extensions

In order to address the limitations outlined earlier, the following exieagiave been introduced in ECSL-

DP:

Component Modeling — A component modeling view has been added (as a foldbtEi
terminology). This view combined with the existing ECSL capalslitibows software modeling
in two stages: (1) containing models that were imported from SL/SF, padoi&ing their
componentization

Hardware Topology Modeling — A hardware modeling view has been addecaéaa GME
folder). This view allows modeling the topology of the distributedf@iat including ECU-s,
Buses, their physical ports, and their connectivity.

Deployment (Mapping) Modeling — A software component to hardwapgpimg view has been
added (as an aspect, in GME terminology of the hardware modelingyighigllows the
deployment of components on ECU-s, including association with RTOS saeksapping of
component ports on to physical communication conduits (sensors, actuadidosisamessages)

The sections below detail the design of these new ingredients of theamgddafjuage ECSL-DP. Each
extension is described by a meta-model and these are in addition toshien@)e&ECSL meta-models
introduced above. Each extension can be considered as a hew sublangu@gk-biFE

3.2.1

Component Modeling

ECSL-DP components are created from existing ES@dt emmodels by encapsulating them in a
component. The notational extension introduces the following capabilities:

L]

Componentization. The designer is able to create components froks.bfocomponent is a
portion of the software model, which is deployed as a unit. The compzat#oniis done using
the GME containment and reference capabilities. Specifically, coemp®are GME models that
contain references to elements of the functional model (importedSitg. The designer can
create Components and specify which sub-trees of the hierarchiafdbdadiagram (i.e. the
Simulink model) are contained in that component by setting a refet@tive root of the subtree
within the component. One component in ESCL-DP may contain preciselyystem block. This
rule is enforced by a constraint.

Component ports. Components are deployed on processors (ECU-s), andgnication between
components is facilitated using run-time platform servicescffediocated components) and buses
(for components located on different processors), while interfacdg/sicpl devices: sensors and
actuators is also modeled. This necessitates the introduction oboentports. These component
ports should be connected to the system block’s ports.

Signal property definition (scaling, data type, bit width, etc.). Componetd pave attributes that
allow capturing the required properties. The properties are used iIC8le-BP/CG to create
compact code, which does not rely on the existence of floating-paiatidéib on the target
platform.

Real-time constraints on software models. Components have atemiergs that allow the
designer to specify the real-time constraints (e.g. latency) betsedected ports of the
component.

Software dataflow. In ECSL-DP, two-levels of dataflow have todresidered: inter-component,
and intra-component. The intra-component dataflow exists within théddoattodels and it is
imported from SL/SF. The inter-component dataflow is introduced bgidhigner after creating



components from the imported SL/SF models. This step also requipgingaf ports of
elements in functional models (referenced in Component modelsjtsogf@omponent models as
discussed above. In the generated code, the inter-component dataffgleimented using run-
time platform services as discussed above, whereas intra-compatefigw is implemented with
shared variables, local to a component.

Port and Signal naming. The names of ports and signals within the functiodel ane imported
as is from SL/SF. The names of component ports are determined topdeder. In code-
generation ECSL-DP follows the convention of using the name of the qoantoef a signal,
when there is a mismatch between the names of the connecting ports at&l sign

In summary, ECSL-DP components encapsulate SE{&F ens, support the definition of ports (and their
association with the ports of the encapsul&@gdt en), specification of signal properties and real-time
constraints. The execution time semantics of an ECSIC&Yonent is the same as that of the
encapsulate®y st emmodel.

Figure 6 shows the Component modeling portion of the ECSL-DP modeling tengdraelaboration of
the meta-model follows:

Component Model s<<Fol der >> is a container for th€onponent Sheet <<Mbdel >>-s. A
GME Folder is exclusively an organizational concept and has no coipasdmantics. A
designer can create one or m@arponent Model s folders in a Root Folder (not shown on the
meta-model), which is the unigue root container in a GME project.

A Conponent Sheet <<Model >> is a container fo€onponent <<Model >>-s, as well as for
component interactions which are modeled itlgnal <<Connect i on>>-s. A designer can
createConponent models within &onponent Sheet , and model their interactions by
creatingSi gnal connections between Component ports. For reasons of scalability, anahgvoidi
visual clutter, ECSL-DP allows a designer to create mul@pleponent Sheet models and
distributeConponent s over these. When there is a need to model an interaction between
Components that are not located on the s@orgponent Sheet , a designer must create a
Conponent Short cut <<Ref er ence>> in theConponent Sheet where he wants to make
the connection.

A Conponent <<Model >> represents software components. In GME, every modeling object
has a name. GME does not impose any restrictions on the naming. Howewde-Generation
requires that component names form a valid C identifier.ONeare attribute has been introduced
to overcome this restriction. This allows the designer to use a deseffiig@+form name for a
component, which is displayed in the models, and provide a separat€dégdtifier name in the
CNane attribute. Components contéBy st enRef <<Ref er ence>>, which is a reference to a
Syst enk<Mbdel >> (see ECSL: Simulink portion). Notice, the cardinality of 8yst enRef
containment which is set to 0..1. This prevents the user from creatinghraarerte System
references within a component. Note however, that this allowsrge&admponent-s that have no
System references. In a distributed automotive application, theesitaations when Component-s
relying on certain Sensor inputs (or generating Actuator outputs) amydemn an ECU remote
from the ECU that is connected directly to the specific Sensouch Situations forwarder
components are required that can forward the Sensor data. In ECSbfDonent-s that have no
Simulink System references, are considered forwarder components.

A CPor t <<At onp>-s, is an abstract class, concretize€lasPor t <<At onmr»>-s and

CQut Por t <<At onP>-s. These represent component ports and define the input and output
interface of a component. TiNane attributes ofCPor t defines a symbolic name for the port
that is used in code-generation (similar to@\anre attribute ofConponent ). TheDat aType



attribute is an enumeration of data-types of the signal (IntegereSgiible), and the

Dat aSi gn attribute specifies if the data-type is signed or unsignedDahasSi ze specifies the
size of the data-type representation as number of bitsDahal ni t attribute specifies the

initial value of the signal associated with the port. DaeaOf f set and theDat aScal e
attribute specifies the offset and scaling when converting from theliSknsignal data-type to the
concrete data-type specified on component port.MheandM n attribute specify the upper and
lower bound on the values that the physical signal associated witbithean take.

