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CHAPTER I 

INTRODUCTION 

High-energy physics experiments use massive facilities to delve into the basic 

composition of matter. These experiments may run for several months at a time and 

produce data at rates that are on the order of several gigabytes per second. Systems to 

acquire and analyze data at this rate require thousands of processors and must be highly 

reliable. Historically, physicists have developed custom hardware and software solutions 

to perform the acquisition and analysis of their test data. In this scenario, however, the 

target system’s complexity and budget constraints preclude a traditional development 

strategy. Tools to assist in the specification and design of such systems are necessary. 

The focus of this work is the development of a design environment for specifying and 

modeling the properties of fault mitigative, large-scale, real-time embedded systems from 

multiple aspects including application data flow, hardware resources, and failure 

mitigation strategies. 

Review of the BTeV Experiment 

One such system that will employ methods of fault mitigation is the BTeV 

experiment. The following is a summary of the motivations and challenges of the BTeV 

experiment currently under development at Fermi National Accelerator Laboratory. 

Information in this summary was gleaned from [23] and [24]. Only elements of the 

experiment relevant to the focus of this thesis are discussed, as there exists a vast amount 

of particle physics theory and research involved in the creation of the BTeV experiment. 
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BTeV is a physics experiment to be conducted at the Fermi National Accelerator 

Lab Tevatron whose goal is to study charge-particle violation, mixing, and rare decays of 

particles known as beauty and charm hadrons [24]. The BTeV experiment will exist 

inside a particle accelerator where the collision of protons with anti-protons can be 

recorded and examined for detached secondary vertices from charm and beauty hadron 

decays. The proposed BTeV detector layout is shown in figure 1. The ultimate goal of the 

experiment is to learn about the anomalous decays in an attempt to explain the matter-

antimatter discrepancy that exists in the universe today. 

 

Figure 1. BTeV detector layout 
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The BTeV experiment employs the use of 30 planar silicon pixel detectors to 

record interactions between colliding protons and antiprotons in the presence of a large 

magnetic field. Geometry of the proposed pixel detector is depicted in figure 2. Protons 

and antiprotons arrive at detector from opposing directions, and the pixel detectors record 

the collision and subsequent particle interaction. These proton and antiproton streams are 

delivered to the interaction chamber at a periodic rate of 7.6 million collision/interactions 

per second (1 event every 132ns). The results from this reaction are carried via custom 

circuitry hardware to localized processors that reconstruct the 3-dimensional crossing 

data from the 30 silicon pixel detectors to examine the trajectories for detached secondary 

vertices.  

 

Figure 2. Proposed geometry of pixel detectors 
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The data sizes from interaction are on the order of 2Kbytes per event. Since these 

events occur at a rate of 7.6MHz, the aggregate data rate is clearly too high to be blindly 

recorded (it would take 12,800 disks of 100GB each to meet these demands for a single 

day).  Instead, decision algorithms, called Triggers, must be executed online to 

dynamically compute an accept/reject decision.  These algorithms necessarily must be 

computed in real-time, although significant queuing is typically available.      

Detached vertices detected by the L1 trigger form the indication that beauty or 

charm decays are present in the event. Researchers at Fermilab estimate that 99% of the 

interactions recorded in the L1 chamber will be rejected by the L1 trigger, with close to 

50% of accepted events actually containing beauty or charm decay. Data that passes the 

L1 trigger is then sent to a processing farm of commodity processors for offline 

processing using more stringent algorithms to confirm the presence of the decay [23][24].  

Since the actual accepted events occur so infrequently, and the cost of operation 

of the experiment (facility, personnel, energy, etc.) is so high and demand for the facility 

is so large, the data system must be extremely reliable.  When malfunctions occur, they 

must be able to be corrected very quickly.  At the same time, the system cost must be 

minimized. The system to support the BTeV experiment will be extremely large and 

expensive.  Budget limitations preclude approaches to add robustness to the system such 

as triple-mode redundancy, where components are replicated.  Total system cost would 

go up significantly, more than 3x.  The application would not permit the ‘waste’ of these 

resources.  The solution needs to be both robust and cost effective. It is in these situations 

where the notion of fault mitigation over traditional fault tolerance plays an important 

role. A proposed solution provided by the BTeV group at FermiLab is shown in figure 3. 
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Figure 3. FermiLab’s proposed BTeV solution 

These constraints are what drive the research and development of toolsets to solve 

these complicated design problems. This is the basis for the work done at ISIS, 

Vanderbilt University toward achieving this goal. In order to test tools for the use in this 

application, prototype hardware and software must be created and tested. This thesis 

describes the work done to improve the ACS kernel (a real-time embedded kernel 

developed at ISIS) to support the creation and deployment of such fault mitigating 

systems. 

Traditional Fault Tolerance 

When designing such large-scale real-time embedded computer systems, one can 

be certain that at some point in time hardware will break, malfunction, or become 

generally unusable. Similarly, there is a chance that somewhere in the system the 
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software will become corrupted or hang unexpectedly. These occurrences are generally 

referred to as system faults. Large scale distributed systems need to be able detect failures 

and act accordingly without greatly affecting the reliability or the real-time performance 

of the system. Systems that are designed to handle such faults are referred to as fault 

tolerant systems.  

Every fault tolerant system has some resilience against failure, but some are more 

capable than others at handling these occurrences. The degree of fault tolerance can vary 

greatly depending on the specifications or constraints of the system. 

Traditional fault tolerance usually involves some type of redundancy. Extra 

hardware or software is present in the system, ready to dynamically replace 

malfunctioning parts during runtime. At the hardware level, techniques for fault tolerance 

have traditionally included redundancy.  

Traditional fault tolerance is mainly used where cost considerations are typically 

offset by the need for extreme resilience to failure, where system failure may have 

disastrous effects on resources or human life. Examples of such systems could include 

flight dynamics and avionics systems, missile guidance systems, and other systems where 

absolute guarantees about system reliability must be made. 
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Figure 4. Traditional voter/splitter mechanism 

In the splitter/voter mechanism shown in figure 4, data is carried to multiple 

processing destinations, where identical calculations are performed on the data in 

parallel. The data results are then demultiplexed in a voter, which examines the results. 

