Draft

Formalizing the Specification of Model Integrated
Program Synthesis Environments

Greg Nordstrom
Institute for Software Integrated Systems
Vanderbilt University
230 Appleton Place, Suite 201
Nashville, TN 37203
615-343-7521
greg.nordstrom@vanderbilt.edu

Abstract—Model integrated computing (MIC) is an Examples of environments include large-scale production
effective and efficient method for developing, maintaining, facility process monitoring; real-time diagnostics and
and evolving large-scale computer-based systems (CBSgjhalysis of manufacturing execution systems; web-based
One approach to MIC is to synthesize application programéformation distribution, integration, and management;
from domain-specific models created using customizedsurety of high consequence, high reliability systems; and
model integrated program synthesis ([\/“PS) environmentsf_ault detection, isolation, and recovery of space vehicle life
The MultiGraph Architecture is a toolset for creating SUPPOrtsystems.

graphical domain-specific MIPS environments (DSMES).

By modeling the syntactic, semantic, and presentatiodPue to the complex nature of large-scale, mission-critical
requirements of a DSME, metamodels formed and used Systems, software modification involves a large amount of
to synthesize the DSME itself, enabling design environmenfisk. The magnitude of this risk is proportional to the size
evolution in the face of changing domain requirements.@nd importance of the system, not to the size of the change.
Because both the domain-specific applications and thé&mall modifications in one area can cause large and
DSME are designed to evolve, efficient and safe large-scalgnforeseen changes in others. Because such risk is always

computer-based systems development is possible over tigesent, it must be managed. To effectively manage such
entire lifetime of the CBS. risk, the entire system must be designed to evolve. Key

factors in this evolution are:

This paper presents a method to represent DSME _
requirements using UML class diagrams and predicate logi¢ ~Requirements capture: A method to state the system’s
constraint language expressions, and discusses automatic requirements and design in concise, unambiguous

transformation of metamodel specifications into DSMEs terms. _ 3 _
« Program synthesis: The ability to automatically
TABLE OF CONTENTS transform requirements and design information into
application software.
1. INTRODUCTION « Application evolution: A method to safely and
2. MODEL-INTEGRATED PROGRAM SYNTHESIS efficiently evolve the application software over time as
3. METAMODELING CONCEPTS system requirements change.
4. USING THEMETAMODELING SYSTEM « Design environment evolution: A method to ensure the
5. CONCLUSIONS design environment (e.g. design and analysis tools, etc.)
can correctly model domain-specific systems as domain
1. INTRODUCTION requirements change.

Large computer-based systems (CBSs), where functional : L
L . . n emerging technology that enables such evolution is

performance, and reliability requirements demand the tigh : ")

: . . . 2 model integrated computing (MIC). MIC allows designers to

integration of physical processes and information

. L .__create models of domain-specific systems, validate these
processing, are among the most significant technological . . .
. models, and perform various computational transformations
developments of the past 20 years [1]. CBSs operate in ever- - i
.on the models, yielding executable code or input data
changing environments, and throughout the system’s life . . .
. L ; treams for simulation and/or analysis tools.
cycle, changes in mission requirements, personnel,
hardware, support systems, etc., all drive changes to th .
CBS. Rapid reconfiguration via software has long been see8ne approach to MIC is mo

. . : IPS). In MIPS, formalize
as a potential means to effect rapid change in such systems, . o]
aspects of a domain-specifi

Draft

behavior. Model interpreters are used to perform the [Vetamodel K] Chemical Plant | specifes
computational transformations necessary to synthesize Metamodel

executable code for use in the system’'s execution
environment, often in conjunction with code libraries and isan

some form of middleware (e.g. CORBA, the MultiGraph inss"°e?m<]_ Chemical Plant 1. produce Chfwmigall_Plam
kernel [2], POSIX, etc.), or to supply input data streams for L1 Model Environment
use by various GOTS, COTS, or custom software packages synthesizep

(e.g. spreadsheets, simulation engines, etc.) When changesisan
in the overall system require new application programs, th :'”;‘Zl::’n ;peciﬁc p———

models are updated to reflect these changes, the wmc appiication < Application *
interpretation process is repeated, and the applications and

data streams are regenerated automatically from the models.