¢ A Signal <<Connect i on>> is an association class that represents connections between
component ports. The connections originate f@@nt Port and terminate i€l nPort .

e | nPort Mappi ng<<Connect i on>> andQut Por t Mappi ng<<Connect i on>> are
association classes that represent mapping of Simulink Systentgootmponent ports.

¢ An RTConstr ai nt <<At on®> allows capturing real-time constraints over component ports.
ThelLat ency attribute specifies the desired real-time constraint, over when an snaaeived
on an associated nPort (associated viRTCl n<<Connect i on>>), and when the output is
generated on the correspondid@ut Port (associated viRTCOuUt <<Connect i on>>).
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Figure 6: ECSL-DP meta-model - Component Modeling

ECSL-DP: Hardware Modeling

The hardware modeling sublanguage of ECSL-DP allows the designer ity $petiardware topology,
including the processors and communication links between the procedsess.models introduce new
model types: ECUs (which are processors hosting the components} fihasestablish the
communication links between the processors, and thus the software compdherdstails of these
models are as follows.



3.2.2.1 ECU Models

ECU models represent specific processors in the system. AnE&idipped with hardware 1/0 channels
and bus connections, and has a number of other attributes. ECU-s asem&mt as<Mbdel >>- s in

GME, which are ported objects. An ECU model has two kinds of ports @fazgenting the 1/0O channels
and the bus connections), and (textual) attributes capturing all theatititautes. The specifics of the
firmware are captured here as attributes. I/O channel parts totwo variants: sensor ports and actuator
ports. As these are separate design objects within the ECU mogdiatretheir own attributes that
capture other, relevant properties (e.g. firmware element assbuiigh a sensor).

3.2.2.2 Bus Models

Bus models represent communication pathways used to connect EXidssBire expressed as GME
<<At onm>-s and their attributes specify various properties of the physitamunication system (e.g. bit
rates). Busses connect two or more ECU-s through their bus chanhiels éne the bus-related connection
ports of the ECU-s).

3.2.2.3 Hardware models

Figure 7 shows the Hardware Modeling portion of the ECSL-DP meta-mArdelaboration of the meta-
model follows:

§ HardwareModels<<Folder>> is a container for HardwareSheet<eMoes. A designer can create
one or moréHar dwar eMbdel s folders in a Root Folder.

§ A HardwareSheet<<Model>> represents the hardware topology ttwhgosed with ECU-s, Bus-es,
and connections between those. It contains HWElement<<FCO>> whiclalistact class,
concretized as ECU<<Model>>, Bus<<Atom>>, and BusConnector<<Cbane>.

§ An ECU<<Model>> represents a physical ECU. The CName attribute BC& is similar to CName
attribute detailed earlier for Component-s and CPort-s. The CRhu#ttspecifies the processor
family, the RAM and ROM attributes specify the available menooryhe CPU, while the Speed
attribute specifies the processor speed. The Simulator attribuiespthe name of the simulator used
for simulating the ECU.

§ A Bus<<Atom>> represents a physical communication bus. The Bi#Raibute defines the transfer
speed over the bus, while the FrameSize attribute defines the sizenaésage frame transmitted
over the bus in bytes. The Medium attribute specifies the communicatiatcgiriype) of the bus,
such as CAN, or FlexRay, or other. The NM attribute is used by the codexgerierdecide if
network management code should be generated for the bus.

§ A Channel<<FCO>> is an abstract class, concretized as IChaorx, OChan<<Atom>>, and
BusChan<<Set>>. IChan-s represent sensor ports, OChan-s repotisatur ports, and BusChan-s
represent bus connection ports. Channel-s are contained in ECUpsetgerd the physical interface of
an ECU.

8§ A FirmwareModule<<Atom>> represents a firmware driver ttaat be attached to a Channel with the
FirmwareLink<<Connection>>. The LibraryFile attribute of therfwareModule specifies the name
of the library in which the driver is contained. If the driver is present irceatade form, which
should be compiled and linked at build time, then the SourceFile attshould be filled in to indicate
the location of the source code. If the driver is interrupt-driven, thelsBattribute specifies the
name of the interrupt handler. The EventPublished attribute specifievants that are published by
the driver, if it uses events to notify the components. The ReadAcesdmute specifies the reader
API (‘get’ method) provided by the driver, while the WriteAcaesattribute specifies the writer API
(‘set’ method).



A BusConnector<<Connection>> is an association class repregentinitectural connections
between Bus, and BusChan-s of ECU-s. BusConnectors-s are contditeedirareSheet models,
allowing representation of hardware topologies.

COM<<Atom>> and OS<<Atom>> capture OSEK OS and COM attributete that the cardinality
of containment is set to 0..1, allowing atmost one instances of each in an B€0SThas attributes
for Compiler settings, OSEK Conformance class (BCC1, BCC2, ECC1, ECCEDAGchedule
(FULL, NON, MIXED, AUTO), Status (STANDARD, EXTENDED), and TickTinwedicating the
size of the RTOS clock tick in micro-seconds (this representaskestvitching granularity).

A BusMessage<<Atom>> represents a physical bus messagég; arfiaef communication
transported over a bus. BusMessage-s are associated with spesffiban-s, and the association is
represented with the Set membership containment relation. Thisglaine why BusChan-s are
stereotyped as Set-s, different from IChan and OChan. The IBuétof the bus message specifies a
numerical identifier for the Bus Message. The ID also has a praggihantics i.e. attributes with lower
ID values are given higher priority over the bus. The Size attribute szettif size of the message in

bytes. The CycleTime attribute specifies the periodicity ofdic message.

