
Institute for Software Integrated Systems
Vanderbilt University
Nashville Tennessee 37235

TECHNICAL REPORT

TR #: ISIS-02-301

Title: Design-Space Construction and Exploration in

Platform-Based Design

Authors: Sandeep Neema, Janos Sztipanovits, Gabor Karsai

Abstract. A fundamental requirement for achieving rapid turn-round and short time-
to-market in embedded software and system development is to achieve high level of
reuse. Platform-based design offers a systematic way to make tradeoff between the
conflicting requirements of flexibility and reuse. This paper describes a model-
integrated approach in controlling and exploiting flexibility via the disciplined
construction and automated exploration of large design-spaces on hardware/software
platforms.

1 Introduction

Embedded software development is inextricably combined with system development.
An embedded software component, whose logical behavior is defined in some
computer language, is “instantiated into” a physical behavior on a computing device.
The instantiation of logical behavior into physical behavior is complicated by the
following factors [1]:

1. Physical behavior is directly influenced by the detailed physical characteristics of
the devices involved (physical architecture, instruction execution speed, bus
bandwidth and others).

2. Modern processor architectures introduce complex interactions between the code
and essential physical characteristics of the device (speed, power dissipation, etc.)

3. Lower layers of typical software architectures (RTOS scheduler, memory
managers, middleware services) interact with application code in producing the net
physical behavior.

4. Properties of physically instantiated software components interfere with each other
due to the use of shared resources (processors, buses, physical memory devices,
etc.)

Calculation of essential physical properties of designs can be significantly
simplified by over design: we use enough resources to minimize or eliminate the need
for resource sharing (computation, communication) or to consider hard to compute
physical properties unessential (e.g. power). Unfortunately, in most practical cases,
efficiency and application circumstances force us to explicitly design for physicality,
which requires deep modeling not only the functional structure and behavior of
software but also the physical structure and behavior of the embedded system and
their interactions.

The cost of modeling on this level of detail is a major concern. The development of
deep enough models to compute all interesting physical properties of embedded
systems would be cost prohibitive. An emerging concept to mitigate this situation is
platform-based design [2]. Platform-based design offers the advantage of large-scale
reuse among model development efforts, while preserving controlled flexibility.

The goal of this paper is to describe platform-based design in our model-based
design framework called Model-Integrated Computing (MIC). The primary
contribution of the described work is a constraint-based model-synthesis technique,
which starts with carefully constructed design spaces representing partial designs and
synthesizes fully specified models that meet selected design constraints. The paper

first gives a short summary of relevant concepts of MIC and platform-based design.
This will be followed by a discussion on constructing, shaping and aggregating design
spaces. The next step is the description of our constraint-based model synthesis
technique, which is currently based on a symbolic representation of the design space
and symbolic pruning of the design alternatives. The paper will conclude with an
application example, which shows how to integrate our meta-programmable tools in a
domain-specific design environment.

2 Platform-Based Design

Since embedded systems are simultaneously computational and physical, it is not
surprising that the need for layered abstractions in system design has emerged very
strongly in this area. While layered design approaches are known in many engineering
field, a clean conceptualization and systematic description of the method in embedded
systems is a recent development. The basic tenets of platform-based design (from the
point of view of our discussion) are the following [3]:

1. The design proceeds in precisely defined layers of abstraction, such as functional
and architectural.

2. Each layer of abstraction is defined by a platform. A platform represents a family
of designs (or design space), which satisfy a set of constraints that are imposed on
all designs so as to allow the reuse of hardware and software components.

3. A design is obtained by defining platform instances via composing platform
components and by mapping one platform to the successive one (e.g. functional to
architectural).

In this conceptualization, the following tasks need to be accomplished for
establishing an automated platform-based design process:

1. Identification of layers of abstraction, which reflect the characteristics of the
domain and the scope of the design process.

2. Systematic construction of the design spaces in each layer of abstraction around
some platform concept, which includes the collection of components and the
design constraints that must be satisfied.

3. Setting up a synthesis process, which facilitates the mapping among selected
platforms.

These tasks represent significant challenge for any realistic application domain.
Before describing our solution, we briefly discuss the approach we use for design
space representation and manipulation: the meta-modeling technology in Model-
Integrated Computing [5].