The algorithm of the voter is to simply examine the data results, and choose the results 

that appear in the majority, qualifying this answer to be considered correct. This method 

is very good for providing fault tolerant calculations, with the minimal latency expense of 

distributing and collecting the data. This algorithm is very costly in terms of hardware 

size and complexity [22]. 

To carry this technique to the fullest, redundant buses must also be deployed to 

carry the data safely and securely to the splitter, as well as from the voter to its final 

destination. 
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This method, of course, works well for small systems where hardware is cheap 

and memory is plentiful. There are, however, cases where redundant hardware is not the 

best solution. In high performance parallel systems, fault tolerance using conventional 

redundancy methods can be extremely costly, as system size and complexity increase. As 

systems get larger and more complex, a more cost effective way of providing some 

protection against hardware/software failures is needed. 

In the domain of very large parallel systems, designers of embedded systems 

rarely have the luxury to employ such hardware-intensive tactics to make systems more 

robust to catastrophe.  In these cases, Software must play the dominant role in achieving 

fault tolerance.  Notably, the embedded software world is discovering that the 

development of high quality embedded systems is only possible through the use of 

advanced software toolsets that can shift the onus of intelligent design away from 

humans, who are prone to miscalculation and error. This is especially the case where 

many complex factors drive design decisions.  Research is proving that dependable, 

robust embedded systems can be developed using intelligent, automated design tools [1]. 

Fault Mitigation as a Design Methodology 

Strategies for mitigating faults reflect the engineering trade-offs that need to be 

made when deciding how a system should behave in the presence of failure.  Given that 

limited redundant hardware is present, when a failure occurs in a fault-mitigating system, 

some change in the system behavior must occur.  For example, the total output of the 

system could be diminished, or the quality of the output might be degraded. This is one of 

the fundamental differences between traditional hardware-based fault tolerant designs 

and more flexible software-based fault mitigative ones. Software fault mitigation is 
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preferred over hardware fault tolerance when total system costs or architecture 

complexity rule out the use of traditional redundant methods for fault resilience and the 

application can accept diminished system performance under fault conditions. 

Problem Statement 

The goal of the research described in this thesis is to implement a runtime 

environment for software-based fault mitigation.  The environment is to be used as a 

research tool for investigating issues surrounding the development of fault mitigative, 

large scale, real-time embedded systems. The primary concerns surrounding the 

implementation of this system are what facilities are needed to support a model-based 

approach to large-scale fault mitigation systems, how to provide a working testbed on 

which to implement software synthesis tools, what kinds of issues arise from scaling up 

to large processor-count systems, and what issues arise in the deployment toward physics 

applications.  (The tools should allow physics researchers to configure and implement 

fault mitigating, real-time embedded systems without needing the design expertise of 

those in the RTE systems field.)   

The final system should be capable of specifying the system in terms of hardware, 

application data flow, and fault mitigation agent behavior. Also supported should be 

automated generation and deployment of the runtime environment. The system should 

allow fault diagnosis in the form of failure scenarios initiated by the user during runtime. 

The tool should provide the ability to rapidly model, synthesize, and deploy a variety of 

systems for physics research purposes.   

Chapter II begins by investigating the use of past design tools used to implement 

real-time embedded systems, followed by a literature survey regarding the use of 
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biological systems as models for fault mitigative systems. Chapter III details the 

modeling principles used to configure and specify the system. In Chapter IV, the 

implementation of the BTeV runtime environment is documented, which touches on 

aspects of the design relevant to the thesis topic. Chapter V details a prototype system 

built using the BTeV environment. Finally, Chapter VI discusses future work for the 

project, and draws some conclusions about the body of work detailed in this thesis. 
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CHAPTER II 

LITERATURE SURVEY 

Survey Of Embedded System Design Tools 

This section reviews the existing research and tools for design of embedded 

systems and highlights their usefulness or deficiencies within the problem domain 

defined by this thesis. 

MIC 

Model-Integrated Computing (MIC) is a design philosophy used to build 

embedded systems in which domain specific modeling languages are used to fully specify 

a system from multiple aspects [4]. Hardware/software configurations, executable code, 

and system simulations can all be synthesized from the integrated set of domain-specific 

models [2]. The key element of this approach is the extension of the scope and usage of 

models such that they form the foundation of a model-integrated system development 

process. In Model-Integrated Computing models play the following central roles: 

• Integrated, multiple-view models capture the information relevant to the system to 

be developed. Models can explicitly represent the designer's understanding of the 

entire system, including the information processing architecture, the physical 

architecture, and the environment it operates in. 

•  Integrated modeling allows the explicit representation of dependencies and 

constraints among the different modeling views. 
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• Tools analyze different, but interdependent characteristics of systems (such as 

performance, safety, reliability, etc.). Tool-specific model interpreters translate 

the information in the models to the input languages of analysis tools. 

• The integrated models are used to automatically synthesize the software. The 

model-integrated program synthesis process utilizes model interpreters to translate 

the models into executable specifications. 

• UML-based metaprogramming interface allows synthesis, evolution of domain-

specific MIPS environments. 

 

Using MIC technology one can capture the requirements, actual architecture, and 

the constraints of a system in the form of high-level models [9]. Models can be mapped 

to an implementation using a model interpreter, and other useful artifacts, such as 

configuration files or simulations can be generated from the system models. Evolution of 

the design environment can be achieved through the use of the meta-programming 

interface, which allows the domain specific modeling language to be refined as the needs 

of the domain change. 
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Figure 5. Design evolution using model integrated computing 

A metaprogrammable application called the Generic Modeling Environment 

(GME) is a tool that uses the MIC methodology. It provides an environment for creating 

domain-specific modeling languages and environments [13]. The specific tool used to 

model and configure the BTeV runtime environment is GME 2000. 

ACS-MIDE 

The Adaptive Computing System Model Integrated Development Environment 

(ACS-MIDE) is an integrated set of tools for design capture, analysis and synthesis of 

dynamically adaptive computing applications [3]. The representation methodology is 

captured in a domain-specific, model-integrated computing framework. Formal analysis 

tools are integrated into the design flow to analyze the design space to produce a 
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constrained set of solutions.  From the models a set of hardware and software subsystems 

are synthesized to implement multi-modal, dynamically adaptive applications. 

