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Abstract 
?Image processing uses many data processing 

techniques to transform the raw data or 
information from a sensor system into useful 
information from which decisions can be made. 
Historically, the data processing systems 
associated with each image processing application 
were tuned or optimized to that application such as 
machine inspection, pattern recognition, etc.  In 
today's environment it is desirable to quickly 
evaluate promising techniques while maintaining 
minimal manpower and/or capital penalties. In this 
paper we will describe the implementation of a 
Missile Automatic Target Recognition (ATR) 
based on Adaptive Computing Systems (ACS) / 
Model Integrated Computing (MIC) techniques 
developed at ISIS/Vanderbilt University. 
 
1. Introduction 

Embedded image processing systems and 
specifically embedded missile ATR systems face 
many challenges, due to extremely large 
computational requirements and other physical, 
power, and environmental constraints. Image sizes 
can be large with a high frame rate that may vary 
from 30Hz up to over 300Hz. For mission critical 
processing of this input data must meet hard real-
time requirements. In order to achieve these 
requirements many processing components must 
be implemented in hardware; other components 
may be implemented in software on embedded 
processors such as Digital Signal Processors 
(DSPs). 

Fielded ATR systems also require special 
attention to power consumption, and heat and 
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space constraints. During some processing modes 
it is desirable to put components not needed to 
meet processing requirements at that time into a 
low power or shut down mode.? Also, these ATR 
systems must be physically small, typically less 
than 0.5 cubic foot volume, and lightweight. These 
factors require that component utilization be 
maximized as much as possible for selected 
hardware.  During the course of the flight of the 
missile, as its environment changes (ex. altitude 
and distance to target) processing requirements 
also change (see figure 1). 

 A dynamically reconfigurable implementation 
offers the chance to address these challenges with 
architectures that change in response to the 
changing environment. Hardware architectures are 
required that can structurally adapt, adjusting 
themselves for each mode of operation to achieve 
high performance with the changing algorithms. 
This high performance is made possible due to the 
advances in reconfigurable device technology 
(Field Programmable Gate Arrays). 

 
Figure 1: Adaptive ATR Scenario 

 

                                            
 



 

2. Design Environment 
Designing such systems poses a major 

challenge to the design engineering process, 
mandating the use of advanced design techniques. 
The ACS design environment [1] developed at 
ISIS/Vanderbilt University offers such an 
advanced design tool. The "programming 
interface" consists of a high-level, graphical 
specification environment which runs on a 
Windows PC (NT or 9x). The user specifies the 
computations to be performed by drawing a 
graphical data flow representation consisting of 
boxes (algorithms) and interconnecting lines 
(communications) (figure 2). The performance 
requirements of the application and the topology 
of the available hardware network are also 
specified graphically.  

 
Figure 2: Graphical Model Editor (GME) 

 

The ACS tools look at the graphical 
specifications and the underlying hardware 
resources and present the user with many 
optimized configurations to choose from for the 
final system implementation.  

The final generated system implementation 
consists of executable / synthesizable code and 
architecture and interface specifications for the 
underlying ACS run-time environment described.  

 
In addition to implementing data flows made 

up of standard image processing algorithms, the 
user can also expand the functionality of the 
design tools by adding new algorithms to the 
support library. The algorithms are implemented 
as normal “C" subroutines for the DSP’s and as 
VHDL for the FPGA’s and are fully integrated 
into the system by specifying pertinent 
information in terms of an algorithm model. 
 

 
3. ATR Algorithm 

The complexities of the changing 
computational support requirements and dynamic 
constraints associated with the ATR algorithm are 
a good test of the ACS environment. The 
ISIS/Vanderbilt ACS environment was used for 
design, implementation, and mission adaptation of 
the missile ATR problem.  

The ATR algorithm is based on correlation 
filtering [2]. Each image of the input image stream 
is sequentially preprocessed then transformed into 
the frequency domain. The copies of this spectral 
image are then multiplied in parallel by the filter 
correlation matrices for the three classes of targets 
of interest. The results for each of the three classes 
are then inverse frequency domain transformed to 
give the correlation surface maps associated with 
each of the three classes. The strongest correlation 
peaks for each image class are compared with the 
reference classes to yield the class closeness 
measures. These measures are used to determine 
the class for the object in the image associated 
with the correlation peaks. Note that all operations 
after the forward frequency domain transform can 
be parallelized for each class. The flow diagram of 
this algorithm is shown in figure 3. 

Figure 3: ATR Flow Diagram 
 

4. ACS Implementation of ATR Algorithm 
The solution of this problem involves first 

creating a model of the algorithm processing. If 
viewed from a hierarchical point of view, the top 
most layer corresponds to top level flow diagram 
of the algorithm. As seen in figure 4, five of the 
algorithm blocks where merged when making the 
model for the ATR algorithm. The blocks 
associated with the aft portion of the dataflow 
processing pipeline can be parallelized for each 
class being evaluated. 