3 Model-Integrated Computing: Meta-modeling

Model-Integrated Computing (MIC) provides a comprehensive methodology and
consistent infrastructure for composing domain-specific modeling languages (DSML)

via meta-modeling [5], for automatically generating model-based generators from
specifications [6] and for integrating domain-specific design environments [7]. For
our later discussion, we briefly summarize our technology for composing domain-
specific languages and present a simple example using our meta-programmable
modeling tool, the Generic Modeling Environment (GME) [8].

Specification of DSML-s requires the specification of their abstract syntax,
concrete syntax, semantic domain and the mapping between the abstract and concrete
syntax (syntactic mapping) and the abstract syntax and the semantic domain (semantic
mapping) (see e.g. [9]). The formal representations of these specifications are the
meta-models and the language we use for describing meta-models is the meta-
language. In MIC, the meta-language for representing the abstract syntax of DSML-s
and the syntactic mapping is based on UML class diagrams (with stereotypes) and the
Object Constraint Language (OCL) [8]. The abstract syntax defines the concepts,
relationships, and integrity constraints available in the DSML. Thus, the abstract
syntax determines all the (syntactically) correct “sentences” (domain models) that can
be built. (It is important to note, the abstract syntax includes semantic elements as
well. The integrity constraints, which define well formed-ness rules for the models,
are frequently called “static semantics” [10].) (The formal and manipulable
representation of the semantic mapping is harder due to the strongly different
formalisms required for representing the abstract syntax and the semantic domain.
Therefore, we follow the technique of assigning semantics to a DSML by specifying a
mapping between its abstract syntax and the abstract syntax of a language with well-
defined semantics. The mapping between two abstract syntax can be defined much
easier, e.g. by using graph re-writing [6].)

Consider a simple example for the abstract syntax of a DSML for Signal Flow
(SF) modeling. Figure [1] shows the meta-model of this language (we have omitted
the integrity constraints). The core concepts of this language are Compounds,
Primitives, Ports, and Signals. Primitives form the basic signal
processing blocks (e.g. Filters, FFT, IFFT, Correlation, etc.). Ports define the I/O
interfaces of these blocks, and Signals represent the signal-flow between the
blocks. Compounds are processing blocks that can be decomposed into other
Compounds, and/or Primitives. An abstract Base concept commonalizes
Compounds and Primitives, and can be said to represent an abstract signal-
processing block. With these basic concepts a user can define a signal-processing
application. Figure [2] shows a simple hierarchical application model.

Fig. 1. Meta-model for SF

Fig. 2. Domain model expressed in SF

The modeling language is sufficient for describing functional models of a broad
class of signal processing systems. Each model represents a point design in the overall
design space. Operational semantics can be assigned to the modeling language by
describing the mapping between the meta-model of SF and the meta-model of a
modeling language representing a specific model of computation, such as
Synchronous Data Flow (SDF) [12].

4. Defining and Shaping Design Spaces

A key requirement for platform-based design is the systematic construction of design
spaces. Since we want to develop tools for computer-aided synthesis, we also seek for
reusable constructs in DSML-s, which are independent of the actual design language
and can be applied over a variety of domains. A second requirement is that the
mechanisms should be scalable, in the sense that the effort in constructing the design
space should be proportional to the size of the design problem (such as the number of
components), and not the size of the design space (typically combinatorial in the
number of choices). We use two fundamentally different mechanisms here that satisfy
these requirements: 1) Explicit representation of hierarchical alternatives, and 2)
Parameterization.

4.1 Explicit Representation of Alternatives

Alternative design choices are inherent to an engineering design process. Typically, a
design engineer is encountered with several choices for implementing a specification
of a system or a sub-system while refining the design. Therefore, to construct a design
space using hierarchically layered alternatives is natural to a design process. To
enable this, we need to expand DSML-s with the ability to represent design
alternatives explicitly.

Fig. 3. Meta-model of SF extended with the “Alternative” construct

Figure [3] shows the meta-model of SF extended with the concept of
Alternatives. Note that we use a meta-model composition technique described in
[13] to accomplish this extension; figure shows the result of the composition. We
selected the abstract Base concept for Alternative implementation, and
introduced a containment relationship to enable hierarchical composition. An

Alternative, in the composed SF meta-model context, can now be defined as a
processing block with rigorously defined interface, which contains two or more
(notice the cardinality of the containment relation highlighted in the figure) alternative
implementations. The implementations can be Compounds, Primitives, or other
Alternatives, with matching interfaces. Note that matching interfaces is a
necessary, but not sufficient condition to ensure composability of the alternative
implementations. (We consider the issue of additional conditions for composability
later in this paper.)