§ A BusMessageRef<<Reference>> is a reference to a bus ragkshgriginates on a remote ECU.
The relevance of this is clarified while discussing the deployment.
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Figure 7: ECSL-DP meta-model - Hardware Modeling

3.2.3 ECSL-DP: Deployment Modeling

The previous two sections described the (software) component modeling daddivare modeling
sublanguages of ECSL-DP. This section describes the third ingredielolyrdept modeling, which
captures how software components are deployed on the hardwaré&(seeri-from REQ). The
deployment models capture thapping (or allocation) of software components onto the hardware
architecture. Conceptually, they implement the mapping as sho®rrar Reference source not
found.. The ECU model has a “deployment aspect” that allows the desigregttoe SW component to



ECU mapping using GME'’s reference concept. In this aspect of the E@elsnreferences (“pointers”)
can be placed that indicate that an instance of the component is alltctie specific ECU. Note that
deployment models are separate from software models, thusrajltivé reuse of software models in
different HW architectures. Furthermore, component ports areectethto ECU ports (sensor, actuators,
and bus connections) to indicate how the component software interfacés atapal sensors, actuators
and buses. In the initial version of ECSL-DP all of the connections betveseponent ports to ECU ports
and buses will be constructed manually by a modeler. In a later extesmshe of these connections may
be introduced automatically by developing GME plugkins
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Figure 8:ECSL-DP Metamodel - Deployment Modeling

Figure 8 shows the Mapping (deployment) modeling portion of the ECSin®&-model. Note that this
metamodel describes an aspect of the (previously defined) E@e€l imad thus it does not define a new
<<Mbdel >> kind. An elaboration of the figure is as follows:

8§ A ComponentRef<<Reference>> is a reference to a Componentidekedrlier. ComponentRef-s
can be contained in ECU-s to indicate the mapping of components to EQdkrfore,
ComponentRef-s are associated to Task<<Set>>-s with the sdtarstnp containment relation.
Task-s are stereotyped as <<Set>>-s because GME <<Sate>egntainer where the contained
objects are has the same parent as the container. The requirensanbdéquarent container is
imminent since we need ComponentRef-s to be immediate children o€thdde them to participiate
in mapping relations with Bus Messages and 1/0O channels contained in,BSWated below. Also,
note that we could have equivalently represented the mapping of Componessg&sawith
Connections (Association). However, the choice was driven by graphicatlemt8ins, since multiple
Connections running across Tasks and Components increases the viterahvdhgreas Set has a
cleaner visualization that does not require introduction of any gradtructures, and is visible only

2 Plug-ins are small utility programs that provide extra functionalifME users. They are useful for
extending GME’s capabilities with new features.



in the Set mode visualization in the GME editor. The containmentsemsemapping of a Component
to a Task. A Task can contain multiple ComponentRef-s, however a ContRefienust be contained
in exactly one Task as a set member. This rule is enforced withMEE@CL constraint shown in
Figure 9 (Equation box on the right). The constraint specifies that the gtre Bsk<<Set>> must be
exactly 1. The constraint is checked by GME, and the modeler usgetwd constraint violation
message if the model does not satisfy it.

§ Order<<Connection>> is an association class, which represerggitring of component invocations
when multiple components are associated with a single task. Thengrdemantics are such that the
source component has a higher order than the destination componentnvidrgleiaconnection is
present between components.

§ A Task<<Set>> represents an OSEK task. Various OSEK specifliuédts configure the task. The
membership containment of ComponentRef indicates the assignme@baionent to a task.

§ InCommMapping<<Connection>>, and OutCommMapping<<Connection>>, is anagsoclass
(CPort to/from CommbDst), which represents mapping of component porisdwdre channels.
Noticeably CPorts are not directly associated to a BusChan, butush\eBsage. Multiple component
ports can be multiplexed over a single BusMessage. The Numitshe StartBit attribute of the
mapping connection assigns the location of a component port signal withinnagssage. A
BusMesssage is a first-class entity in the underlying bus commuamidatnware. Once defined in the
communication database, the firmware allocates memory, and gsaviéthods and macros to access
the bus-messages. In fact macros are provided that allows azgedivitiual component ports, which
are multiplexed over a bus message.

Mapping modeling relies on a GME visualization technique that allowatfaching multiple views
(referred to af\spect s in GME terminology) to a model, and enabling selective visualizatiorffefeint
parts of a model. The ECU models have two aspects (not visible pottion of the meta-model shown
above): (1) Topology aspect, and (2) Mapping aspect. The topology asuedizes topological elements
of the hardware platform, while the mapping aspect visualizes maeleimgnts, notably component
references, tasks, and the mapping of component ports to hardware chaotesibatNhis approach
implements the semantics implied by Figure 10.
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Figure 9: Constraint for enforcing Component Task assignment



- functional view of the software structure in terms of initial model
- subsystems have to be marked as deployable units for a later mapping
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- deployment view of the software structure showing deployable units/subsystems
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- later mapping process
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Figure 10: Notional diagram of components and their mapping to HW resources



4.  Code Generator Design

The code generator component synthesizes code artifacts nedessgstem implementation. Figure 11
shows the artifacts that are generated by the ECSL-DP/CGarfe seen in the figure, fhe following
types of files are generated:

e OSEK oil-File: For each ECU-node in the network an ail file is generated, that exhdsting
of all used OSEK objects and their relations (see OSEK speafigati

¢ OSEK Tasks & Code:All tasks are implemented in one or more C code files.

< Application Behavior Code: A separate function is generated for each application component
that implements the behavior of the component. This function is calldtbautvithin a task
frame.

¢ Glue Code:The glue code comprises one or more C code/header files that résobadls to the
CAN driver or the firmware in order to provide access to CAN sggaaHW /O signals.
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Figure 11: Code Generation artifacts

The code generator is an extension of the existing ECSL/CG package. dteggaupports the
behavioral code generation, but does not support the other requirementseHdhaeextended modeling
language allows capturing the details of the hardware architeanae¢he component mapping, and thus
the ECSL-DP/CG has enough information to synthesize all the required file



Note that the ECSL-DP/CG supports only Stateflow, and a specifi¢ discoete-time Simulink blocks for
behavioral code generation. A future extension may support linkingreaylifunctions for the unsupported
Simulink blocks.