Figure 1 Modeling and metamodeling relationships

The MultiGraph Architecture (MGA) is a toolset for

creating domain-specific MIPS environments. Although theFlgure 1 illustrates the relationships between the conceptual

MGA provides a means for evolving domain-specific notions of metamodels, domain models, and domain-specific

applications, such capability is generally not enough to keeB’”C applications and the more concrete components of an

pace with large changes in systems requirementsEflctual MIC application — in this case a chemical plant

Throughout the lifetime of a system, particularly a Iarge-mOde“r;g sn\(lrotnment. ?n tthe I%ﬂ’l dom(?l(r] models ar.?
scale system, requirements often change in ways that forﬁlOWn 0 DE Instances of metamodels, and domain-spectiic

the entire design environment to change. For example, if ¢ apphcgtlons are shown fo be m;tances of dO”?a'”
domain-specific MIPS environment (DSME) exists for models. Said another way, a metamodel is used to specify all
ossible domain models, and a domain model is used to

modeling a chemical plant and generating executable cod@oss! I ible d ; ii licati
for use on the plant's monitoring and analysis computers?pecIfya possible domain-speciiic applications.
what happens when new equipment is later added to th

plant — equipment that was not in use or was unheard of a he center of Figure 1 shows_special_i_zed versions_ of_the
the time the DSME was created? In all likelihood, the metamodel, model, and domain-specific MIC application

existing DSME would not be able to model new objects used in chemical plant modeling. A chemical plant

configurations of the plant. Instead, the entire DSME mustmet_amodelt SphBCIerS thtﬁ c_h?];nlcgllh pIa;}nt _m(l)dellln%
be upgraded to allow models of the new equipment to p&hvironmen (shown on the right). € chemical pian

incorporated into existing and future chemical plant models.moOlellng environment s used '.[0 produce ch_eml_cal plant
models and to synthesize chemical plant applications from

The MGA tools have been used to develop MIC Solutionsthose models. Note that the general relationships between

for computer-based systems for over 10 years [3] [4] [5] [G]meta_\mo_dels, domain models, and domain-specific MIC
[7] [8]. Until now, DSMEs were handcrafted, and rebuilding f'ippllcatlons still ho'd — the chemlcal plant mqqlel IS one
a DSME was a long and costly process. Our approach is t81stan_ce of all possible chemical plants speC|f|_ed by the
automatically generate the DSME by applying MIPS cher_mcal plant metamodel, and th_e chemlc_al plant
techniques to the process of creating the DSME itself — toappllcatlon_ls one instance of all possible chemical plant
"model the modeling environment" in a manner similar to model applications.

modeling a particular domain-specific application. (In fact, a__, . .
gap b bp (This paper presents a method for creating metamodels to

DSME is a domain-specific application, where the domain is i .) .
the set of all possible MIPS environments.) Just as domair{_epresent_ DSME r_equwemen_ts using UML object @agrams
nd predicate logic constraint language expressions, and

specific models are used to generate domain-specifig. i tic t p i f h met dels int
applications, by adding a metaprogramming interface to |§<|:\>|Jéses automatic transtormation of such metamodels into
MIPS environment, the MIPS environment can be used t S-

generate various DSMEs. Such a MIPS environment is
called a metamodeling environmentBecause models 2. MODEL-INTEGRATED PROGRAM SYNTHESIS

created using a metamodeling environment describe othqfqqeling reduces design cycle times, allows completeness
modeling systems, they are calletetamodels- formalized and consistency checking throughout the design process,

descriptions of the objects, relationships, and behavio&ids in documenting the design itself, and, in the case of

required in a particular DSME. It can be seen that thisg,octable models, allows automated design validation

approach to DSME design and evolution is similar to that ofyq/or simulation. Because modeling lowers cost and error
evolving domain-specific applications using DSMEs — just 3