Figure 4: ATR Model Flow Diagram 
 

Each block in this top-level diagram is then 
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broken down into its own hierarchical tree to 
increasing levels of details.  This allows both the 
overall flow of the algorithm to be observed as 
well as the details of any individual element. The 
topmost layer in shown in figure 5. Notice that it’s 
representation is very similar to the data flow of 
the ATR algorithm. 

 

 
 Figure 5: Top Level Model of ATR 

Algorithm 
 

Each element of this model has it own 
hierarchy in the modeling environment. An 
example of this hierarchy is shown in figure 6. 
The “do_peaks” element or icon in the top level 
model or graph represents the model associated 
with the next layer down (figure 6, top right). The 
“matched_filter” model icon or element in the top 
right model graph represents the model in the 
lower left portion of figure 6. The “corstats” 
model icon in the lower left model represents the 
model in the lower right quadrant of figure 6, and 
so on.  

 

 
Figure 6: Model Hierarchy Example 

 

As the more detailed lower layers of the model 
are defined, additional information can be placed 
in the model. Based on analysis and other factors, 
attributes and constraints may be added to the 
elements of these models. For example, if from 
analysis it is determined that a minimum of single 
precision IEEE floating point accuracy is needed 
to satisfy the ATR accuracy criteria, this can be 

captured in the structural model as a constraint or 
attribute. Specific implementations can also be 
defined and required for performance purposes. 
Intercommunication bandwidths and 
communication / data routing constraints can also 
be specified at the element level (figure 7). 

 

 
Figure 7: Constraint definitions 

 

The dataflow-like model hierarchy just 
discussed refers to the structural modeling aspect 
of the ACS modeling environment. There are two 
other aspects: the behavior and the resource 
models. The behavioral modeling aspect describes 
how the system will perform based on operational 
states, events, and transitions [1].  This allows for 
the specification of how the system should react 
based on events or transitions (figure 8).   

 

Figure 8: Behavioral Model Example 
 

As with all the model aspects in the ACS 
environment, the behavioral model supports 
hierarchy. Figure 9 shows the more detailed model 
of the missile system “ready” state. 

 



 

 
Figure 9: Ready Behavioral Model Example 

 

Some examples of behaviors that would be 
modeled in this aspect are shown in figure 1. For 
example, if the target lock on was lost after launch 
of the missile and the target needed to be 
reacquired. Another example would be the 
reacquisition of a target when the ATR system 
discovered it is locked onto the wrong target (ex. 
civilian or friendly target). By capturing how the 
system should behave in response to various 
events and stimuli, the designer can ensure proper 
operation of the system under various conditions. 

The third aspect to the modeling environment is 
the resource model. It describes what resources are 
available to implement the solution to the problem 
described in the structural model.  It provides the 
model interpreter with the details or constraints of 
the available computational hardware resources 
(figure 10). In this example, the resources model 
contains a host computer system, a digital signal 
processor, and a field programmable gate array. 
Various resource models can allow the design to 
be implemented on a simple prototype system to 
more complex deliverable systems based on the 
target resources available. 

 

 
Figure 10: Resource Model Example 

 

The ACS model interpreter utilizes all three 
modeling aspects as guidance or constraints to 
arrive at the best solution of the problem based on 
those constraints. The ACS development 
environment [2] coupled with the appropriate 
runtime environment [3] generate a solution 

system to implement the problem defined in the 
models. 

 
 The ATR system described above has been 

implemented in software on a homogeneous 
network of TI TMS320C40 digital signal 
processors. Efforts are now underway to migrate 
to a custom heterogeneous computing platform 
consisting of configurable hardware (Xilinx/Altera 
FPGA’s) and DSP’s (Texas Instruments C40’s). 
On this heterogeneous platform the modeling 
environment will assign portions of the algorithm 
based on computational complexity, user timing 
constrains, and available resources to the most 
appropriate portion of the platform to satisfy these 
constraints. 

 
5. Conclusions 

Using the ACS environment and tools has 
greatly simplified the task of generating an 
implementation of this complex algorithm.  It also 
has allowed easy adaptation & inclusion of new 
hardware elements to improve the system 
performance. While this paper focused on an ATR 
problem, this technology can be applied to many 
other image processing problems. Previous work 
in MIC based image processing systems has 
shown great promise [4,5]. The movement from a 
homogeneous DSP only architecture to 
heterogeneous DSP/FPGA architectures will 
provide a much better cost / performance ratio. 
The ACS environment and tools will greatly 
facilitate this transition.  
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