
UPSARA: A Model-driven Approach for
Performance Analysis of Cloud-hosted Applications

Yogesh D. Barve∗, Shashank Shekhar†‡, Shweta Khare∗, Anirban Bhattacharjee∗ and Aniruddha Gokhale∗
∗Dept of EECS, Vanderbilt University, Nashville, TN 37212, USA

Email:{yogesh.d.barve,shweta.p.khare,anirban.bhattacharjee,a.gokhale}@vanderbilt.edu
†Siemens Corporate Technology, Princeton, NJ, 08540, USA

Email:shashankshekhar@siemens.com

Abstract—Accurately analyzing the sources of performance
anomalies in cloud-based applications is a hard problem due
both to the multi tenant nature of cloud deployment and
changing application workloads. To that end many different
resource instrumentation and application performance modeling
frameworks have been developed in recent years to help in the
effective deployment and resource management decisions. Yet,
the significant differences among these frameworks in terms of
their APIs, their ability to instrument resources at different levels
of granularity, and making sense of the collected information
make it extremely hard to effectively use these frameworks. Not
addressing these complexities can result in operators providing
incompatible and incorrect configurations leading to inaccurate
diagnosis of performance issues and hence incorrect resource
management. To address these challenges, we present UPSARA,
a model-driven generative framework that provides an extensible,
lightweight and scalable performance monitoring, analysis and
testing framework for cloud-hosted applications. UPSARA helps
alleviate the accidental complexities in configuring the right
resource monitoring and performance testing strategies for the
underlying instrumentation frameworks used. We evaluate the
effectiveness of UPSARA in the context of representative use
cases highlighting its features and benefits.

Index Terms—Performance analysis, model-driven, DSML,
Interference, Cloud, Resource Management, Performance Mon-
itoring, Benchmarks.

I. INTRODUCTION

Multi-tenancy in cloud deployment and changing workload
patterns for cloud-based applications make it hard to analyze
and diagnose any incurred performance issues and find ap-
propriate solutions to resolve them. In particular, identifying
the sources of performance interference due to multi-tenancy
remains a hard problem [1], [2], [3]. To support our hy-
pothesis, consider Figure 1, which shows the performance
variabilities incurred by a multi-tenant cloud deployment of
an image recognition application based on Inception-Resnet
v2 Keras machine learning model [4]. As seen, the per-
formance deteriorates significantly when running in a multi-
tenant environment compared to a baseline performance with
no resource contention. Understanding these performance is-
sues, which themself can change dynamically, is important to
make effective dynamic deployment and resource management
decisions so as to meet applications’ service level objectives
(SLOs).

‡Work done as a part of doctoral studies at Vanderbilt University

400 500 600 700 800
Response Time in msec.

0.2

0.4

0.6

0.8

1.0

F(x
)

415 764

90th percentile Performance
Baseline Application Performance
Multi-tenant Application Performance

Fig. 1. CDF of Response Time for Inception-ResNet v2 model using Keras
with 4 Cores

A number of resource- and application performance-
monitoring frameworks have been developed in recent years,
e.g., Nagios [5], Zabbix [6], Intel SNAP, linux-perf, collectd
[7] and systat to name a few. These performance monitoring
tools provide the users with different system-level and in some
cases application-level metrics, which in turn provide insights
into the runtime performance of these applications.

As is the case with any technology, using such tools often
involves a steep learning curve in understanding their usage
(e.g., their APIs), their features and capabilities, and often
requires users to manually write custom configuration scripts
and programs to effectively utilize the tools. With advances in
hardware that enable more finer-grained performance metrics
to be collected, these problems are further excarbated. For
example, Intel has recently introduced the Cache Monitoring
Technology tools which are compatible with the new gen-
eration of Intel architectures [8]. To use these capabilities,
new monitoring tools and programs need to be added to
capture the desired performance statistics. Further, a user must
possess expert knowledge about the hardware architecture and
monitoring tools.

Recent efforts [9], [10], [11], [12] have attempted to address
these concerns. However, there still remain many unresolved
issues that must be addressed. For instance, such solutions are
usually tightly coupled to an execution platform and as such
do not support compatibility with newer platforms. Secondly,
many tools are non-intuitive to use and less user friendly
thereby requiring users to manually configure and install the



monitoring probes on the runtime platforms, which is an error-
prone process. Beyond addressing these limitations, newer
capabilities are needed to enable runtime performance moni-
toring of these applications. For instance, older frameworks
often cannot be extended to exploit finer-grained or newer
hardware metrics, such as last-level cache utilization or non
uniform memory access (NUMA) patterns.