One such application developed using the ACS-MIDE is the Automatic Target 

Recognition (ATR) for missile systems [3]. The ATR application demonstrates the ability 

of the ACS-MIDE to design and generate dynamically adaptable embedded systems. 

Several aspects of the ACS-MIDE may eventually play an important role in the BTeV 

solution such as using Ordered Binary Decision Diagrams (OBDD) augmented with 

progressive scan state-space pruning techniques to solve design space exploration 

problems [12]. 

 

Figure 6. Object hierarchy in ACS paradigm 

Several aspects of the ACS-MIDE directly relate to the BTeV runtime 

environment. One such relation is the use of data flow and structural modeling to 

configure an adaptive runtime environment. The hierarchy of such models is shown in 
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figure6. The use of common execution semantics [8] between software dataflow models 

(processing blocks, streams, queues) and structural system components (hardware 

processes, FIFO buffers) allow the unified set of models to appear familiar to both 

software designers as well as hardware engineers. Figure 7 illustrates the relationship 

between software execution semantics and hardware execution semantics in the ACS-

MIDE. 

 

Figure 7. ACS-MIDE common execution semantics 

The model-integrated approach used in the ACS-MIDE tools has been designed to 

support the many aspects and disciplines of embedded systems design. The flexible 

representation, along with synthesis and analysis of systems helps to reduce design effort 
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and increase system flexibility. The underlying runtime environment, through the 

abstraction of hardware and software details, presents a uniform architecture for system 

synthesis and application implementation [6]. 

MILAN 

The Model-based Integrated simuLAtioN framework (MILAN) is a design and 

simulation framework to facilitate rapid development of efficient heterogeneous 

embedded system applications [10]. The framework is extensible and uses Model 

Integrated Computing (MIC) to drive a variety of common off-the-shelf (COTS) 

simulators, code generation engines, and design evaluation tools. The project is currently 

being developed at ISIS at Vanderbilt University and University and Southern California.  

 

Figure 8. MILAN design environment 
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Design goals of MILAN are to integrate the design, development and simulation 

of embedded system applications into a unified environment, and are depicted in figure 8 

[10]. Much of the MILAN project is applicable to the ultimate goals of the BTeV project. 

System simulations, while planned for the BTeV project, do not appear in the 

environment as of this date. However, more investigation into the ability to generate 

simulations from the models is necessary to determine how best to integrate this 

capability into the existing BTeV environment.  

Human Biological Systems as a Model for Fault Mitigative Systems 

This section touches upon some of the existing research regarding the use of 

biological models as a basis for fault tolerant systems. Methods found in this area of 

research are used in the BTeV hardware runtime, specifically the Reflex Action table and 

the Healing Interface. 

 Only recently has the notion regarding biological systems as a model for 

distributed fault mitigation been investigated. Among the earliest references to biological 

systems as guides for fault tolerance in embedded systems was by A. Avizienis [18][19].  

Since these references, he has explored the use of biological system models to aide in the 

development of embedded fault tolerant hardware components.   

Even as early as the 1997, researchers realized the importance of degraded mode 

operation, as highly parallel systems were already pushing the limits of fault tolerant 

technology. This fact helps solidify the notion that fault mitigation is separate from 

traditional, strict, fault tolerant design [21]. 

More recent advances using biological systems as models for fault tolerance are 

strictly hardware-centric [15][16]. Bradley envisions the creation of an artificial hardware 
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immune system through evolvable hardware and embryonics, both of which are ideas 

inspired by biological systems. In [20] Thomas Becker recognizes the need for 

transparent fault tolerance that supports a variety of policies, but fails to address the 

needs of real-time embedded community, as his solution is implemented purely in 

software. His solution is also purely redundant one, not constrained by limited resources 

(traditional fault tolerance relies on redundant hardware, as opposed to fault mitigation 

which does not). 

Clearly, the desired solution lies somewhere between a pure hardware or software 

implementation. With the boundary between hardware and software management of 

faults being blurred, the role of assigning responsibility for handling faults becomes 

increasingly difficult. It is therefore necessary for tools to assist (and automate where 

appropriate) the design and evolution (no pun intended, really) of such increasingly 

complex systems. The research done at ISIS for the BTeV runtime has investigated using 

the use of biological reflex and healing systems as a model for building fault mitigative 

systems. The correct solution must spread the responsibility of failure recovery between 

both hardware and software. 

 

Main aspects of Human reflex and recovery systems are the following [19][17][15]: 

• A brain to coordinate action 

• Nerve paths to propagate messages of stimuli to the brain 

• Tissues to be affected by stimuli 

• Reflex reactions to stimuli (these are “pre-wired” and spontaneous e.g. not 

commanded by the brain) 
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• Degraded modes of operation when tissues are damaged 

• Long-term healing and recovery actions dictated by the brain to ensure damaged 

tissue recovers and the body can get well again 

 

These aspects would be translated to the following requirements for an embedded system: 

• A global management unit to coordinate actions (High-level modeling system, 

model interpreters, etc.) 

• Message paths to propagate messages to and from the global manager, and within 

the fault mitigation infrastructure 

• Hardware resources to be affected by failures 

• Reflex or pre-programmed reactions to certain hardware failures 

• Degraded algorithms or discarded data due to loss of resources 

• Long term schedules of actions to get hardware resources up and running again 

 

From this review, one can find that biological systems act in a distributed manner and 

are capable of mitigating failure, and that their use as a model for fault tolerance is being 

explored in within the realms of hardware design and distributed software. However, 

little research is being done to apply biological system models toward the development of 

real-time embedded systems, where the line between hardware and software mitigation 

responsibility is less clear.  Note that we are not attempting to imitate the internal 

functions of biological systems, rather make an analogy with the properties of a living 

body. 
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Summary 

Several solutions exist for the modeling and creation of real-time embedded 

systems. The ACS-MIDE uses MIC to model the desired system using hardware 

(structural) and software (data flow) models. MILAN also employs the use of MIC, 

however it extends these methods to provide modeling of VHDL and SystemC 

components. MILAN also extends the traditional design environment to include 

simulation and design space exploration, both of which are relevant to the BTeV project 

[11]. Finally, while the use of biological systems as a model for fault tolerance is being 

investigated, the scope of the current research is limited to hardware-based systems, 

which neglects the needs of the distributed real-time embedded community.  