" o ; X rates, it becomes a key strategy in
up one level" in the design hierarchy. [9]. The artifacts of the m'n
e

abstractions of the original syst

Draft

is its ability to reduce or hide complexity. To aid designersworld systems, and when the system being modeled is a
in creating models of hardware and software systemssystem for creating other models, the modeling activity is
various modeling languages and design environments haworrectly termed metamodeling. Therefore, concepts that
been created. For such languages to be successful, they magiply to modeling also apply to metamodeling. This logic
be specific enough to enable designers to represent the keyan be extended to the process of meta-metamodeling, too.
elements of various designs without undue constraint, whildHowever, because of the goals of modeling, metamodeling,
remaining general enough to allow a fairly wide variety of and meta-metamodeling are quite different, a four-layer
models to be created. conceptual framework for metamodeling has been
established and is in general use by the metamodeling
A MIPS environment operates according to a domain-community. The following table, taken from [10], describes
specific modeling paradigm- a set of requirements that each layer:
govern how any system in the particular domain is to be
modeled. These modeling requirements specify the types of Table 1 Four-layer metamodeling architecture
entities and relationships that can be modeled; how to mod
them; entity and/or relationship attributes; the number an
types of aspects necessary to logically and efficientl ; .
ggrtition the (?esign space; ho)\//v sema%tic ir)llformation is to b)e archltggture. Defines the language for
represented in, and later extracted from, the models; analysi describing metamodels.

requirements; and, in the case of executable models, rupMetamodel Ar;, mstarl]ncle of a rr;eta-metgmocel.
time requirements. Defines the language for specifying|a

model.
An instance of a metamodel. Defines
a language to describe an informatipn

ol
[Layer Description
"' Meta-metamodel| The infrastructure for a metamodeling

Once a modeling paradigm has been established, the MIR dvodel
environment itself can be built. A MIPS environment

consists of three main components: (1) a domain-aware : domam. '

model builder used to create and modify models of domain- User objects An Instance Of a modgl. Defineg a
specific systems, (2) the models themselves, and (3) one br specific information domain.

more model interpreters used to extract and translate

semantic knowledge from the models. This four-layer architecture creates an infrastructure for

defining modeling, metamodeling, and meta-metamodeling
languages and activities, and provides a basis for future
metamodeling language extensions. The architecture also
More and more, the prefix "meta" is being attached to wordsprovides a framework for exchanging metamodels among
that describe various modeling and data representatiodifferent metamodeling environments — critical for tool
activities (e.g. metaprocess, metadata, metaobject, etdfteroperability, since such interoperability depends on a
Unfortunately, the prefix is not always applied consistently,precise specification of the structure of the language [10].
causing considerable confusion among researcherd.he previous definitions for Model, Metamodel, and Meta-
Therefore, in the context of this paper, the following metamodel correspond to the upper three layers of Table 1.
definitions apply:

3. METAMODELING CONCEPTS

Modeling Syntax, Semantics, and Presentation

* ModeI.: An abstract representation of a CBS. To properly capture the syntax of a modeling language, a
* Modeling Environment: A system based on a meamodel must describe all entities, relationships, and
modeling paradigm for creating, analyzing, and aihytes that may exist in the target language. As discussed
translating domain-specific models. in [10], when specifying graphical modeling languages, an

« Metamodel A model that formally defines the syntax, spstract syntax — a language syntax devoid of
semantics, presentation, and translation specifications gfyplementation details — is first specified. Then a concrete

a particular domain-specific modeling environment. qyniay is defined as a mapping of the graphical notation onto

* Metamodeling Environment: A tool-based framework the apstract syntax, clearly defining the particular graphical
for creating, validating, and translating metamodels. jdioms and constructs used to represent entities,

¢ Meta-metamodel A model that formally defines the relationships and attributes defined in the abstract syntax.
syntax, semantics, presentation, and translationryrthermore, in the case of a multi-aspect graphical
specifications of a metamodeling environment. modeling language, where models are to be viewed from
different aspects or points of view, the metamodel must

In a very real sense, modeling and metamodeling arelearly define a partitioning pf the graphical ¢ ructs into

identical activities — the difference being one of such aspects. D W@

interpretation. Models are abstract representations of real-

Draft

Modeling language semantics must also be specified in & separate the implementation details from the language

metamodel. It is necessary to distinguish among two types ddpecification itself.

semantics — static and dynamic. Static semantics refer to the

well-formedness of constructs in the modeled language andetamodel Composition and Translation

are specified as invariant conditions that must hold for any, . . .
Because common modeling concepts apply to a wide variety

model created using the modeling language. Dynamug%f engineering domains, the approach to creating DSMEs is

semantics, however, refer to the interpretation of a given se&L customize (i.e. configure) a general graphical modelin
of modeling constructs in the context of model instances - 9 9 grap g