The code generator uses a “traverse-transform-print” strategy intorgather information from the

design models, build intermediate data structures (e.g. tables) asargcand then output the resulting
code. There are four stages in the code generator each of which saatudti-pass traversal of the model
database. These stages are described in details below.

4.1 Communication Database (DBC) Generation

This stage generates a communication database file that is usedffguidng the CAN bus firmware. A
DBC file contains specification of bus messages, mapping of signals on tebsages, and additional
CAN bus firmware configuration attributes. We have developed a Uklis diagram of the DBC file that
describes the “abstract syntax” of a DBC file. The code-generafmrithim traverses the network of ECSL
model objects, and builds a corresponding DBC model in terms of objecspmanding to the DBC class
diagram. The UDM (Unified Data Model) tool has been used in the impkaten. UDM can
automatically generate C++ API-s from UML meta-models. Y ¢iis generated API, a developer can
access and manipulate an object network that is conformant withetihenmodel, independent of the
underlying persistence mechanism. The details of UDM are deddrika conference paper [7].

The DBC data-network thus constructed by the code-generator is sebggquinted as formatted text in
a DBC file. The print algorithm follows a simple “traverse-anufistrategy. Each class in the DBC
meta-model has a corresponding Print method, which typically takesrtheof emitting text for the host
class, and then performing a Print method call on its children.

The “transform” part of the code-generation algorithm involvestiogga DBC data-network while
traversing an ECSL-DP data-network. The traversal follows tl@wimg sequence:

1. Atthe root level create some a few attributes in the DBC file, amdittieate over all
HardwareModels folder, and the contained HardwareSheet models.

2. For each HardwareSheet model, iterate over the contained ECU-s

3. Foreach ECU, iterate over each BusMessage, and create a correspasdibgebt (BO) instance
in the DBC data-network.

4. For each BusMessage, traverse all the COutPort-s associated witistireessage with the
OutCommMapping connection and determine the startBit, and numBits sifytied in the
BusMessage. For each of these create an SG object in the DBC whateen@he attributes of the
SG objects, such as name, CName, numBits, and startBits areniltethe corresponding
attributes of the CPort. The traversal also determines the ECl¢ Wieedestination component of
the specified communication is located, and populates the destiattibnte of the SG object.

5. A second traversal over each ECU, traverses to each IChan and OClués), abj generates a
physical signal element (EV) in the DBC data-network.

6. If the NM attribute of the Bus is enabled, then messages for networlgeragat are
automatically created.

4.2 OIL file generation

This stage generates an OIL file that is used for configuring th&K@sE An OIL file contains

specification of tasks, events, alarms, etc. Similar to before weedeveloped a UML meta-model of the
OIL file that describes the meta-data of an OIL file. The apelgerator algorithm traverses the ECSL data-
network and builds a corresponding OIL model using UDM generated API-s.



The OIL data-network thus constructed by the code-generator is subsgquieéld as formatted text in
an OIL file. The print algorithm follows a simple “traverse-gnwdit” strategy. Each class in the OIL meta-
model has a corresponding Print method, which typically takes the faemitifng text for the host class,
and then performing a Print method call on its children.

The “transform” part of the code-generation algorithm involvesticrgan OIL data-network while
traversing an ECSL-DP data-network. The traversal involves tloavioly) key sequences:

1. Iterate over all HardwareModels folder, and the contained HardWeet¢ 8hodels.
2. For each HardwareSheet model, iterate over the contained ECU-s

3. For each ECU, create an OIL data-network
4

For each OS object (at most one) in the ECU create a correspondirtjgdSmthe OIL data-
network, and propagate the attributes. Similarly, for each COM object BGH.

5. For each Task in an ECU, create a TASK object in the OIL data-rietssign the attributes of
the Task object, such as cycle time, scheduling, and the Task procede @it that the task is
an event-driven task. If a task is cyclic then an alarm that te segjger every cycle, and an event
that is published when the alarm triggers are created in the OIL dat@rke

6. If a COM object is present in the ECU, and its GenerateTask attritagetis true, then a
Communication Task is created in the OIL Data-network. This task si botimé\larm-triggered
Events that are associated with Network Management messadesR€ive and Transmit.

4.3 Task generation

4.3.1 Signal Definition generation

This stage generates signal definition files. A signal definitieridia C-header file (sigdefs.h) that
contains macros to access physical signals i.e. bus signals, and sedsactuators signals. The macros
hide the firmware details thereby facilitating development of platatimponent code. The code-generator
algorithm traverses the ECSL data-network using UDM generatedaARIprints a signal definition file

for each ECU.

The traversal involves the following key sequences:
1. Iterate over all HardwareModels folder, and the contained Hardeet¢&odels.
2. For each HardwareSheet model, iterate over the contained ECU-s
3. Foreach ECU, create a signal definition file
4. For each component reference contained in the ECU, traverse to teacetecomponent
5

For each CInPort of the Component, determine the associated physiuatlot@nnected with the
InPortMapping connection. Generate a macro definition in the signaltaefifile, the signature
of which is patterned as “get $CName()”, where $CName refers taNBe€ attribute of the
CinPort. If the CInPort is associated with a BusMessage, then this matzfined to a
“dbk$CName” call, whereas if the CInPort is associated with a IChan,the macro is defined to
as ‘simGet(“$CName”)'.

6. For each COutPort of the Component, similarly navigate to the atspbigsical channel with the
OutPortMapping connection. This is similar to above except that the gethenatro is a “put”
macro and takes a value as an argument



4.3.2 Task Procedure generation

This stage generates task procedure code in C-source file whichmegd aa $TaskName_proc.c. A signal
definition file contains macros to access physical signals i.e. uglsj and sensors and actuators signals.
The traversal sequence for this stage is defined below:

1. Iterate over all HardwareModels folder, and the contained HardWeet 8hodels.
2. For each HardwareSheet model, iterate over the contained ECU-s

3. For each ECU, iterate over the contained Task-s
4

For each Task, create a $Task_proc.c file, and generate a void fulediiution code. The
signature of this function is “void $Task_proc(void)”, where $Task refeifsetmame of the task.