Missing from each of these approaches is the ability to use models to describe not 

only hardware and software in the system, but also fault mitigation behaviors. Because of 

this, the ability to synthesize the fault mitigating systems from behavioral models is also 

missing. Of course, this capability cannot be realized without support in the runtime 

execution environment for the necessary fault mitigating actions required by the 

generated system, which is the topic of this thesis.   
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CHAPTER III  

MODELING IN THE BTeV ENVIRONMENT 

Structural Modeling 

Available hardware resources are captured in the hardware aspect of the system 

model. These resources are available to any software component currently modeled in the 

system. The hardware models are hierarchically decomposed, and support the use of 

types and instances to preserve the correctness of lower level hardware models (instances 

of types cannot be modified by the user of the environment). 

 

Figure 9. Structural model of a VME-Motherboard 
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The hardware model shown in the figure above is the specification for a single 

motherboard consisting of four TIM cards. The models are hierarchically decomposed, so 

focusing down into the TIM model would reveal the inner component models contained 

within. 

 

Figure 10. Model of a C6x-TIM 

Figure 10 shows the decomposition of a C6x-TIM DSP module, complete with 

models representing communication ports, FPGA logic, and a TMS320C6711 processor. 

The modeling environment supports an arbitrary number of hierarchical levels. This is 

helpful for modeling large-scale systems, as blocks can be easily modeled and 

manipulated which contain hundreds or thousands of components [2]. 
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Hardware Module Library 

Models of domain-specific hardware components may remain fairly static, that is, 

unchanged, for the lifetime of the development cycle. This is true in the case of the BTeV 

environment with regards to the models for DSP modules (C6x-TIM) and several other 

hardware components. For these cases, a hardware model can be added to the Hardware 

Module Library, in which copies of hardware model compositions can be kept without 

fear of affecting the final system generation. Hardware components in the library are also 

hierarchical, and copies of any hardware component modules can be dragged in to the 

current design from the library and utilized with little effort. This feature is beneficial to 

the system designer, especially in cases where the designer is not an expert in composing 

efficient large-scale embedded systems. Modules can be created by the embedded 

systems expert end imported into the GME with little effort as well.    

Software DataFlow Modeling 

Data flow models capture the software requirements of the system. These data 

flow models are derived from those used in the ACS-MIDE and are made to closely 

resemble a directed data flow graph [7]. Inter- and intra-process communications are 

represented as streams and are assumed to be asynchronous.  

Software primitives represent a single computational block or algorithm to be 

executed in the runtime system. Attributes for the software primitive specify a script 

name for the component, as well as the implementation file in which the script can be 

found. Software Compounds are similar to Primitives, with the exception that a 

Compound can contain other Primitives or Compounds.  
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Ports provide a means for connecting two software components with a stream. 

Ports also provide a mechanism to support hierarchical decomposition with the software 

dataflow model. More detailed discussion about software data flow modeling can be 

found in the ACS-MIDE publications [5][8].  

 

Figure 11. Data-flow modeling 

Software processes are assigned to run on a specific hardware resource by placing 

a reference to the target hardware within the software primitive or compound, as shown 

in figure 11. Process tables and schedules for each node in the network are synthesized 

from these models. 
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Behavioral Modeling of Mitigation Processes 

Fault mitigation behaviors are captured using a state-machine based paradigm that 

allows the specification of behaviors using Harel’s StateCharts [25]. Mitigating actions 

are modeled based on the needs of the domain. The ease of modeling new mitigation 

behaviors using these models provides designers the much-needed room to evaluate 

alternative designs.  

 

Figure 12. Behavioral models using modified StateCharts paradigm 

Triggers, guards, and actions are specified as attributes of transitions. The 

paradigm utilizes a Mealy-based [25] state machine representation (shown in figure 12), 

where actions can only happen on the transition from one state to another. State 

parallelism is achieved through the use of AND and OR state decomposition. AND states 
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are states in which the contained state machines occur in parallel, OR states are states in 

which the contained states occur in series [25]. 

The resulting state machines are synthesized to form component software 

processes and are realized in the form of C code. These generated components can be 

used within the software models just like existing software modules. This behavioral 

modeling capability allows the system designer to specify which fault mitigating 

behaviors the system will exhibit. 

System Generation 

From these models, the system implementation can be generated [4][14]. Artifacts 

of the generated implementation include: 

• Schedules and process tables for each kernel to be run on each of the available 

processors. These schedules define where and when each software component 

will execute across the hardware. 

• Network routing, defining the data paths from one logical process to another.  

Streams are the implementation mechanisms that realize these routes, both 

internal to a processor and across the network.  If processes are not on adjacent 

processors, a forwarder is created on each intermediate node. 

• Local and Regional Fault Manager implementation:  The code to implement the 

mitigation strategies must be synthesized from the behavioral models.  Critical 

factors in the generated code are adherence to real-time requirements, maximizing 

resilience, and proper execution of the modeled behavior. 
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• Simulations:  The adaptation of such a large system is complex.  Even simple 

rules applied in a distributed system may result in unexpected behavior.  Work is 

currently in progress toward generating a simulation that faithfully emulates the 

system behavior, and allows evaluation of fault mitigation strategies.  

 

Subsequent to system generation, the runtime system can be initiated. The runtime 

system implements the processes specified in the software data-flow models, using 

available resources specified in the structural models, and will react to faults in the 

system in accordance with the specified fault mitigation behavioral models. 
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CHAPTER IV 

THE BTeV RUNTIME ENVIRONMENT 

In the previous chapters, we have observed some design methodologies supported 

by existing real-time embedded systems development platforms. This chapter will 

document components of the BTeV runtime environment and provide explanations of 

their functionality. 