.) 1 . environment for use in a particular domain according to
themselves. Only static semantics may be specified in & " O
RN Specifications included in a metamodel. This is done by

metamodel — the metamodel has no way of knovérgiori : : S
. .) . . . _representing general modeling principles abstractly and
what meaning to associate with particular instances (i.e. = . . . : .
: : placing such representations in a repository or library. The

particular models) created using the language.

metamodeler then accesses these representations and

Another consideration in any metamodeling language is th§OMPoses a metamodel as dictated by the modeling

form of these invariant constraint statements. Constraintgarad'gm' Such an approach allows quick and accurate

) . construction of metamodels — assuming, of course, that these
should be analyzable, allowing automated or semi-

.) - individual representations have been validaegkiori, and
automated consistency checking before synthesizing fhat the act of combining or composing them does not

modeling gnvwonment. Th|§ requires that they be preC'S.ehﬁegate their individual validations (or that re-validation can
stated using a mathematical language such as predlca{)e

calculus, where invariants take the form of Boolean € easily accomplished).
expressions — expressions that must be satisfied by any

instance model created using the DSME. Table 2General modeling principles

Name Description
After the syntax and semantics of a domain-specific| Module Interconnect| Provides rules for connect|ng
modeling language have been specified, the presentatign objects together and defining
specifications must be defined. Part of this specification is interfaces. Used to descrihe
the mapping of graphical modeling idioms available in the relationships among objects.
target modeling environment onto the abstract syntaX Aspects Enables multiple views of |a
discussed earlier. Another part of the presentation model. Used to allow models tp
specification involves deciding how best to represent the be constructed and viewed from
syntactic and semantic specifications graphically. For different “viewpoints.”
example, if a target modeling environment supports part- Hierarchy Describes the allowed
whole hierarchy through the use of object containment, one encapsulation and hierarchical
may use this modeling environment feature as a mechanism behavior of model objects. Usdd
for representing aggregation. Of course, other choices may to represent information hiding|
exist, such as representing containment as a special type DDOpject Association Binary and n-ary associations
interconnection. The choice rests with the metamodeler] among modeling objects. Used
given the capabilities of a particular graphical modeling to constrain the types and
environment. multiplicity of connections

between objects.

As stated earlier, making modeling (and metamodeling Specialization Describes inheritance rules.
tools interoperable requires that metamodels be exchanged Used to indicate object
among various metamodeling tool suites. This requires that refinement.
the structure of any language — its syntax and semantics — be

precisely specified in the metamodel, apart from thergpie 2 describes several general modeling principles.
presentation specification. In this respect, the presentatioftyese principles represents constraints on the modeling
specification becomes an implementation detail that depe”gg(ocess. Because of their general nature, the principles must
on the particular editing environment that is being mapped,e cystomized before being used in a given metamodel. This
onto the syntactic and semantic specifications of theyjows the metamodeler to inject domain-specific concepts

modeling language. Therefore, metamodeling tools angho the metamodel. One approach to this customization is
environments must be able to accept metamodels Spec'f'e&arameterization.

in a variety of metalanguages, or those metalanguages must
be translatable to a metalanguage that the metamodelingyyre 2 defines a genera
environment understands. This again underscores the negdsqciation (shown both

constraint specifies that

Draft

associated with between r and s objects, inclusive, of type B,
and that objects of type B can be associated with between p
and g objects, inclusive, of type A.

Model Composition Constraints
e Module Interconnect e« Object Association
» Aspects » Specialization
pP..g r..s * Hierarchy (Inheritance)

A

. . Domain-Specific| Domain-Specific
ObjAssociation(A, p, g, B, r, s) { -
/I f is a parameterized, invariant Concepts Composer Constraints
/I Boolean expression representing a
/I general object association constraint.
return f(A,p,q,B,r,s);
} Metamodel
Figure 2 General object association constraint (shown . -

Now consider a DSME for modeling aircraft in-flight safety Once the syntactic and semantic specifications for a
systems, where between three and six engine temperatuféodeling language are composed into a metamodel, a
sensors can be associated with a Sing'e fire Suppressidﬁode”ng Ianguage SpeCification eXiStS, albeit still abstract.
system actuator. The general object association constraiftdditional specifications regarding how the DSME presents

from Figure 2 is parameterized for this particular domain aghe language’s entities and relationships to the modeler must
follows: be made. In other words, the language specification is not a

specification for an entire modeling environment. It can be

argued that presentation specifications are merely additional
Actuator 1.1 36 Sensor syntactic specifications. As mentioned earlier, however, for
reasons of portability and interoperability it is desirable to
keep the presentation specifications separate from the
syntactic and semantic specifications.