Fig. 4. Example for a design space model

With this small extension of the SF design language, a user can now modularly
define very large design spaces for a signal-processing application. A domain model,
which includes Alternatives, now represent a structured design space and not
point designs. A small example can be seen in Figure [4], where alternative
implementations (Spectral and Spatial Correlation choices for Correlation operator)
are utilized to construct a design space for the application.

The scalability of this mechanism in capturing large design space can be judged
from the following expressions: With a alternative implementations per
Alternative block, and n Alternative blocks per Compound, composed in

an m -level deep hierarchy this representation can define: mka design configurations,
where () nkk mm ×+= − 11 , and nk =1 , using just ()mna× Primitives. As an
example, with 4=n , 3=a , and 3=m , a total of 1728 Primitives can represent

843 design configurations!
We should emphasize here that this construct for representing design spaces is

independent of the design language. Extending meta-models with the Alternative
construct is very simple and can be done according to the nature of the domain and
abstraction layer via meta-model composition technique. For example, we can easily
define a modeling language for capturing the hardware architecture of a platform, and
we can introduce flexibility in the architecture by defining alternative solutions along
component hierarchies.

4.2 Parameterization

A second approach to define design spaces is based on parameterization, a technique
popularized in digital circuit design. A parametric design encapsulates a range of
implementations, each of which can be synthesized by binding the parameters
appropriately. A simple example to illustrate the point is an N-bit multiplier design in
VHDL, using generics. The range of the generic parameter N defines the design-
space in this case. With multiple parameters the design space is defined by the cross
product of the domains of the parameters.

Fig. 5. Meta-model of SF extended with the “Parameter” construct

The design spaces defined by this approach can be finer-grained and potentially
infinite, compared to that of the explicitly represented alternatives. Figure [5] shows
meta-model of the SF language shown earlier extended with Parameters, using
meta-model composition technique as before. With this extension a Primitive can

be parameterized, by containing one or more Parameters. It must be noted here
that parameterization as a design space definition mechanism, can also be
independent of the design language. However, it relies on the implementation
language and the support tools (e.g. VHDL compiler) for synthesizing
implementations from parametric representations.

5. Shaping and Aggregating Design Spaces

In the previous section we identified two basic constructs that can be used to extend
DSML-s to represent design spaces instead of point designs. We can use these
extensions in composed, multiple-aspect DMSL-s, where individual aspects represent
different layers of abstractions in embedded systems and yield a (not necessarily
orthogonal) decomposition of the design [13]. However, we face the following
problems with the unrestricted composition of large design spaces:

1. While defining design spaces for individual aspects (such as SF), there are many
constraints restricting the arbitrary selection of design alternatives.

2. If we construct multiple-aspect design spaces by composing meta-models of
individual aspects (e.g. functional and architectural), the resulting aggregate space
is the cross product of the design spaces of the individual aspects. However, the
product space will represent unrestricted compositions neglecting the fact that
aspects may not be orthogonal: design decisions in one sub-space are intricately
coupled with design decisions in other sub-space.

There is a need for a mechanism that can help shaping both the individual aspect
and the aggregate spaces by restricting them with relations and dependencies. To
remain consistent with the selected meta-language, we use OCL-based constraints to
“shape” the design space. While the meaning of these constraints is domain-specific,
there are typical constraint categories that are suitable to demonstrate the method.

1. Composability constraints – We noted earlier that matching interface is not a
sufficient condition for composability. In fact, in many situations it may not be
possible to compose any arbitrary alternative implementation of a subsystem with
any arbitrary implementation of other subsystems. This could be due to the lack of
semantic compatibility. A simple example for a semantic composability constraint
for a design space defined in SF is shown in Figure [6]. The meaning of the
constraint is that Spectral domain correlation composes only with Spectral domain
filters and Spatial domain correlation composes only with Spatial domain filters.
Semantic composability constraints can express more complex concepts. For
example, let us assume that we define a DSML for hierarchical finite state
machines with multiple concurrency models [12] – called HFSM. The
hierarchically composed components in this language are associated with different
models of computations (or concurrency models) [12]. As Lee shows in [14],
models of computations that capture the dynamic aspects of component
interactions can be considered system-level types. System-level types can be
organized in a partial order, which defines composability constraints among the
components. By extending the hypothetical HFSM with the construct of

Alternative components for defining design spaces, we can restrict the space
by imposing Lee’s composability constraints.

