

Dynamically Reconfigurable

Embedded Image Processing System

Jim Nichols and Sandeep Neema
Institute for Software Integrated Systems (ISIS), Vanderbilt University

Nashville, TN 37325, U.S.A
jnichols@edge.net neemask@vuse.vanderbilt.edu

Abstract
?Image processing uses many data processing

techniques to transform the raw data or
information from a sensor system into useful
information from which decisions can be made.
Historically, the data processing systems
associated with each image processing application
were tuned or optimized to that application such as
machine inspection, pattern recognition, etc. In
today's environment it is desirable to quickly
evaluate promising techniques while maintaining
minimal manpower and/or capital penalties. In this
paper we will describe the implementation of a
Missile Automatic Target Recognition (ATR)
based on Adaptive Computing Systems (ACS) /
Model Integrated Computing (MIC) techniques
developed at ISIS/Vanderbilt University.

1. Introduction

Embedded image processing systems and
specifically embedded missile ATR systems face
many challenges, due to extremely large
computational requirements and other physical,
power, and environmental constraints. Image sizes
can be large with a high frame rate that may vary
from 30Hz up to over 300Hz. For mission critical
processing of this input data must meet hard real-
time requirements. In order to achieve these
requirements many processing components must
be implemented in hardware; other components
may be implemented in software on embedded
processors such as Digital Signal Processors
(DSPs).

Fielded ATR systems also require special
attention to power consumption, and heat and

This project is a DARPA/ITO Adaptive Computing Systems funded
effort, involving close cooperation with US ARMY/AMICOM.

space constraints. During some processing modes
it is desirable to put components not needed to
meet processing requirements at that time into a
low power or shut down mode.? Also, these ATR
systems must be physically small, typically less
than 0.5 cubic foot volume, and lightweight. These
factors require that component utilization be
maximized as much as possible for selected
hardware. During the course of the flight of the
missile, as its environment changes (ex. altitude
and distance to target) processing requirements
also change (see figure 1).

 A dynamically reconfigurable implementation
offers the chance to address these challenges with
architectures that change in response to the
changing environment. Hardware architectures are
required that can structurally adapt, adjusting
themselves for each mode of operation to achieve
high performance with the changing algorithms.
This high performance is made possible due to the
advances in reconfigurable device technology
(Field Programmable Gate Arrays).

Figure 1: Adaptive ATR Scenario

2. Design Environment
Designing such systems poses a major

challenge to the design engineering process,
mandating the use of advanced design techniques.
The ACS design environment [1] developed at
ISIS/Vanderbilt University offers such an
advanced design tool. The "programming
interface" consists of a high-level, graphical
specification environment which runs on a
Windows PC (NT or 9x). The user specifies the
computations to be performed by drawing a
graphical data flow representation consisting of
boxes (algorithms) and interconnecting lines
(communications) (figure 2). The performance
requirements of the application and the topology
of the available hardware network are also
specified graphically.

Figure 2: Graphical Model Editor (GME)

The ACS tools look at the graphical
specifications and the underlying hardware
resources and present the user with many
optimized configurations to choose from for the
final system implementation.

The final generated system implementation
consists of executable / synthesizable code and
architecture and interface specifications for the
underlying ACS run-time environment described.

In addition to implementing data flows made

up of standard image processing algorithms, the
user can also expand the functionality of the
design tools by adding new algorithms to the
support library. The algorithms are implemented
as normal “C" subroutines for the DSP’s and as
VHDL for the FPGA’s and are fully integrated
into the system by specifying pertinent
information in terms of an algorithm model.

3. ATR Algorithm

The complexities of the changing
computational support requirements and dynamic
constraints associated with the ATR algorithm are
a good test of the ACS environment. The
ISIS/Vanderbilt ACS environment was used for
design, implementation, and mission adaptation of
the missile ATR problem.

The ATR algorithm is based on correlation
filtering [2]. Each image of the input image stream
is sequentially preprocessed then transformed into
the frequency domain. The copies of this spectral
image are then multiplied in parallel by the filter
correlation matrices for the three classes of targets
of interest. The results for each of the three classes
are then inverse frequency domain transformed to
give the correlation surface maps associated with
each of the three classes. The strongest correlation
peaks for each image class are compared with the
reference classes to yield the class closeness
measures. These measures are used to determine
the class for the object in the image associated
with the correlation peaks. Note that all operations
after the forward frequency domain transform can
be parallelized for each class. The flow diagram of
this algorithm is shown in figure 3.

Figure 3: ATR Flow Diagram

4. ACS Implementation of ATR Algorithm
The solution of this problem involves first

creating a model of the algorithm processing. If
viewed from a hierarchical point of view, the top
most layer corresponds to top level flow diagram
of the algorithm. As seen in figure 4, five of the
algorithm blocks where merged when making the
model for the ATR algorithm. The blocks
associated with the aft portion of the dataflow
processing pipeline can be parallelized for each
class being evaluated.

Figure 4: ATR Model Flow Diagram

Each block in this top-level diagram is then

Input Image
Stream Preprocessing 2D FFT Multiply

Class
Filter

Banks

2D IFFT
Class

Distance
Calculation

Class
Determination

Display
Result

Input Image
Stream Preprocessing 2D FFT Multiply

Class
Filter

Banks

2D IFFT
Class

Distance
Calculation

Class
Determination

Display
Result

do_peaks

broken down into its own hierarchical tree to
increasing levels of details. This allows both the
overall flow of the algorithm to be observed as
well as the details of any individual element. The
topmost layer in shown in figure 5. Notice that it’s
representation is very similar to the data flow of
the ATR algorithm.