DomainConstraint:ObjAssociation();

DomainConstraint(Actuator,1,1,Sensor,3,6)=true: Finally, since a general modeling environment should
include facilities for extracting information from model
Figure 3 Customized general object association constraint instances created using the environment, a set of model
interpretation specifications should be included when
Figure 3 shows an instance of the general object associatigiPecifying a complete DSME. Such interpreter
constraint parameterized for the specific domain. In thisspecifications are a form of semantic specification, but as
case, objects A and B become Actuator and Sensoiith the presentation specifications, it is better to develop

respectively, and specific values are assigned to th@nd maintain interpreter specifications separately from the
variables p, q, r, and s. syntactic, semantic, and presentation specifications already

discussed. See [11] for a discussion of the theory and
Tailoring general modeling principles in this manner practice of specifying interpreter behavior.

represents specifying the DSME's modeling language

syntax. There must also be a mechanism for specifying the
semantics of the language. This is done by directly including Metamodel

additional domain-specific constraints that, even in their Semantic

general form, pertain only to the domain being modeled. F?&?ﬁ?%ﬁﬂfﬁ?
Such constraints would not be present in any generall 5 ———— - Object Visualization
modeling constraints library, since they only apply to the .

Figure 4 shows how metamodels are composed by tailoring

1t 1 ini Interpreter
g(_aneral moo_lel composition constraints and combining them
with constraints specific to the domain.

Model Database
Model Interpreters II
7

. . —p Metalevel —» éﬂgtrgm?zation
particular domain. - Translatio
Syntactic
\

metamodel (for example, by including an invariant

Figure 5 Metamodel translation expression stating that the size of the set of processor
objects connected to the output of any sensor be greater than

As mentioned earlier, DSME synthesis and evolution is doneero), such a constraint can only be checked once a specific
by translating the metamodel to configure the elements of ahodel exists. In other words, the graphical model editor can
general modeling environment, creating the DSME. Figure Jreventcertain editing actions, but canngaiaranteecertain
shows a metamodel containing the necessary specificationediting actions. Of course, the constraint manager can't
Translating these specifications into a form suitable forguarantee certain editing actions either, but it can indicate
configuring the DSME is done by the metalevel translator.that, at a given point in time, a certain model does not satisfy
The Constraint Manager, which is responsible for ensuringa particular constraint.
that only valid models are created in the target domain, is
configured using information from the metamodel's 4. USING THEMETAMODELING SYSTEM
semantic specification (i.e. constraint equations). The
Graphical Model Editor is configured by combining TO illustrate the process of specifying and synthesizing a
information from the semantic, presentation, and syntacti®SME, a simple audio processing system modeling
specifications. This includes managing how various aspecténvironment will be created. The DSME requirements are:
of the models are presented, how objects are created, and
how to control the type and multiplicity of object ¢ Audio systems are to be modeled using microphone,
associations. Model Interpreters are partially configured preamp, power amp, integrated amp, and speaker
using information from the metamodel's interpreter components.

specification. * Integrated amps contain one or two preamps and one or
two power amps, along with input and output ports.
Constraint Management Connections between input ports, preamps, power

amps, and output ports indicate signal flow paths within
an integrated amp.

Audio systems consist of at least one microphone, one
integrated amp, and one speaker. Connections between
microphones, the input ports and output ports of
integrated amps, and speakers indicate signal flow paths
in the audio system.

Microphones connect to the input ports of integrated
amps. The output port of every integrated amp must be
connected to at least one speaker.

Modelers must be able to create models of both mono
and stereo audio processing systems.