2. Inter-aspect constraints – Inter-aspect constraints express interdependencies across
design spaces defined for different layers of abstraction. For example, in platform-
based design where we have functional (or application) space on the one hand, and
architectural (hardware platform) space on the other hand, a large number of inter-
dependencies exist between the functional and architectural components.
Composing an end-to-end system requires evaluating crosscutting constraints and
making trade-off decisions in the application as well as the architectural space. For
example, precision requirements (floating-point vs. fixed-point) in the application
may drive the selection of architectural components from one side, while power
limitations may drive the selection of architectural components, which in turn
drives the selection of application components. Inter-aspect constraints can be used
to explicate these dependencies and relations as a constraint network, which can
then be subsequently utilized in the design space exploration to systematically
synthesize a point-design for the aggregate system.

Fig. 6. Example for semantic composability constraints

6. Design Space Exploration

Up to this point, we identified constructs and methods for defining, aggregating and
shaping design spaces. There are two important goals for this exercise:

1. Understand whether or not we have created inconsistency during the design space
composition (meaning that the design space is ‘empty’), and

2. Synthesizing designs that meet performance constraints.

Given the size of the design spaces we routinely need to deal with, scalable
representation, manipulation and exploration of design spaces are very hard problems.
In this section we describe a meta-programmable tool, called DEsign Space
ExploRation Tool (DESERT) that addresses some of the problems effectively.

6.1 Design-Space Abstraction

Design-space representation needs to focus on those aspects of extended DSML-s,
which deal with variability in the design. Design-space abstraction means the
extraction of this information from domain models defined in extended DSML-s. The
abstracted design -space is also represented with a meta-model. Figure [7] shows the
meta-model of the design space abstraction within DESERT. Elements,
Properties, NaturalDomains, ElementRelations, and Constraints
are the core concepts of this abstraction. An Element is an abstraction of a design
component (e.g. a Compound in SF design language). Elements can contain other
elements, and the containment relation is characterized by the decomposition attribute
that can be either AND-decomposition, or OR-decomposition. AND-decomposition
implies inclusive containment (maps to a Compound in SF domain), whereas OR-
decomposition implies exclusive containment (maps to an Alternative in SF
domain).

Fig. 7. Meta-model for design-space abstraction in DESERT

Elements contain Properties that capture performance attributes of design
components. Properties can assume values from NaturalDomains that is a
bounded range of natural numbers. Properties can be ConstantProperty to
model single-valued performance attributes, or VariableProperty to model
multi-valued performance attributes. Multi-valued performance attributes commonly
occur in platform-based designs, where performance attributes such as timing, power,
etc. of functional components depend on the architectural components to which these
are assigned.

Introduction of the abstracted design-space has major significance. The design-
space manipulation and exploration algorithms of DESERT operate on the abstract
design-space, which is isolated from the accidental characteristics of various extended
DSML-s. Meta-programmability of DESERT means that after defining the
relationship between the meta-model of an extended DSML, and the meta-model of

the abstract design-space, a translator can be generated automatically, which extracts
the relevant information from the domain models and builds the abstract design-
space. (Currently, the translator generation is only partially automated. A parallel
research efforts targets the fully automated generation of model translators [7].)

6.2 Symbolic Representation of the Design-Space

The manipulation and exploitation of design-spaces can be reduced to set operations:
calculating the product space (composition of design spaces), union and intersection
and finding subspaces that satisfy various constraints. Since the size of design-spaces
is frequently huge, execution of these operations with enumeration of all elements is
hopeless. Therefore, we choose to perform the manipulation and exploitation
operations symbolically. Two problems had to be solved: 1) Symbolic representation
of design-spaces, and 2) Symbolic representation of constraints.

By introducing a binary encoding of the elements in a finite set, all operations
involving the set and its subsets can be represented as Boolean functions [17]. These
can then be symbolically manipulated with Ordered Binary Decision Diagrams
(OBDD-s) [17], a powerful tool for representing, and performing operations involving
Boolean function. The choice of encoding scheme has a strong impact on the
scalability of the symbolic manipulation algorithms, as it determines the number of
binary variables required for representing the sets. The details of our encoding have
been described in [16].