 Figure 5: Top Level Model of ATR

Algorithm

Each element of this model has it own
hierarchy in the modeling environment. An
example of this hierarchy is shown in figure 6.
The “do_peaks” element or icon in the top level
model or graph represents the model associated
with the next layer down (figure 6, top right). The
“matched_filter” model icon or element in the top
right model graph represents the model in the
lower left portion of figure 6. The “corstats”
model icon in the lower left model represents the
model in the lower right quadrant of figure 6, and
so on.

Figure 6: Model Hierarchy Example

As the more detailed lower layers of the model
are defined, additional information can be placed
in the model. Based on analysis and other factors,
attributes and constraints may be added to the
elements of these models. For example, if from
analysis it is determined that a minimum of single
precision IEEE floating point accuracy is needed
to satisfy the ATR accuracy criteria, this can be

captured in the structural model as a constraint or
attribute. Specific implementations can also be
defined and required for performance purposes.
Intercommunication bandwidths and
communication / data routing constraints can also
be specified at the element level (figure 7).

Figure 7: Constraint definitions

The dataflow-like model hierarchy just
discussed refers to the structural modeling aspect
of the ACS modeling environment. There are two
other aspects: the behavior and the resource
models. The behavioral modeling aspect describes
how the system will perform based on operational
states, events, and transitions [1]. This allows for
the specification of how the system should react
based on events or transitions (figure 8).

Figure 8: Behavioral Model Example

As with all the model aspects in the ACS
environment, the behavioral model supports
hierarchy. Figure 9 shows the more detailed model
of the missile system “ready” state.

Figure 9: Ready Behavioral Model Example

Some examples of behaviors that would be
modeled in this aspect are shown in figure 1. For
example, if the target lock on was lost after launch
of the missile and the target needed to be
reacquired. Another example would be the
reacquisition of a target when the ATR system
discovered it is locked onto the wrong target (ex.
civilian or friendly target). By capturing how the
system should behave in response to various
events and stimuli, the designer can ensure proper
operation of the system under various conditions.

The third aspect to the modeling environment is
the resource model. It describes what resources are
available to implement the solution to the problem
described in the structural model. It provides the
model interpreter with the details or constraints of
the available computational hardware resources
(figure 10). In this example, the resources model
contains a host computer system, a digital signal
processor, and a field programmable gate array.
Various resource models can allow the design to
be implemented on a simple prototype system to
more complex deliverable systems based on the
target resources available.

Figure 10: Resource Model Example

The ACS model interpreter utilizes all three
modeling aspects as guidance or constraints to
arrive at the best solution of the problem based on
those constraints. The ACS development
environment [2] coupled with the appropriate
runtime environment [3] generate a solution

system to implement the problem defined in the
models.

 The ATR system described above has been

implemented in software on a homogeneous
network of TI TMS320C40 digital signal
processors. Efforts are now underway to migrate
to a custom heterogeneous computing platform
consisting of configurable hardware (Xilinx/Altera
FPGA’s) and DSP’s (Texas Instruments C40’s).
On this heterogeneous platform the modeling
environment will assign portions of the algorithm
based on computational complexity, user timing
constrains, and available resources to the most
appropriate portion of the platform to satisfy these
constraints.

5. Conclusions

Using the ACS environment and tools has
greatly simplified the task of generating an
implementation of this complex algorithm. It also
has allowed easy adaptation & inclusion of new
hardware elements to improve the system
performance. While this paper focused on an ATR
problem, this technology can be applied to many
other image processing problems. Previous work
in MIC based image processing systems has
shown great promise [4,5]. The movement from a
homogeneous DSP only architecture to
heterogeneous DSP/FPGA architectures will
provide a much better cost / performance ratio.
The ACS environment and tools will greatly
facilitate this transition.

6. References

[1] Sandeep Neema, Ted Bapty, Jason Scott,
“Development Environment for Dynamically
Reconfigurable Embedded ACS Tools Systems”,
International Conference on Signal Processing
Applications and Technology (ICSPAT99),
Orlando, Florida.

[2] A. Mahalanobis, B.V.K. Vijaya Kumar, and
S.R.F. Sims, “Distance-classifier correlation filters
for multi-class target recognition”, APPLIED
OPTICS, Vol. 35, No. 17, pp3127-3133, 10 June
1996.

[3] Jason Scott, Ted Bapty, Sandeep Neema,”
Runtime Environment for Dynamically
Reconfigurable Embedded Systems”, International

Conference on Signal Processing Applications and
Technology (ICSPAT99), Orlando, Florida.

[4] Moore, M.: "A DSP-Based Real-Time Image
Processing System," Proceedings of the 6th
International Conference on Signal Processing
Applications and Technology (ICSPAT95),
Boston, MA, August, 1995.

[5] Nichols J., Moore M. S.: "An Adaptable, Cost
Effective Image Processing System", Proceedings
of the 10th JANNAF Non-destructive Evaluation
Sub Committee, Salt Lake City, UT, March, 1998