The activity of modeling is essentially choosing a particular
model from an infinite set of possible models. By limiting ,
the types of modeling objects and relationships allowed in
the models, the set of possible models can be greatly
reduced (of course, the set can still be infinite!) As discussed
in the previous section, these limitations represent the static
semantics of a modeling paradigm, and as such, appear as
domain-specific modeling constraints in the metamodel.
Such constraints can only be enforced in the presence of
actual domain-specific models — model instances created
using the modeling language specified by the metamodel.
Enforcing these constraints is done by the constraint
manager. The constraint manager is part of the domain]-_
specific modeling environment. It provides various queues
to the modeler according to the static semantics described iRigure 6 below shows the UML portion of the audio
the metamodel. processing system metamodel. This specification is a direct
representation of the requirements listed above.
Consider again the processors and sensors example. It was
stated earlier that sensors can be connected to processofigure 6 specifies the types of modeling objects allowed
and vice versa. By specifying the entities (processors ane.g. Mics, Preamps, etc.), object attributes (e.g.
sensors), the connection roles and multiplicities, and @ating), and association types allowed among the objects
simple mapping to particular graphical objects, the resultinge.g. PreToPower). The metamodel shows that
sensor-to-processor connection specification could be easiltegratedAmp s are made up of one or twereamps,
enforced by a graphical model editor — the graphical editolhne or twoPowerAmps, and zero or morénPort s and
would only allow interconnections between processors anutPort s. A System consists of one or more
sensors, and disallow all other types of connections (e.gntegratedAmp s along with one or moreSpeaker s
processor-to-processor, sensor-to-sensor, etc.) Howevefnd/or Mics. A UML Note is used to hold metamodel

suppose a domain-specific constraint is included in the,srsion information. Within an IntegratedAmp
metamodel stating that every sensor must be connected {Rport s connect to PreAmo

something (a very important real-world consideration).F,OwerAmps and PowerA
Although such a constraint can easily be stated in thq\/IiCS conne,ct to thénPort

he Audio Processing System Metamodel

)

wa i

ReshrictivellML [_ O] x]
M ame: IHestlictiveUML IUML IInstance ."-‘-.spect:IEntityHeIatinnship jIGME
System
Mote -
Yersion
+ 4
1.7
IntegratedAmp
3 +
1.7 o.r 1.2 1.2 o.r 1.7
Mic InPort Preamp PowerAmp QutPort Speaker
are dst o dst Sr; dst Rating =100 |arc dst are dst
o1, - KM o, - o1, - [EE
MicToln InToPre PreToPower PowerToQOut QuiToSpeaker

Figure 6 UML portion of the audio processing system metamodel (initial version)

OutPort s of IntegratedAmp s connect tdSpeaker s, Mic, Preamp, PowerAmp, and Speaker components to
forming models of audio processing systemsconnect to port-type objects (elgPort s andOutPort s)
(interconnections show signal flow paths). contained withinintegratedAmp components. Such a
module interconnection design approach [12] (i.e.
While Figure 6 captures the audio processing systentconnecting modules together via encapsulated I/O ports)
requirements as listed above, it represents a fairly restrictivellows easier evolution of the modeling environment as
approach to specifying a DSME. Classification of similar domain requirements change over time. Adding a noise gate
component types is not used, and many associations betwegn the metamodel of Figure 7 involves deriving the new
objects need to be defined (e.ylicToln , InToPre , noise gate object from theComponent object and
PreToPower , etc.). Such a britle DSME design will aggregating it into th&ystem object. No new connection
generally require significant modification as domain specifications would be required, since the “connectivity” of
requirements change. For example, if a new signatomponent objects is not changed when new components are
processing component such as a noise gate were addedddded.
the domain and allowed to connect betwééit s and the
InPort s ofIntegratedAmp s, a noise gate object would Of course, the generalized approach of Figure 7 represents a
need to be added to the metamodel, the exisdiey oPre trade-off over the more specific design of Figure 6. Consider
connection would have to be discarded, and two newvihe previously stated requirement that the output of every
connection specifications (e.g. MicToGate and IntegratedAmp be connected to at least oSpeaker .
GateToln) would have to be created between the noiseSuch a requirement was easily modeled directly in Figure 6,
gate and thdlic andInPort objects. but cannot be modeled using the UML diagram of Figure 7
due to the general nature Bbrt objects. Aconstrainton
Figure 7 shows a more general approach. Here, abstrathe OutPort objects contained withiftntegratedAmp
Component and Port objects are defined. As before, objects must be specified.
IntegratedAmp s containPort s, but a more general
CompPortConn association is used to allow specialized [‘F@