Requirements 

To keep the development process manageable, tools must be available to support 

the development process.  An ideal tool should: 

• Allow designers to specify fault mitigation behavior in domain-specific manner 

(as opposed to a machine-specific method) 

• Integrate application specification and design, since the application and its fault-

mitigation behavior are closely linked. 

• Permit specification of the target hardware architecture, along with the available 

hardware resources and redundancies.  

• Support analysis of the design, predicting or simulating the expected behavior of 

these complex systems. 

• Support direct synthesis of software and system configuration artifacts. 
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In order to support these high-level tools, an underlying virtual machine is necessary. 

The virtual machine is implemented in the runtime environment described below.  The 

runtime environment consists of: 

• A Fault Mitigation API: This provides a ‘standardized’ interface to the fault 

adaptation functions of the runtime. 

• A Fault Mitigation Messaging infrastructure, to pass fault detection status 

messages and fault mitigation actions across the network. 

• A Fault Mitigation Kernel: providing the fault message routing system, processor 

scheduling, process and communication fault adaptation, etc. 

• A Fault Monitoring capability: 

• A Fault-Injection system: the fault injection system is used to simulate hardware 

or software faults to test the fault behavior 

Fault Mitigation Kernel API 

The fault mitigation approach takes a reflex-healing strategy.  By this, we mean 

that rapid reflex actions are programmed into the system to provide a quick-but-limited 

response.  Subsequent ‘Healing’ actions attempt to rebalance the system and compute 

new reflex actions. The Fault Mitigation Kernel provides a limited ‘Reflex’ action for 

rapid solution of system faults.  For a specific system state (the set of functional resources 

and the set of executing tasks), the fault mitigation system supports the guaranteed ability 

to correct any ONE error (i.e. reflex actions are programmed for each of the expected 

failures).  It is possible (but not guaranteed) that other reflex actions can succeed as well, 

unless they share resources with already-executed actions. 
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In order to support certain mitigating behaviors such as dynamic, transparent 

communication rerouting, certain features had to be added to the ACS kernel. These 

features manifest themselves in the so-called Fault Mitigation API (FM-API). 

The FM-API provides a way of managing and implementing the fault-mitigation 

reflex actions.  It performs activities for downloading reflex specifications, interfacing to 

fault detectors, and implementing the desired reflex actions.  The reflex actions are stored 

in tables (for link replacement in link or processor failure) and in code modules generated 

from state machine specifications (for more complex algorithms). 

 

Figure 13. FM-API relationships in the modified ACS Kernel 
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Fault Mitigation Message Schema 

Fault Mitigation Messages (FMM) are utilized to propagate notification of 

failures up through the FM component hierarchy, as well as reflex and healing actions 

back down to the component’s healing interfaces.  

In order to minimize bandwidth while providing the maximum flexibility, FM-

Messages are specified to have variable length, based on the originator of the message. 

Table 1 shows the size and structure of the FM-Message header, while table 2 shows the 

size of each type of message as well as the payload contents. Figure 14 lists the code to 

implement the current message types, which are based on the message’s origin. 

 

Table 1. FM-Message header structure 

Type Size Contents     

Header 12 bytes msgSize msgStatement msgOrigin   

 

Table 2. Fault-Mitigation Message sizes and contents 

Payload Type Size (B) Contents     

PHYS_APP 20 ID CID Nature PC[] TickCount 

FPGA 12 CID DSP-ID Usage   

FARM_MGR 12 DSP-ID Usage Reason   

REGION_MGR 8 FARM-ID Errline    
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typedef struct {// message header   
 unsigned int fmsgSize; 
 FMsgStatement fmsgStatement; 
 FMsgOrigin fmsgOrigin; 
}FMsgHdr; 
typedef struct {// Actual FMSG_DSP_Arch message structure  
 FMsgHdr fmsgHeader; 
 // DSP Software Arch Specific Elements 
 unsigned int ID;  
 unsigned int CID; 
 unsigned int PC; 
 unsigned int tickCount; 
 unsigned short nature; 
}FMSG_DSP_Arch; 
typedef struct {// Actual FMSG_Physics_App message structure 
 FMsgHdr fmsgHeader; 
 // DSP Physics Application Elements 
 unsigned int CID; 
 unsigned short state; 
 unsigned short numOfSegments; 
 unsigned int stack[16]; 
}FMSG_Physics_App;  
typedef struct {// Actual FMSG_FPGA message structure 
 FMsgHdr fmsgHeader; 
 // FPGA Specific Elements 
 unsigned int CID; 
 float percentUsg; 
 unsigned int DSP_ID; 
}FMSG_FPGA; 
typedef struct {// Actual FMSG_Farmlet_Manager message structure 
 FMsgHdr fmsgHeader; 
 // Farmlet Manager Specific Elements 
 float average; 
 unsigned int DSP_ID; 
 unsigned short reason; 
}FMSG_Farmlet_Manager; 
typedef struct {// Actual FMSG_Region_Manager message structure 
 FMsgHdr fmsgHeader; 
 // Regional Manager Specific Elements 
 unsigned int farm_ID; 
 unsigned int errAddress; 
}FMSG_Region_Manager; 

Figure 14. Code listing for FM-Message types 

Runtime System  

The runtime environment for the BTeV system is built atop an adaptive, real-time, 

embedded kernel (ACS). Communication (both inter- and intra-process) in the DSP 

network is achieved through queuing streams. The ACS kernel provides a stream-per-

connection facility.  Each of the streams implements an asynchronous logical queue.  The 

logical queue can exist on a single processor or can span across two adjacent processors.  
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The connections between streams are typically configured at application load-time and 

remain static throughout the execution. In this work, the ability to change stream 

mapping is used to help implement fault mitigation.  In the kernel, processes are 

scheduled in a round-robin fashion.  Again, the typical use of the kernel is to configure 

the schedule at load-time, but here we use schedule reconfiguration for fault-mitigation.  

Figure 15 shows the overall structure of the runtime system.  The runtime 

assumes a high-level planning system that can configure applications, devise fault 

mitigation plans (programs), both as part of a design phase and dynamically, in response 

to detected faults.  The interface to the high-level tools is dubbed the Healing Interface. 