5. For each component reference that is a member of the Task sesdravehe referred
Component

6. For each CInPort and COutPort emit a declaration of a local \arible data-type of this
variable is determined using the attributes of the CPort while the p&the local variable is the
same as the name of the port.

7. For each CInPort, emit code to perform a get operation, using the macreidsdilier to read
the value of the variable. Also emit the code to perform an offset andgsogkration on the
values that are read.

8. Ifthere is a reference to a Simulink subsystem, then invoke thdikroade generator, and emit
code to call the generated function for the Simulink subsystem. Thiseedterating over the
InputPort-s of Simulink subsystem, determining the associated Compomentgpal passing the
local variable corresponding to those ports in the emitted functibrScdisequently there is also
a need to iterate over OutputPort-s, to pass the output parameters.

9. For each COutPort, emit code to perform a put operation, using macros defiredearite the
value of the corresponding local variable to the physical channaedsiddessary inverse offset
and scaling code is also emitted. The value of the variable is computeddogéhgenerated for
the Simulink subsystem

4.4 Behavior code generation

As noted earlier, functional design of the components is specified ifigkiatateflow models, which is
represented in the Simulink/Stateflow sublanguage of ECSL-DP. This déals with synthesizing
implementation from Simulink and Stateflow sublanguage of ECBL-D

4.4.1 Simulink code generation

The output of the Simulink code generation stage is a C file that contailesmentation functions for
Simulink systems and sub-systems. Again, we follow an approadarsiocnother code generation stages
described earlier. We defined a simplified data-model for the oagpatUML meta-model that we call
SLC. The code-generator algorithm traverses the ECSL data-keanwbuilds an SLC data-network
using UDM generated API-s.

The “transform” part of the code-generation algorithm involves coctitig an SLC data-network while
traversing an ECSL-DP data-network. The traversal involves tlenioll) key sequences:

1. Iterate over all ComponentModels folder, and the contained Compaoelels.

2. For each Component model, iterate over the contained System ceferamte that there is at
most one System reference in a Component model.



3. For each System reference, navigate to the referred System. Hesapilevel System for the
subsequent steps in the transformation algorithm. Create an SLCFileiokifexSLC data
network

4. Starting from the top-level System, traverse down the hierarchy aatbaata-type objects
(SLScalar or SLStruct) in the output data-network, based on the typargnaiion associated
with input and output ports of the ECSL blocks. This step creates SLSttadtydas and
populates its members for handling signal busses.

5. In a second pass starting from the top-level System, traverse down tirethyeand create
SLComp or SLPrim objects in the output data-network, based on whetheavbiséd ECSL
block is a System or a Primitive or Reference. This step als@sr8atn or SLOut in the
constructed SLComp or SLPrim object corresponding to input and output ports in théol6CIS
This step performs a topological on the contained blocks before travergimgy fim order to
ensure a valid execution order in the generated code. For the constructiend &hjEct, this step
also constructs SLParam objects corresponding to the Parameter objeetE@Sth network.

6. A third pass starting from the top-level System, traverses dowmidherchy and constructs SLSig
objects in the object data-network which associates the SLIn and SL@utsplbfius mapping the
ECSL connections. An SLSig object in the SLC data-network has a sinQlat 8bject “feeding”
it, however there can be multiple SLIn object “feeding” from it.

The SLC data-network thus constructed by the code-generator is subsequietettygs formatted text in a
.C file. Each class (SLComp, SLPrim, SLIn, SLOut, SLSig) in the Ske@mmodel has two Print methods
1) PrintDef, and 2) PrintUse, which correspond to printing the declaratiorof@deariable or a function,
and printing the invocation code of a variable or a function. Moreover, treeeeraimber of overloaded
PrintUse functions for the SLPrim class which correspond to differebi@®k types, for example,
PrintUseAbs, PrintUseConstant, PrintUseSum, etc. These functidgntheroode for the Primitive SL
blocks. The print algorithm follows a simple “traverse-and-prattategy.

A remark must be made here regarding the integration of the Simulinkaefidv code generations. In
the SL/SF model, an SF block appears as a SL primitive block of 8iGuitype. In our code generator,
the transformation algorithm described above determines if an Biitige corresponds to an SF block, in
which case the code-generator invokes the Stateflow code generatiivates the next section. The
Stateflow code generator produces code in a C file that implsrientogic of the state-machine, and also
emits code for a top-level function that serves as the interfaced&etive Simulink code and Stateflow
code. In the print stage of the Simulink code generator, there is a Ri$fisction method, that simply
emits a call to the Stateflow generated top-level function. Thebde-generators follow a convention
regarding the name of the top-level function, which is $prefix_main,enther$prefix is an argument
passed by the Simulink code generation to the Stateflow code generation.

4.4.2 Stateflow code generation

The Stateflow code generation is similar to the previous code gemestdges in following a transform
and print strategy; however, it is uniquely different from the othgesta the implementation of the
transformation. The transformation algorithm of the Stateflow code agmeis developed using a Graph
Rewriting technique, implemented in the ‘GReaT’ tool developed at ISIS, Yiahdéniversity [ref]. We
consider this code generation to be a valuable contribution of this project.

The output of the code generator is a C program that implements the |dggcstéte-machine. The
generated C code is a stylized subset of C, and we have created a WdAinaode!| of this stylized C,
which we call SFC (see Figure 12 below). The key entities in this medairand what they represent are
described below:



e SFFile — the top-level file object

¢ InitFxn — initialization function that must be invoked by the generatedI8ikncode once to
initialize the state machine

« RootFxn — the main interface function that is invoked by the generatedi${roatie

« SFData/SFEvent — the data, event variables within the state-macHiaestlize interface to the
Simulink code. These variables form the input and output argument fie obot function, note

the association between RootFxn and DE, the abstract base class af SkDSFEvent

« Enter,Exit,Exec — these are the entry, exit, and step function corrésgpaeaedach compound
state in the state-machine. Fxn is the abstract base class répgeaduanction.