Dratt

I arne: I.-ﬁ.udiDLIML |UML IInstance .l':".SpECtZIEntit_l,lHeIatiu:unghip leME
Component CompPontConn
0.F
: Paort
& D“x
Mote 0=
Yersion
InPort QutPort
Speaker Mic Preamp PowerAmp

1o Rating = 100

| 3
System

l l ‘ PreToPower

IntegratedAmp

¥

1.7

Figure 7 UML portion of the audio processing system metamodel (final version)

Constraints in the MGA metamodeling environment areall IntegratedAmp models in a given audio system, and
expressed using the MGA Constraint Language (MCL), an.parts(“OutPort”)-> returns the set ofOutPort
predicate logic language based on OCL [13] [14]. MCL usesobjects contained within eadhtegratedAmp). In other

a syntax and a semantics similar to OCL, but also includesvords, the output of everyntegratedAmp must be
expressions for collections of specific kinds of MGA objectsconnected to at least oneSpeaker . NB: The
such asmodels (MGA container objects) angparts CompPortConn association specifying that connections
(contained objects). An MCL constraint specifying that may exist betwee@omponent - and Port -type objects is
every IntegratedAmp be connected to at least one made at a hierarchically abstract level within the design —

Speaker s listed below. between the abstract classesmponent andPort . While
) i such abstract associations allow for modular designs and
models(‘IntegratedAmp”)-> make designing and composing metamodels easier, such an

forAll(m|m.parts(“OutPort”)->

connectedTo(“Speaker”)->size() > 0) approach generally requires more constraint equations than

designs with no abstract objects.
This invariant expression states that the size of the set of
Speaker objects that eactbutPort contained within an The metamodel is not yet complete. What remains is to
IntegratedAmp connects to must be greater than zero.establish a presentation specifica e general
(Here, models(“IntegratedAmp”)-> returns the set of Mmodeling concepts expr 'E’ jects and

associations onto the availak

&% GME - AudioExample.gme |_ (O] x]

File Edit Options “iew Window Help

W@L%

& v|é]| 2|2 22 | wT gl STele| 2]
System [[O[x]

M arne; IS_l,lstem IS_I,Istem IInstance Aspect: I Partztzpect jll:nmponents

R

L

IntegratedAmp

R-Mic
aspeaker
R-Speaker
IntegratedAmp M=l E3
Mame: IInteglated-’-\mp Ilnteglatedﬂmp IInstance .&spect:IPartsﬁspect jllzomponents

—

L-Out

—

R-Out

L-PowerAmp

R-PowerAmp

For Help, press F1 EDIT [100% |AudicExample [7:28 PM 2

Figure 8 Synthesized audio modeling environment

(i.e. the MGA graphical modeling objects and relationshipThe details of the presentation specification mapping are
mechanisms). Table 3 shows which MGA resources can bleeyond the scope of this paper. However, once the mapping
used to represent various general modeling concepts. MGhAas been defined, the metamodel is complete, and can be
resources are discussed in detail in [15]. used to generate the DSME itself. Figure 8 below shows the

resultant audio processing system modeling environment
Table 3 Representing general modeling concepts using being used to model a simple stereo audio system. The lower

MGA modeling resources MGA model is a detailed view of théntegratedAmp

General Modeling MGA Modeling Resource component shown in the center of the uppesygtem ")
Concept _ : | MGA model.
Module Interconnect Models containing Atomic Parts (playing

the role of interconnection ports)
Multi-Aspect Modeling Aspects
Hierarchy 1. Model/Atomic Part containment 5. CONCLUSIONS

2. Conditionalization
Object Association 1. Binary Connections This paper has presented a method for formally representing

2. Atomic Part- and/or Model DSME requirements as metamodels using UML class

References; References to References di d dicat . |

Specialization (a.k.a. N/A (possibly using references, |agram§ an . predicate nguage
Inheritance) attributes) expressions which can be u t DSME.

The DSME can then be us omain-

Draft

specific systems. Model interpreters are used to appl{5] G. Karsai, S. Padalkar, H. Franke, Sztipanovits J.: "A
semantic meaning to the models, forming a basis for moddPractical Method For Creating Plant Diagnostics
analysis and for translation of the domain models intoApplications”, Integrated Computer-Aided Engineering
executable models or data streams required by third-partyol. 3, No. 4, pp. 291-304, 1996.
analysis and/or execution environments.