To overcome the above challenges, we propose to utilize
the principles of software product lines (SPLs) [13] in cre-
ating a model-driven generative framework called UPSARA-
Understanding Performance of Software Applications and
Runtime System Analysis. A product line is essentially a family
of product variants which have a set of features common to all
variants, but differ from each other along some other features
of an overall feature set that defines a product line. Our
approach is based on the observation that different monitoring
frameworks share many common features, while at the same
time differ on some other key features. Thus, the different
monitoring frameworks can be seen as variants of a product
line. Using generative capabilities provided by model driven
engineering (MDE) [14], we synthesize the configurations for
the different frameworks and automate the desired perfor-
mance monitoring tasks for the use case under consideration.

The rest of the paper is organized as follows: Section II
presents the motivation, requirements and the architecture of
UPSARA. Section III delves into the details of the model
driven engineering techniques, and the UPSARA domain spe-
cific modeling language. Section IV describes the generative
capabilities of UPSARA. We present validation of UPSARA
using representative usecases in Section VI. Related work
is described in Section VII. Finally, we present concluding
remarks and future directions for UPSARA in Section VIII.

II. DESIGN AND IMPLEMENTATION OF UPSARA

In this section we highlight the key challenges and solu-
tion requirements, followed by an overview of the UPSARA
solution.

A. Eliciting Challenges and Solution Needs

The stakeholders of UPSARA are cloud performance en-
gineers who would like to analyze an application’s per-
formance on the target platform. An application can be a
monolithic application such as a database, a micro-service
based component assembly, or can be a distributed application
such as Map-Reduce, distributed co-simulations, or parallel
processing jobs. To analyze the performance delivered to an
application, an engineer needs to collect system metrics such
as the CPU, network, disk, memory utilization as well as
micro-architectural metrics, such as context switches, cache
utilization, memory interconnect utilization, among others.
These metrics are needed to pinpoint performance interference
issues incurred due to multi tenancy. Moreover, the engineer
will also need application-level performance metrics, such as
observed response times and throughput.

The system metrics collection is typically performed using
external programs such as collectd, statsD, likwid, linux-perf,

Intel PMU tools, Intel RDT tools, among others [15]. Such
tools can measure some or all of the metrics of interest. As
such, one may need a single or a collection of such tools to
cover the spectrum of metrics of interest. The runtime platform
and the application then needs to be configured accordingly
with the right collection of tools based on the metrics selected
by the performance engineers. Each tool may impose different
approaches for its configuration such as through .conf files, or
by passing input parameters during program invocation. The
target platform also might have limitations as to which metrics
it can offer to be monitored, and what tools need to be executed
to capture the supported metrics.

Based on these concerns, below we describe the key re-
quirements for a solution like UPSARA that we present in
this paper.

1) Ease of Use: The metric instrumentation framework
should have a lower entry barrier so that it is easy to
use in the continuous integration and performance studies
of a cloud-hosted application. The steep learning curve
for individual tools hinders the users from making use of
the features provided by such platforms. Thus, UPSARA
should provide intuitive and higher-level abstractions,
which hide the lower-level complexity thereby making
it more easy for the end users to utilize the platform.

2) Ensuring the correctness of the configuration: It is
important that the metrics selection on a platform are
supported by that platform. For instance, monitoring
non-uniform memory access (NUMA)-level statistics or
measuring cache statistics requires that the underlying
platform hardware support these capabilities. Without
such support, forcing the monitoring tool to capture these
parameters will either result in capturing garbage data or
throw a run-time exception complaining about the non-
existence of such features. Hence, UPSARA should na-
tively support built-in correctness or a violation checker,
which will enforce correct by construction design.

3) Well-formedness of generated artifacts: To avoid writ-
ing low-level code artifacts, generative programming has
helped developers by synthesizing various code artifacts
based on user-defined templates. Although, generative
programming can synthesize these artifacts, it is essential
that a generative solution adopted by UPSARA be correct
and adhere to the domain-specific rules. This is necessary
to ensure functional correctness of the system.

4) Support for heterogenous runtime architectures: UP-
SARA should be able to support heterogeneous runtime
architectures, which are common in cloud environments.
Since each such runtime architectures might have their
own set of metric monitoring tools, UPSARA should
support seamless and automated composition of such
tools in its architecture.