* SFState — these represent the states in the state machine, an gonigris printed in the
generated code.

« ActiveSubStates — this singleton array variable represents tremclist of active sub-state for
each compound state in the state machine. The enumeration valueaiih@und state is used to

index into this array to determine the current active sub-state in theatggzheode.

e Statement — this abstract base class represent code blocks inaretep: code. Statements are
sub-classed into CompoundStatements, and PrimitiveStatements. Comptamd®isare code

blocks that include other Statements. These are sub-classed ds Sage, If, and Fxn.
PrimitiveStatements are FxnCall, Break, Return, ArgComp, Actilglteactive, UExpr, etc.

Statement | qmements SFFile ActiveSubStates
sldw: Integer=0 |0 SFEPrefic: String Trhame: string
statements |0..7 filename : String size Integer
stateCount @ Integer=0
=sCount @ Integer=0
SF State
rw—v—’ '—|u..|
name : Str!ng DE
comment:  String 5 InitFxn | | RootFxn |rfxn| anE
id: Integer |- Beh O MtF | name ; String
andSSs : Integer = 0 | name : String | [ name : String [a7 T initial - String
rmask: Integer=0 itwn 0.1 riwn 0.1
anter [1 axac |1
state (01
-
| [ sFpata | [SFEvent |
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PrimithveStaternent
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__________________________________________
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Figure 12: Meta-model of State-Flow C (SFC)

As noted earlier, the transformation in this code generation is implethasta graph rewriting

specification. In the rest of this section we describe the tranafmm by showing screen-capture of key

parts of the transformation specification. It should be noted hdrththtransformation language



implemented by the GReaT tool, has a control flow structure iniexdit the graph rewriting instructions.
The details of the graph transformation language are reported in a coefeaper [8].
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Figure 13: Top-level ECSL-DP to SFC transformation rule

Figure 13 shows the top-level transformation rule. The top-lelekhows the sequencing of sub-rules.
Note that the purple colored boxes represent compound rules, and the blue @idrestiport objects

within this rule boxes represent passing of objects to and from the Takeports edpRootState, and
sfcRoot in the top-level rule are bound to the top-level state in the BEItetwork which is to be
transformed, and the root object (a singleton instance of SFFile) ifFthel&a-network, respectively.
There are seven key steps in the transformation, as shown by the severesiubthd top level rule. The
CreateStates rule creates SFState objects in the output dateknethereas the CreateFxns object creates
Enter, Exit, and Exec functions. The PopulateFxns rule populates these fudteonavigate down into
this rule next.

edpState edpState
stFile sfFile
— - Aedps . . edps3 @edps | . edps3 Aedps - . edps R st subs[3§—
— [ A=1Fi =fFil 3 A=1Fi =tFill 3 A=tFi =tFilC3 A=tFi s@:—
PopulateEntarFxn PopulateExecExn PopulateExitExn SCetSuhStates

Figure 14: PopulateFxn rule in the ECSL-DP to SFC transformation

Figure 14 shows the PopulateFxn rule. There are three sub#riles fule corresponding to the population
of Enter, Exit, and Exec function. The fourth rule GetSubStates ialized differently from the other

rules as it is a proxy to a rule defined elsewhere, and dementbteadbility to reuse rules. Also note the
arrows going the GetSubStates rule back to the PopulateEnterFxn rule.pfésengs a form of recursion -
GetSubState rule returns the sub-states of the current stateeantehrules are invoked on the sub-
states.
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Figure 15: PopulateExecFxn Rule in the ECSL-DP to SFC transformatin

Figure 15 shows the PopulateExecFxn rule. This rule generatefocdde Exec fuction, which
implements a step in a state-machine. The generated code ftegHerstion must check for enabled
transitions leading out of this state, and if there is an enabled ivartbién the transition must be taken
which requires a call to the exit function of the source state, perfgrimntransition actions, and invoking
the enter function of the destination state in the simplest case. |fnsititras are enabled then the during
action of the state must be performed, and then the step function must do a beepuindtates. The
ExecOFGRemote, and the ExecOFGLocal sub-rules of this ruleterabde for checking for enabled
transitions and performing the transition step. The ExecOFGRemetkamtlles remote transitions (source
and destination state have different parents), while the ExecOFQLtehandles local transitions (source
and destination state have the same parent). The ExecOFGRematemutked prior to the
ExecOFGLocal rule since cross-hierarchy transitions have a hpgbety than local transitions. The
DuringAction is a primitive rule (red-colored box), and we exantinext.
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B > |
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Figure 16: DuringAction Rule in the ECSL-DP to SFC transformation

Figure 16 shows the DuringAction rule. This is a graph rewrites rwlich typically consist of a LHS
which represents a pattern to be matched, and RHS which represantsitfieation in the graph. In this
particular rule the pattern is simply an ECSL-DP State, anchgp@ondStatement, which are objects
passed as input to this rule. The blue-colored class UExpr represattercof a new object instance of
the UExpr class. Also, the blue-colored composition arrow represeatison of a composition relation
between the CompoundStatement object and the created UExpr statementldm®rds this rule creates
a UExpr object in the output data-network. The boxes labeled am_idx, and am aéa atbribute

mapping specifications. These are code snippets which are execubedtkansformation engine when the
pattern is matched. The red-circle labeled hasDuringAction is a guct must be satisfied for the
pattern to be matched. In this particular case the guard simplisctiext the State has a during action.

There are additional rules in this transformation specification, envea description of all the rules is
outside the scope of this report.



The GReaT tool, compiles these transformation specification impitable code. The code is compiled
and linked with the other code generation stages to build the corg@&te-DP CG.



5. Case Study: Rear Window Defroster

This section presents a case study in the application of the ECSheb$utte. A Rear Window Defroster
(RWD) was chosen, by Daimler-Chrysler sponsors for evaluating theuie, as it is a distributed
embedded automotive system sufficiently complex to exerciseugacapabilities of the tool-suite, and yet
manageable enough to be presentable in a short discourse on the use of. tiéetiicds give a short
overview of the example, and then describe steps through the design flow.