Figure [8] shows the encoding of a set of hierarchically structured alternatives,
shown as a tree (branches emerging from a horizontal line below a node denote an
AND-decomposition). In this example, S has three alternative implementations: S1 or
S2 or S3. S1 also has three alternatives: S11 or S12 or S13. S2’s implementation
requires three components, S21 and S22 and S23. Out of these components, S21 and
S23 have two alternative implementations, S211 or S212, and S231 or S232,
respectively. The prefix-based encoding scheme assigns encoding values to each
element such that each configuration receives a unique encoding value. A full
configuration is defined to be a well-formed path in the tree (e.g. [S {S2 [{S21 S212}
S22 {S23 S231}] in the figure). Figure [9] shows the symbolic Boolean
representation of this set of hierarchically structured alternatives, given the encoding
(vi-s are Boolean variables).

In addition to encoding the structure of design-space, the encoding scheme has to
encode the properties of elements also. This requires discretizing the domains of the
property variables. The domain size heavily influences the total number of binary
variables required to encode the design-space [16]. Subsequent to encoding, and
deciding the variable ordering, the symbolic Boolean representation is mapped to an
OBDD representation in a straightforward manner [16].

Fig. 8. Encoding abstracted design-spaces

Fig. 9. Symbolic Boolean representation of abstracted design-spaces

6.3 Symbolic Representation of Constraints

Earlier we listed some basic categories of constraints. Symbolic representation of
each of these categories of constraints is summarized below.

1. Composability and Inter-aspect constraints – These constraints specify relations
between elements of the space. Symbolically, the constraints can be represented as
a Boolean expression over the Boolean representation of the design-space. Figure
[10] shows an example of a composability constraint, and its symbolic Boolean
representation.

2. Performance constraints – Performance constraints specify bounds on the
performance attributes of an aggregate or composed system. These may be in the
form of size, weight, energy, latency, throughput, frequency, jitter, noise, response-
time, real-time deadlines, etc. Following are some simple examples for the SF
language:
• Timing – end-to-end latency constraints, specified over a signal-flow system, or

subsystem e.g. (latency < 20).
• Power – expresses bound over the maximum power consumption of a system or

a subsystem e.g. (power < 100).

Given that various design alternatives may have different values for different
performance attributes, performance constraints indirectly imply composability of
design alternatives. This makes performance constraints more challenging to
represent symbolically, than composability or inter-aspect constraints. Different
performance attributes compose differently, e.g. cost can be composed additively,
reliability can be composed multiplicatively, latency can be composed as
additively for pipelined components, and as maximum for parallel components,
etc. The PCM_STR attribute of the Properties in the meta-model of the
abstract design-space (Figure [7]) specifies the composition function to use.
DESERT provides some built-in composition functions (addition, maximum,
minimum, etc.), and has a well-defined interface for creating custom composition
functions. The containment relation between elements is generally not sufficient
for composing properties. The ElementRelations concept abstracts these
other relations such as dataflow, execution order, and others.

In addition to these basic categories of constraints, complex constraints may be
expressed by combining one or more of these constraints with first order logic
connectives. The symbolic representation of the complex constraints can be
accomplished simply by composing the symbolic representation of the basic
constraints.

Fig. 10. Symbolic representation of a composability constraint

6.4 Symbolic Pruning of the Design-Space

The symbolic pruning of the design-space, as observed earlier, in essence is a set
manipulation problem. The aggregate design-space is the cross product of design-
spaces, each of which is a finite set of designs. Constraints specify relations within the
aggregate space. Constraint-based pruning is a restriction of the aggregate space with
the constraints. Symbolic pruning is simply the logical conjunction of the symbolic
representation of the space with the symbolic representation of the constraints. It is
worth reemphasizing that during the pruning process all of the (potentially very large)
design spaces are evaluated simultaneously. Figure [11] illustrates the process of
symbolic design-space pruning.

Fig. 11. Symbolic design space pruning

7. Example: Automated Model Compiler (AMC)

One of the challenge problems presented at EMSOFT 2001 by Butts et al from Ford
Research [15] was an automated model compiler for composing controller models for
automotive applications. In this section we briefly summarize their problem
definition, and show our solution based on DESERT.