The runtime supports a hierarchy of fault mitigation ‘managers’.  The hierarchy 

provides some level of scalability to the system. Problems are detected and mitigated at 

the lowest level possible.  This allows the actions to be more rapid (i.e. Reflex) and to 

ensure that the corrective action has as localized an impact as possible. 

 There is assumed to be only one Global Manager.  The Global Manager 

interfaces with the synthesis tools and with any user interface or facility control system 

(via the System Interface).  The global manager has control over the entire set of system 

resources.  Global actions permit reallocation of resources during particularly large or 

serious fault conditions.  In the BTEV example, the Global Manager will control ~2500 

DSPs and possibly 2500 Linux workstations. 

Regional Managers form the bulk of the fault mitigation network. Regional 

Managers can themselves form a hierarchy, as appropriate for the size and desired fault 

behavior of the system. They provide a way to implement gradually expanding mitigative 

actions.  They also provide a path from the lowest level managers to the Global Manager. 
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Local Managers are the leaves of the graph. They interface directly to diagnostics 

and computational components, receiving fault reports.  As possible the Local Managers 

will solve the problem locally and inform the parent Regional Manager of the problem 

and solution.  When resources are not available, or the mitigation prescription is not 

local, the problem is passed up a level to the Regional Manager.  Any mitigation actions 

that are developed at a higher level, are eventually passed down to the local manager for 

implementation. 

Interactions between levels of hierarchy occur through both direct messaging 

from the mitigation engines, as well as through the Healing Interface. Mitigation engines 

calculate reflex actions to be taken when the detection of a fault occurs. When such a 

fault occurs, each node in the network takes a predetermined reflex action, and notice of 

both the fault and the resulting action are propagated up the hierarchy using the fault-

mitigation message schema. These reflex actions are expected to occur within minimal 

time frames:  Local Mitigation <1ms, Regional Mitigation 1-100 ms, Global Mitigation: 

100ms-2sec. 

Concurrent with the local, regional, and global reflex actions, fault information is 

passed up to the high level tools.  At a longer time scale 2-100 sec, the tools will re-plan 

the system.  When a solution as to how best to mitigate future faults is formulated (based 

on the application specific behavioral models), new reflex actions are propagated back 

down the hierarchy through the healing interface. Long-term healing actions, such as 

reallocating resources for more optimal system performance, are continuously being 

calculated and sent through the healing interface as well. 
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Figure 15. BTeV runtime environment 

To keep data transfer rates among user applications as high as possible, no 

mechanisms for reliable data transfer (such as those found in TCP/IP) are used in the 

communication protocol. The computational overhead for communication between nodes 

in the system is kept to an absolute minimum through copy-less direct memory transfers 

provided by DMA engines in hardware. Extended monitoring of the health of such 

connections will be provided through direct hardware support mechanisms (watchdog 

timers and hardware communications monitoring). 

In summary, the Fault Mitigation (FM) API for the DSP kernel provides the 

underlying mechanisms that support fault mitigating behaviors. The mitigation engines in 

both the regional and local management hierarchies rely on this tightly integrated, kernel-

level support to carry out reflex and healing actions. These facilities form the tools that 
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the local and regional managers use to redistribute communication and computation load, 

thereby mitigating hardware and software failures in the network. 

Runtime System Fault Mitigation Scenario 

In order to explain the workings of the runtime system, we present an example 

scenario where the system detects an error and implements a sequence of operations to 

mitigate the fault.   

The BTeV runtime system currently supports the simulation and recovery of a 

single communication error, as described earlier. Detection and recovery from this single 

communication link error forms the basis for additional recovery scenarios. Faults are 

assumed to be singular, with an additional assumption that the failure of a single 

component is not sufficient to render the system wholly unusable. (this implies a limited 

redundancy, or overcapacity of the system, but not on the order of TMR) 
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Figure 16. Runtime fault mitigation hierarchy 

The following scenario details the actions of each component in the runtime 

system when a communication link fault occurs. The system is assumed to be running in 

a healthy, stable state, and that all communication links are functioning. Figure 16 shows 

the overall structure and hierarchy of the system.  The fault injection mechanism connects 

to the console for simulating system faults.  The console is the overall interface to the 

global manager, in addition to providing all the system bootstrapping, program load, 

reflex table loading, etc. Global, Regional, and Local Managers execute on a farm of 

DSPs.  Local Managers execute on each of the DSP nodes, along with the Fault Detector 

and application code (Trigger App in the BTeV system). 
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The current entry point into to the system resides on a Windows-based host 

machine. This machine runs the user interface that allows the user to interact with the 

running system. Also running on the Windows-based host is the Console process, which 

allows components in the environment to output data to the screen. The user interface 

provides the option to inject a fault into the environment.  

Data events are generated by the Data Generator and processed by the trigger 

applications on the DSP nodes, which send the results of their data calculations to the 

Console. They also send acknowledgement to the generator that they are fit to receive 

another data event. This process continues indefinitely, as is the case in a physics 

experiment.  

To test the fault mitigation behaviors of the systems, a mechanism for fault 

injection is provided in the user interface running on the Windows host machine. It 

allows the operator to specify the type and destination of the fault. The type of fault to be 

injected in this case is a communication link failure, which is designated to trigger a 

LINK_FAILURE message. This will exercise the runtime system’s ability to detect and 

mitigate a fault in a communication link. 

The error is inserted into the environment through the Fault Injector. The fault 

injector creates the fault message type and populates the fields appropriately. Once 

created, the fault is injected into the network by sending the message to the detector 

residing on the selected destination node. 

The Fault Detector monitors the hardware and software executing on its node for 

evidence of failure. Built into its fault monitoring routine is the ability to probe an 

incoming port for fault detection messages. When a message is detected, the Fault 
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Detector will accept the message, and simulate an actual fault. In the case of a 

LINK_FAILURE message being received, the action is simply to forward the message to 

the Local Fault Manager. Other types of failure messages may result in other actions 

(populating fields with current temperatures being recorded, stack dumps of running 

applications, etc.) to be taken before the message can propagate to a higher level of 

authority. 

The LINK_FAILURE message is then received by the Local Fault Manager. 