5.1 RWD overview

The RWD system is responsible for defrosting the rear window of amabile. In addition to the
defrosting control, the system is also responsible for updating ayiseglaating the status, and
monitoring the battery voltage levels. The controller processes tipetatare sensors information, and
generates actuation signals for the heater unit. The RWD systepl&rented on multiple ECU-s, since
the actuators and sensors are shared by other systems within the agtomobil

5.2 RWD Functional Design

The functional design of the RWD system was conducted by Daimled€heygjineers using the SL/SF
tools. The three main functions of the RWD system: 1) Defrost comir@)i®isplay controller, and 3)
Voltage surveillance, were designed as SF models. This moded B\WD system is stored in an mdl file
(hhs_hk_2.mdI)
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Figure 17: Top-level Simulink model of RWD in ECSL-DP

This SL/SF model was imported into ECSL-DP using the ML2ECSL usiliffggure 17 shows the top-
level Simulink model after importing in ECSL-DP. The three bluereald®oxes in this figure represent the
three SF models (HHS_ST, HHS_BA, and LokSpgFehlerErkennung). Figurews steHHS_ST
Stateflow model in ECSL-DP. The two sub-states of HHS_ST — HHSHN BEREIT, and

HHS_ BEREIT, can be seen in this figure, along with the data and eveaiblesriThe names of data



variables are color coded to indicate their scope, for exampléshilugut data, while red is output data,
green is constant, while purple is local data.
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Figure 18: HHS-ST Stateflow model in ECSL-DP

5.3 RWD Component Design

Subsequent to importing the RWD functional design in ECSL-DP, the autoreatjugeer performs the

SW component design in the GME/ECSL-DP modeling environment. Figuskadl®s the component
design of the RWD system, which shows the components and their interaEli@nsomponents can be
seen, three of which correspond to the three functions of the RWD sydeshelislier. The two other
components are forwarder components. In a distributed embeddechs&tiator and sensors are attached
to different ECU-s. It is often the case that the data of a sattsghed to a specific ECU is required by
SW components on other ECU-s. Forwarder components are spac@r8ponents that are responsible
for forwarding the sensor data from one ECU to others as bus messapesmiodeled RWD system,

there are two such sensor signals: 1) Power Mode signal, and 2) Ignitiop Signal, that are being
forwarded as bus messages.

Note that the view shown in Figure 19 is that of a ComponentSheet<<Mof@efer to the ECSL-DP
Component meta-model Figure 6), and the Components (grey-boxes)taneéssof
Component<<Model>>-s. The port graphics on the boxes represent the CinRorntg=Aand
COutPort<<Atom>> objects contained in Component<<Model>>-s.

While performing the component design an automotive engineer is expestggpty concrete data-typing
information as attributes of the CinPort and COutPort. Figure 20 showisd@ih” into the HHS_ST
component. The component contains a reference to the HHS_ST Systethdrfunctional design. The
input and output ports of the System are mapped to the CInPort and COutPerCofriponent as
depicted with the connections in the figure.
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Figure 19: Component design model of RWD in ECSL-DP
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54 RWD Platform Design

In parallel with the SW component design, the HW platform design fisrpeed. This involves modeling
the ECU-s, Bus-s, Sensor-s, Actuator-s, Bus port-s of ECU-s amcoimtescts. Figure 21 shows the
platform model of the RWD system, with three ECU-s and a CAN BusEThé:s are connected to the
Bus with BusConnector<<Connection>> between BusChan ports of ECU-s.akfegrpldesign also
involves setting the attributes of the ECU-s dealing with processed speailable memory, and defining
the specifics of the OS. Bus Messages are also defined a$ fastexercise, and the attributes of the Bus
Messages are configured to define the size of the message, ity paiwd the frequency of its transmission
over the bus. Additional attributes related to communication over the bdsfared as the attributes of the
COM object.

_:!J_ —1 :.u .-‘_'j:

 CANB Car lteror Bus

Signal Acquisition and Conditioning Module

Alr Conditioning ECU

Figure 21: RWD Platform Design model in ECSL-DP

5.5 RWD Component Mapping

The final modeling step involves mapping the SW Components over ECU-s.apipéng also defines the
OS Task binding of components, and mapping of component ports to Sensor-stAciaad Bus
messages. Figure 22 shows a mapping view of one of the ECU-s. The showa&d IKomponents
(Voltage Surveillance and Forwarder Ignition Clamp) mapped onto it. Thpawent ports are connected
to Sensor/Actuator ports or Bus messages. Three BusMessagessean beowever, only one ‘Signal
Acquisition and Conditioning Module Message 1’ is local to this ECU, the otlbemtessages are
references to Bus Messages from other ECU-s. Two OS Taskssodreabbserved in the figure. The
association of tasks to Components is expressed with set membergiop aedaxplained earlier. This
association is viewable only in the Set mode of the GME editor
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Figure 22: RWD Component mapping in ECSL-DP

5.6 RWD Generated Code

Subsequent to the completion of the modeling step, code generation isngerfssing the ECSL-DP/CG.
This results in creation of several modeling artifacts as destgarlier. The code generator creates a
separate directory for each ECU, and produces the generatede®|lafd task, and firmware glue code in

those directories. A single directory labeled System is alsaafede which contains the generated

behavior implementation code for individual components. The followinlg {ests the generated files for

the RWD example (the top-level directory containing the modejgeesented with $):

Directory Files

$ HHS.dbc

$/BSG BSG.oil, main.c, sigdefs.h, T_Fwd_proc.c, T_SPG_proc.c

$/KLA KLA.oil, main.c, sigdefs.h, T_HBT_proc.c

$/SAM_H SAM_H.oil, main.c, sigdefs.h, T_Fwd_proc.c, T_HST_proc.c

$/Systems HHS BA.c, HHS BA sl.c, HHS ST.c, HHS ST sl.c
LokSpgFehlerErkennung_sl.c, Spannungs_berwachung.c




6. Conclusions and Future Work

This report described a prototype model-based approach for develtophistributed Embedded
Automotive Systems, centered around a modeling language that Wernakdded Control Systems
Language for Distributed Processing” or ECSL-DP, developed as padomperation between ISIS,
Vanderbilt University and DaimlerChrysler. We demonstrated tié prototype that it is possible to create
tool-chains that integrates industry standard Matlab tool-suite, anidlescapen interfaces for introducing
other tools. The cooperation resulted in several valuable researotypest notably the ECSL-DP
language, and the ECSL-DP Stateflow C code generator.