7.1 Usage scenarios

AMC is an automated model composition tool, which takes component models, target
architectures, and synthesizes models automatically, which meet design requirements.
The key elements of the usage scenarios for our discussion are the following:

1. Model components are Matlab®, Simulink®, Stateflow® models.
2. Model components have a set of key component attributes (I/O definitions,

essential parameters, etc.) that influence composability and capture performance
characteristics.

3. Target model architectures are described by an abstracted, hierarchical, high-level
modeling language, whose leaf nodes refer to model components defined above.

4. There is a rich set of compatibility relations for components. Structural constraints
focus on I/O signal types and simulation properties. Component compatibility
relates components via high-level design goals, such as “fun-to-drive” or “green”.

The challenge is to synthesize models that meet set design goals and performance
targets using the available model components. To characterize problem sizes, authors

refer to a powertrain control example, where 218 model components, each with 3-30
alternatives, are used in 130 vehicle applications. A typical vehicle application
includes 75-105 components.

7.2 AMC Architecture

AMC is a rich enough very interesting application problem, therefore we use a
preliminary implementation of AMC for demonstrating an important category of
DESERT applications. Since in the defined use scenario AMC needs to work
together with other modeling tools, the presented solution needs to deal with broader
tool integration issues.

The architecture of AMC is shown in Figure [12]. Components of the architecture
are the following:

Fig. 12. Architecture of an Automated Model Compiler

1. Matlab/Simulink and Component Repository: The repository contains simulation
model for various automotive subsystems. The models are stored in .mdl (Model
Definition Language) files, and there is an associated parameter definition file, that
defines a number of performance parameter (e.g. CPU usage, RAM/ROM usage)
and characterization information (green vs. fun-to-drive vehicle, etc.) for the
Simulink model. (The experimental system does not include StateFlow models.)

2. Component Abstraction: AMC does not need all of the detailed information in the
components. Component abstraction means that components are modeled, and the
component models include only the relevant information for model synthesis. For
example, the detailed I/O interface specifications of Matlab/Simulink models are
abstracted into basic I/O types. Parameters which are not essential for model
composition are suppressed. The component abstraction separates the
Matlab/Simulink world and the AMC world. The actual abstraction is supported by
a two-way model translator (generator). The content of the Component Repository

is translated into partial component models and sent to the GME-based Design-
Space Modeling environment in .xml format. The unique association between the
components in the Repository and their models in GME are maintained. In the
other direction, abstracted models, synthesized by AMC are translated into fully
specified Matlab/Simulink models by using the unique model component id-s and
auto-generating all of the connections based on the detailed I/O specifications.

3. Design-Space Modeling Environment: The challenge problem definition [15]
suggested the introduction of a high-level modeling language for the specification
of target architectures. This language uses the abstracted components at its leaf
nodes so as to allow modelers focusing on the appropriate level of abstraction.
Therefore, we defined an SF-like design language with hierarchy and alternatives
and instantiated it in our meta-programmable Graphical Model Editor (GME).
Design space models capture the hierarchical composition of vehicle systems and
capture design alternatives for subsystems. A primitive (leaf node) in this language
represents a simulation model in the Matlab/Simulink Component Repository, and
is linked to the simulation model through attributes that store model name, version
number, and file name. There are additional placeholder attributes for performance,
and characterization parameters that need not be filled by the user. The translator in
the Component Abstraction tool parses the parameter and I/O definitions and
populates the models with this information. The user can model design
specifications (e.g. CPU_usage < 70%, RAM < 20Kbytes) as constraints in the
design space models. Consistency constraints (e.g. connected I/O should have
matching data types) are automatically introduced in the models. The Design-
Space Modeling Environment supports the specification of structural, and
component compatibility constraints in OCL.

4. Design-Space Abstraction: As we described it in Section 6, DESERT uses a
domain-independent meta-model, which separates its internal algorithms from
domain-specific constructs. The Design-Space Abstraction component of the
architecture provides two-way model translation between the Design-Space
Models and the DESERT’s abstract design-space models. The two-way translation
enables that acceptable point designs selected from the pruned design space by
DESERT can be presented in the Design-Space Modeling Environment and can be
translated further automatically for the Matlab/Simulink environment for detailed
simulation studies.

We have a working prototype with the feed-forward path from the
Matlab/Simulink component repository to design-space models and DESERT, fully
implemented. The prototype has been demonstrated and tested. Design-spaces were
subjected primarily to I/O compatibility and performance constraints (CPU usage,
RAM/ROM requirements). The largest design spaces constructed during “stress tests”
included 130 binary variables.