Once the fault message has been received, the Local Manager will proceed through the 

predefined state-machine-based behavior (i.e. generated from the system models) that 

determines how to handle the given fault. The contents of the fault message are 

maintained throughout the state machine execution, as data contained in the message will 

be used to trigger or guard against state transitions. In this case, the LINK_FAILURE 

message will trigger the state machine to execute the defined behavior to handle such an 

event.  

In this case, informing the Regional Manager of the fault is the first action in the 

behavior. In this step, the designer of the Local Manager's behavior has recognized that a 

link fault message results in coordinated actions that need to be taken on more than one 

node. This behavior avoids some of the synchronicity errors that would occur if local 

management simply executed the appropriate steps in the reflex table. If other nodes were 

not synchronized, they would continue to communicate with the faulty node on normal 

channels.  Premature switching of communication channels could result in a disjoint 

network graph. To alleviate these conditions, the behavioral models dictate that all 

LINK_FAILURE messages result in immediate action to inform higher-level 
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management of the condition.  The Regional Manager is responsible for coordinating the 

mitigation actions to ensure these errors do not occur. 

Since the Fault Injector has prepackaged a correctly formatted LINK_FAILURE 

message, the Local Manager need only forward that message up to a Regional Manager. 

After doing so, the behavioral models dictate that the Local Manager return to a normal 

listening mode, in which it waits for a response from the Regional Manager. Other faults 

are assumed to not occur until the entire LINK_FAULRE fault is detected and fully 

mitigated. 

While Regional Managers are similar to Local Managers, they differ in that they 

operate on a higher level of the hierarchy. Although in the BTeV runtime environment 

the Regional Manager runs on the Windows Host machine, it can also reside on the 

distributed DSP network. 

The Regional Manager will receive notice from the LFM that a LINK_FAILURE 

has occurred, and will then transition through its predefined behavior to handle the fault. 

For mitigating communication failures, the Regional Fault Manager will send 

LINK_REROUTE messages to all of its local managers. This is the so-called reflex 

action, as it needs to happen as soon as possible to restore communications throughout 

the network. Also, the Regional Manager will send messages to the Console indicating 

that link failures are present in the network. It will then proceed to listen for other 

messages form the Local Managers. 

When a Local Manager receives a LINK_REROUTE message, all processes on 

the local DSP are halted while the communication links are rerouted. A table containing 

reflex actions for given link failures is kept in memory. An index into the reflex table is 
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sent with the LINK_REROUTE message. Each node executes the actions in the table 

corresponding to the link that has been designated as faulty. Code executed by each DSP 

kernel to initiate a reflex action is given in figure 17. 

 

 
if(l_rcin->command == REFLEX_ACTION){ 
  Log_printf("LocalFM: Taking Appropriate Reflex Action...\n"); 
  linkfailed = l_rcin->param[0]; 
  for (k=0; k<rc_table[linkfailed].num_instr; k++){ 
    if (rc_table[linkfailed].instructions != NULL){ 
      if(rc_table[linkfailed].instructions[k].input_not_output == 1){ 
   FM_swap_ports_input(\ 
        rc_table[linkfailed].instructions[k].process_id, 
   rc_table[linkfailed].instructions[k].orig_port, 
   rc_table[linkfailed].instructions[k].new_port); 
 } 
      else{      
        FM_swap_ports_output(\ 
        rc_table[linkfailed].instructions[k].process_id, 
   rc_table[linkfailed].instructions[k].orig_port, 
   rc_table[linkfailed].instructions[k].new_port); 
 } 
    } 
  } 
} 
 

Figure 17. Code listing for reflex action execution 

The model interpreters have determined, at design time, the actions for rerouting 

streams through other hardware channels. Each process can enqueue messages to a set of 

streams, and data in each stream is sent to other DSP nodes via a hardware channel. Once 

a channel has been determined to be faulty, the data in the streams waiting to go out that 

channel must be copied to a new stream that is wired to a different (undamaged) channel. 

Also, the stream table inside the kernel must be altered to associate the original process 

with this new stream.  
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At certain points in the network it is necessary to create forwarding processes to 

carry data across the network. In the case of a LINK_REROUTE condition, new 

forwarding processes may also have to be created to support the original logical 

communication across a slightly modified hardware layout. Steps to perform these 

actions, if necessary, are also given in the reflex table. 

Once the communication has been rerouted, the execution of processes continues. 

This scenario, as stated above, assumes that no other communication links fail during the 

critical execution of the detection and recovery action. Also, it is assumed that the 

network has not reached a minimum state, where any link failure would result in 

unrecoverable loss of communication in at least one point on the network. 
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CHAPTER V 

A PROTOTYPE SYSTEM USING THE BTeV RUNTIME ENVIRONMENT  

Software Model Component Description 

The constructed prototype system’s software model contains representations for 

both the physics application (PixelTrigger) as well as components for fault mitigation 

(Global, Regional, and Local Fault Managers). Also modeled are facilities for fault 

detection and injection, as well as a console component for displaying test messages to 

the screen during runtime. 

 

Figure 18. Prototype software component model 
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A hierarchy of fault mitigation agents in the BTeV experiment includes 

provisions for Global, Regional, and Local Fault Managers. These managers react to fault 

messages received by a number of sources. Global Fault management was not 

implemented for the prototype, as a single Regional Manager was adequate to manage the 

given number of nodes (eight). 

Local Fault Manager 

A Local Fault Manager is placed on every DSP node in the network. Figure 18 

shows the tight coupling between local management and local fault detection 

components.  Local Managers can receive Fault Mitigation Messages from a local Fault 

Detector, as well as other Local Managers.  

Local Fault Managers are modeled as state machines in the BTeV modeling 

paradigm. The BTeV modeling paradigm provides facilities to model application 

behavior in a manner like Harel’s StateCharts [25]. Interpreters transform the hierarchical 

state machines into a flattened form. The new models are then interpreted, resulting in the 

generation of standard C code to implement the state machine. These generated software 

components manifest themselves as components in the software models, and the Local 

Fault Manager is one such manifestation.  

The Local Fault Manager will react to certain fault messages based on their 

specified state machine based behavioral models. Exact fault actions to be taken are 

application dependant, and may change as the needs of the system change. 