[6] S. Padalkar, G. Karsai, J. Sztipanovits, F. DeCaria:
Such a metamodeling approach has three distinctOnline Diagnostics Makes Manufacturing More Robust
advantages. First, by formalizing the DSME specification(Part 1)",Chemical Engineering Magzinpp. 80-83, 1995.
process, DSME design requirements can be stated
hierarchically and refined using information as it becomeq7] G. Karsai, J. Sztipanovits, S. Padalkar, C. Biegl: "Model
available. The formalized specifications also improveBased Intelligent Process Control for Cogenerator Plants",
communication and information exchange among customerdournal of Parallel and Distributed Systemgp. 90-103,
and developers. Second, once the design has been finalizé@92.
(i.e. once the metamodel is complete), synthesis of the target
DSME from the metamodel is rapid and less error prong8] J. Sztipanovits, J. R. Bourne: "Architecture of
than previous manual implementation methods. Finally, thigntelligent Medical Instruments"Journal of Biomedical
approach allows DSMEs to be evolved in a safe andMleasurements Informatics and Control, London, |Nol.
controlled manner as domain requirements change. 1, No. 3, pp. 140-146, 1987.

Current and future research in DSME specification and9] D. Oliver, T. Kelliher, J. Keegan, Jr., Engineering

generation focuses on two goals: making better use ofomplex Systems with Models and Objects. New York:
existing metamodel design formalisms (e.g. UML andMcGraw-Hill, 1997.

MCL), and allowing interpreter specifications to be stated

formally in metamodels. It is anticipated that libraries of [10]JUML Semantics, ver. 1.1, Rational Software

metamodel solutions to “standard” modeling problems will Corporation, et al., September 1997.

be developed and incorporated into the metamodeling

environment. Also, by formally specifying and including key [11]G. Karsai, et al., “Towards Specification of Program

model interpreter features into metamodels, much of thesynthesis in Model-Integrated Computing," Proceedings of
interpreter code currently written by hand can be generate¢he IEEE ECBS’98 Conference, 1998.

as part of the DSME synthesis process.

_ [12]M. Rice and S. Seidman, “A Formal Model for Module
This work was sponsored by the Defense Advancednterconnection Languages,” IEEE Transactions on

Research Projects Agency, Information Technology Office Software Engineering, Vol. 20, No. 1, pp. 88-101, Jan.
as part of the Evolutionary Design of Complex Software1994.
program, under contract #F30602-96-2-0227.

[13] Object Constraint Language Specification, vérl,
Rational Software Corporation, et al., Sept. 1997.
REFERENCES
[14]J. Warmer, A. Kleppe, The Object Constraint

[1] J. Sztipanovits, “Engineering of Computer-BasedLanguage. Addison-Wes|&g99.

Systems: An Emerging Discipline,Proceedings of the

IEEE ECBS’98 Conferenc&998. . .
¢ [15]A. Ledeczi, et al., “Metaprogrammable Toolkit for

Model-Integrated Computing," Proceedings of the IEEE

[2] J. Sztipanovits, et al.. “MULTIGRAPH: An ECBS'99 Conference, 1999,

Architecture for Model-Integrated Computing,” Proceedings
of the IEEE ICECCS'95, pp. 361-368, Nov. 1995.

[3] E. Long, A. Misra, J. Sztipanovits: "Increasing

Productivity at Saturn"|[EEE Computer MagazinéAugust, Greg Nordstrom is an Associatg
1998, Research Professor at Vanderbil

University’s Institute for Softwaref = 4
Integrated Systems where much ¢

[4] G. Karsai, F. DeCaria: "Model-Integrated On-line hi Kis in th f hical
Problem-Solving Environment for Chemical Engineering", IS work IS In the area of grap |ca

IFAC Control Engineering Practicevol. 5, No. 5, pp. 1-9, modgling language specifictlon.
1997, received the B.S. degree in

engineering from Arizong

Draft

University in 1987, the M.S. degree in electrical and

computer engineering from the University of Tennessee
Space Institute in 1992, and the Ph.D. in electrical and

computer engineering from Vanderbilt University in 1999.