8. Conclusions and Future Work

In this paper we presented an approach and a related tool for constructing and
exploring large design-spaces as part of a platform-based design process. Symbolic

pruning of large design-spaces seems to be a useful tool component in the overall tool
chain. Our preliminary results in the example described above and in other examples
(e.g. reported in [16]) have shown that the selected binary representation method for
design spaces scales well. The critical challenge in scalability is during the design-
space pruning phase. Application of complex constraints to large spaces may result in
explosion of the OBDD-s, therefore DESERT has an interactive user interface. Users
can control the importance of constraints and select the sequence order of their
application. We are experimenting with re-encoding the design-space after each
pruning steps, which usually results in a drastic decrease in the number of binary
variables.

Since OBDD-s are not effective as SAT solvers, we separate design-space pruning
from finding a single architectural alternative, which satisfies complex performance
constraints. To facilitate this step, we are in the process of developing an interface in
DESERT toward high performance SAT solvers.

References

[1] J. Sztipanovits and G. Karsai: “Embedded Software: Challenges and Opportunities,”
EMSOFT 2001, LNCS 2211, Springer. (2001) 403-415

[2] Ferrari, A., Sangiovanni-Vincentelli, A.: “System Design: Traditional Concepts and New
Paradigms,”

[3] Sangiovanni-Vincentelli, A.: “Defining Platform-based Design,” EEDesign
[4] J. Sztipanovits and G. Karsai: “Model-Integrated Computing,” IEEE Computer, April, 1997

(1997) 110-112
[5] Nordstrom G., Sztipanovits J., Karsai G., Ledeczi, A.: "Metamodeling - Rapid Design and

Evolution of Domain-Specific Modeling Environments", Proceedings of the IEEE ECBS'99,
Nashville, TN, April, 1999. (1999) 68-75

[6] Levendovszky, T., Karsai G.: “Model reuse with metamodel based-transformations,” ICSR,
LNCS, Austin, TX, April 18, 2002.

[7] Karsai, G., Gray,J.: “Design Tool Integration: An Exercise in Semantic Interoperability,”
Proceedings of the Engineering of Computer Based Systems (ECBS) Conference,
Edinburgh, UK, March, 2000. (2000) 272-278

[8] Generic Modeling Environment documents,
http://www.isis.vanderbilt.edu/projects/gme/Doc.html

[9] T. Clark, A. Evans, S. Kent, P. Sammut: “The MMF Approach to Engineering Object-
Oriented Design Languages,” Workshop on Language Descriptions, Tools and Applications
(LDTA2001), April, 2001

[10] UML Semantics, Ver. 1.1., Rational Software Corporation, 1997.
[11] F. Puntigam, "Types for Active Objects Based on Trace Semantics," Proc. of the

Workshop on Formal Methods for Open Object-Oriented Distributed Systems
(FMOODS'96), Paris, France, March, 1996.

[12] E. A. Lee and A. Sangiovanni-Vincentelli: “A Framework for Comparing Models of
Computations,” IEEE Trans. CAD Integrated Circuits and Systems, (1998) 1217-1229

[13] Ledeczi A., Nordstrom G., Karsai G., Volgyesi P., Maroti M.: “On Metamodel
Composition,” IEEE CCA 2001, CD-Rom, Mexico City, Mexico, September 5, 2001.

[14] Lee, E.A., Xiong, Y.: “System-Level Types for Component-Based Design,” EMSOFT
2001, LNCS 2211, Springer. (2001) 237-253

[15] Butts, K., Bostic, D., Chutinan, A., Cook, J., Milam, B., Wand, Y.: “Usage Scenarios for
an Automated Model Compiler,” EMSOFT 2001, LNCS 2211, Springer. (2001) 66-79

[16] Neema, S., “Design Space Representation and Management for Embedded Systems
Synthesis,” Technical Report, ISIS-01-203, February 2001.
http://www.isis.vanderbilt.edu/publications/archive/Neema_S_2_0_2003_Design_Spa.pdf

[17] Bryant R., “Symbolic Manipulation with Ordered Binary Decision Diagrams,” School of
Computer Science, Carnegie Mellon University, Technical Report CMU-CS-92-160, July
1992.