We realize that the embedded systems development processgie arldrvastly complicated one, and
given the limited duration and funding of this project it was not feasiblightereover the entire gamut, or
even accomplish great depth in any one of the areas. As such theesena limitations in the prototyped
approach that could be addressed in future cooperation and researchwvéileeseme shortcomings in the
ECSL as noted earlier (BranchPoints, TransInPort and TransOutPortarsptehich we did not
sufficiently address. The tool-chain itself is particularly limite the absence of any analysis tool.

Some possible suggestions for future work in this area include enhancingébtsad the modeling
language, providing a deeper formal foundation for sublanguages of8le-BP. We would also like to
integrate analysis tools such as HSIF, Checkmate, and SAL, into theh&does. The real-time constraints
that are currently modeled in ECSL-DP are ignored by the code gesetasirould be possible to
instrument the generated code with real-time constraint checkirg ketdgrating and generating testing
harnesses is another interesting possibility for any future wseathis area.

Finally, we conclude this report with an acknowledgement of the fundingupubrt provided by
DaimlerChrysler , the sponsor of this cooperation.



Definitions, Acronyms, and Abbreviations

API Application Programmers Interface
CAN Controller Area Network

CG Code Generator

COTS Commercial off the shelf

CPU Central Processing Unit

DBC Communication Database

DC DaimlerChrysler

ECSL Embedded Control Systems Language
ECSL-DP Embedded Control Systems Language for Distributed Pirngess
ECU Electronic Control Unit

GME Generic Modeling Environment
GReaT Graph Rewriting And Transformation
GUI Graphical User Interface

ISIS Institute for Software Integrated Systems
I/O Input and Output

MIC Model Integrated Computing

ML Matlab

NM Network Management

OIL OSEK Implementation Language

os Operating System

OSEK Open Systems Executive Kernel

RAM Random Access Memory

ROM Read Only Memory

RTOS Real Time Operating System

RWD Rear Window Defroster

SL Matlab Simulink

SF Matlab Stateflow

SFC Stateflow C

SLC Simulink C

UML Universal Modeling Language

UDM Unified Data Model
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Appendix: Metamodels for Graphical Languages

The Generic Modeling Environment (GME) uses an UML-based approacfirte dedeling languages.
The underlying assumption is that graphical modeling languages haversesit formed from objects, i.e.
a sentence is a network of objects. A UML class diagram can capiitiplenclasses, their attributes, and
their relationships: inheritance, containment, and general assnsiagh programmer can instantiate those
classes, specify instance attributes, and establish links among toh@atsrrespond to associations in the
class diagram. Therefore, a UML class diagram is a finite iggser of an infinite number of object
networks that comply with it, not unlike a context-free grammarfiistae description of a (potentially
infinite) language.
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aReference
f 1 f _| ==Referance==
o= 0.
anAtom
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Figure 23: An example meta-model

Unfortunately, pure UML class diagrams are not well suited fomé@programming of modeling
environments. The reason is that environments tend to support someoc@iengiconcepts (e.g.
containers, ported objects, atomic objects, etc.), which are not UML cengeptmetamodels should
contain hints how UML class diagrams should be interpreted in terms ofdbiosepts. A convenient
solution to this problem is to ustereotypes, which mark classes as belonging to a specific category that is
meaningful for (and has a specific semantics in) the modeling environ8tergotypes are part of the
UML standard, but in UML they do not have a specific interpretation —theyrapdysindicators marking
classes as members of some category of classes. In thgragesanmable Generic Modeling Environment
this approach has been chosen. Figure 23 below illustrates how a UMIdidgsam can be embellished to
define a meta-model for GME. The drawing also summarizes tkeewadel organization concepts
supported by GME. GME provides the following set of organization cosiciegbders (containers), models
(ported hierarchical composite objects), atoms (primitive objeasjexctions (wires), sets (groups of
objects), and references (pointers to models, atoms, sets, or &hences). The diagram on Figure 23,
read as a pure UML diagram, has the following classésl der : an untyped container of objects,
aMbdel : a typed container with model semant&sAt omandanot her At om simple objects,
aConnect i on: an association class relating the classest omandanot her At om anot her Model :

a container fomanot her At ons andanot her Mbdel s, aSet : yet another container containing

aSet El enent , andaRef er ence: associates with (“points tognot her At ons. The stereotypes map
these classes into environment-specific modeling concepts. GME suppbtidel >>- s, which are
composite objects with ports containing other objects (including etldpdel >>-s), <<At onP>-s are
primitive objects that have their own graphical iconsSet >>-s are special containers that contain
objects within the same parentModel >> that also contains the sekRef er ences>> are alias

objects which point to (non-local) objects in the object hierarchy<a@nnect i on>>-s are



association objects relating and two (or more) iconic objects. All shacept the<Connect i on>>-s

are iconic<<Mbdel >>-s can have ports on their icons, andConnect i on>>-s are visualized as lines.
It is not shown on the drawing, but many stereotypes have a corresponding “steregtype, which is
semantically equivalent to the base stereotype. These stereotypes eaogoézed by their name, which
follows the form<<. . . Pr oxy>>. A class with nam& with stereotypec<S>> can be referred to on
another diagram by a class with na¥weith stereotypec<SPr oxy>>. The metamodel element appearing
on the “other” diagram denotes the same metamodel elem&nTass allows reducing visual clutter.