Although no restrictions are in place to govern strict homogeneity of all Local 

Manager behavior patterns in the network, it is assumed that every instance of a Local 

Manager is derived from the same state machine model.  In the future there may be 
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benefits to having alternate behaviors for Local managers based on factors such as 

physical proximity to a Regional Manager or specific application code being run on the 

node. This may also lead to very serious design space exploration problems, where the 

number of possible execution scenarios grows beyond reasonable control. Currently, the 

restriction that all Local Manager share the same behavior is for simplicity only. 

Local Managers are able to receive, create and distribute Fault Mitigation 

Messages. Typically, Fault Mitigation Messages are received from the local Fault 

Detectors, and the messages propagate up through the hierarchy until the Global Manager 

is able to initiate a Reflex Action.  

Regional Fault Manager 

Regional fault management is placed more sparingly in the network, usually 

dependant on physical constraints of the system. For the BTeV prototype, there is a single 

Regional Manager. This is due mostly to the fact that a maximum of eight DSP nodes 

have been utilized. It is reasonable to assume that in larger systems a single Regional 

Manager might be present for every eight DSP nodes. Again, this is largely dependant on 

the hardware topology and communication paths. Using the hardware available, it may 

not be feasible to have more than eight DSP nodes serviced by a single Regional 

Manager due to the latencies incurred by communication forwarding that must be present 

(with current hardware available in the ISIS lab, it is difficult to implement both 

redundant communication links as well as high node parallelism, each node has only four 

available external communication links). 

Regional Manager behaviors are modeled using state machines in the same 

manner as Local Managers. One Regional Manager is present in the system, and 
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therefore no assumptions are made as to the homogeneity of regional manager behavior. 

It can be assumed, however, that all regional Managers in the network will behave in a 

similar manner. The number of Regional Mangers may typically be an order of 

magnitude smaller than the number of physical nodes in the system (and therefore Local 

Mangers).   

Fault Detector 

Fault detection in the system is handled by the so-called Fault Detector. Each 

physical node in the network contains a Fault Detector. Provisions for fault detection 

made in the BTeV environment are mostly forward-looking in nature, as no hardware 

facilities to detect communication/application failure are present at this time.  

 

Figure 19. Fault detector interfaces 
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A significant feature of the Fault Detector is the fault injection interface. With the 

implementation of this feature an external source may force a failure to be discovered, in 

order that the system failure scenarios may be tested in a soft manner, without the need 

for actual hardware failure. Upon receipt of a message on the fault injection interface, the 

detector will forward that message the Local Fault Manager residing on its node.  

Fault Injector 

Fault Injectors allow failure scenarios to be tested in software. The Fault Injector 

resides on the host machine, as interactive input is needed by the user to initialize fault 

messages. The Fault detector creates a valid Fault Mitigation Message based on user 

input and sends it directly to the Fault Detector of the specified node.  

A simpler approach might have been to allow faults to be sent directly to the 

Local Manager. A logical abstraction between fault injection and fault detection was 

necessary in order to reinforce the notion of transparent testing of the fault mitigation 

infrastructure, using facilities that closely mimic those which will be present in the final 

BTeV L1 trigger [24].  

PixelTrigger 

A typical worker node could be comprised of any software component that 

implements some domain-specific data processing application. In the case of the BTeV 

environment prototype system, a worker might implement the code for a pixel trigger, or 

may simply calculate � as a means for placing a computational load on the system.  

For the current BTeV prototype, workers implement a preliminary revision of the 

actual trigger code to be used in the production system, and are referred to as 
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PixelTriggers. PixelTriggers receive event data from the Data Generator and process each 

event as if it were running live. Upon completion of processing an event, the keep/toss 

decision made by the PixelTrigger is sent to the console and a new set of event data is 

requested. 

Console 

The console object implements a very simple round-robin polling of its input 

ports, grabbing data as it arrives to display on the command window. The console resides 

on the host and was necessary to view status messages produced by components running 

on the DSPs, as no facility for displaying text is present in the DSP network.  
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

Conclusions 

The BTeV runtime environment is able to provide a glimpse into the future for 

how development platforms allow users to compose and realize embedded systems. It 

will be used as we progress with the NSF/Fermilab system development to implement 

and test systems gradually increasing in size. With the addition of a Fault Mitigation API, 

the ACS kernel has been extended to support fault mitigation behaviors that require 

application-transparent stream rerouting, fault injection and primitive debugging 

facilities. By leveraging concepts of MIC with an execution environment that supports 

such fault mitigation actions, the BTeV runtime environment can allow rapid modeling, 

generation, execution, and evolution of fault tolerant RTE systems. This environment 

allows physicists and researchers of other disciples to quickly build robust and resilient 

embedded systems in which to run their applications without requiring expertise in the 

area of real-time embedded systems. With the improved runtime environment, along with 

capabilities for hardware, software, and behavioral modeling, the BTeV environment is 

able to provide a solid platform to support research surrounding fault mitigative, large-

scale, real-time embedded system development. 
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Future Work 

Several improvements are planned for the BTeV environment. The continuing 

progress of this project is a testament to the need for more robust tools for researching the 

development these types of systems.  

First on the list of future improvements is the addition of live network status 

monitoring from within the design environment (GME 2000). GME implements a COM+ 

interface to allow remote querying and updating of the models. This will be done in 

accordance with fault detection, allowing models of the network to be updated to reflect 

the current health of the system at runtime. 

Another planned improvement to the BTeV environment is the use of dynamic 

model interpretation inside the network structure. This so-called “live-model” would 

exist on the network and be updated and re-interpreted during runtime as network failure 

events occur.  This would push the model interpretation process from a static a-priori 

event to a live runtime occurrence. 

Real-time behavior is critical for these types of systems.  The timing 

characteristics of the runtime and mitigation infrastructure should be characterized.  

Feedback of this information to the upper level tools will permit accurate simulation, and 

timing guarantees on the fault-adaptive properties of the system. 

The runtime system capabilities will evolve as the tools are developed.  New 

facilities are anticipated, along with a much closer coupling between runtime and design 

tools. 
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