5) Extensibility and tool reuse: UPSARA must be able to
reuse the existing capabilities of underlying measurement
tools that provide monitoring of system metrics rather
than reinventing the wheel by developing new monitoring



tools. The framework should support semantics for easy
plug and play architecture for adding support for new
tools. Also, as new hardware architectures get developed,
UPSARA should be able to add support for new archi-
tecture metric measurements.

B. Architecture and Workflow
Figure 2 illustrates the high-level operational workflow of

UPSARA that performance engineers can use for analyzing
their cloud-hosted applications. To begin with, the designer
of the experiment provides a high-level specification of the
performance analysis to be conducted. The specification in-
cludes the various metrics to be measured, the type of ap-
plication to be studied, and information about the runtime
platform on which the application needs to be executed. The
designer encodes this specification using the visual elements
of UPSARA’s domain-specific modeling language (DSML)
(See Section III). Once the specification is captured, UPSARA
transforms the specification into valid configuration scripts and
deploys the artifacts onto the runtime platform. Application
execution then begins on the target runtime platform. The
system metrics and the application metrics are captured during
the execution of the application and are made available to the
user by means of auto-analysis and visualization charts.

Model 
Interpreter

Runtime Platform

Constraint 
Checker

Code 
Generator

Application &
Configuration 

Templates

Orchestrator

System Monitoring

Experiment Modeling

W
e

b
G

M
E

 V
is

u
a

l
E

n
v

ir
o

n
m

e
n

t

R
e

s
u

lt
s
 a

n
d

A
n

a
ly

s
is

Code
Artifacts

Code Generation and Deployment Workflow

Fig. 2. High Level Overview of UPSARA

We now describe the main building blocks of UPSARA.
• WebGME Visual Environment: This block provides an

intuitive interface via the DSML for designing and or-
chestrating application performance analysis experiments.
The DSML-based interface enables (1) configuring vari-
ous system metrics to be collected on the target runtime
platform, (2) controlling the execution of the experiments,
and (3) providing analysis and real-time system dynam-
ics.

• Model Interpreter: The model interpreter validates the
well-formedness of the user-supplied model by traversing
the model elements and validating their syntactic and
semantic correctness while also generating the desired
artifacts. The generative aspects of the interpreter han-
dled by the Code Generator block (described below)
implements a graph traversal logic using a visitor design
pattern [16] and synthesizes artifacts that capture the
relationships and model attributes as described by the user
in lower-level representation.

• Constraint Checker: This module is responsible for de-
tecting any violation in the design of the experiment. It
consists of rules which specify the correct properties of
the application execution. Examples of constraints are
an application can be deployed only on one runtime
platform at a time or supported list of metrics of the
runtime platform. Thus, if the designer of the experiment
constructs a scenario where the application is deployed on
two different platforms at once, a constraint violation ac-
tion will be triggered notifying the user of the violations.
These constraints are captured and are made available in
the rules database of UPSARA.

• Code Generator: This component is responsible for gen-
erating the desired artifacts as specified by the user-
supplied model. The code generator has access to a repos-
itory of application and configuration template schemas
as required by the underlying monitoring and deployment
tools. As an example, the generator can synthesize the
schemas for the metric monitoring software. Also, based
on the application deployment on the target runtime
system, the code generator can generate scripts called
playbooks that will then be input to an application orches-
tration framework called Ansible [17]. The code generator
is also responsible for generating visualization artifacts
for viewing the results.

• Orchestrator: This component interfaces with the runtime
platform. The orchestrator is responsible for deploying
the generated artifacts on the target platform by instan-
tiating appropriate application deployment and metrics
collection.

• Result and Analysis: This component is responsible
for presenting the user with the analysis and statis-
tics of the application performance as designed by the
user. It features Python notebooks hosted on a Jupyter
server [18]. The graphical visualization allows users to
analyze various application performance characteristics.
These include the resource consumption for different
system metrics such as CPU, load, memory, energy, etc.
Specialized analyses modules can be integrated into the
generated notebooks which provide relevant analysis for
the selected frameworks.

III. UPSARA’S DOMAIN-SPECIFIC MODELING
LANGUAGE (DSML) DESIGN

We now delve into the details of UPSARA’s domain-specific
modeling language (DSML).



A. Encoding UPSARA’s Product-line Feature Model
We leverage model-driven engineering (MDE) techniques to

encode the different elements involved in UPSARA’s product
line for aiding in performance analysis of cloud applications.
Specifically, the feature model is encoded as a meta-model(s)
of an underlying DSML. To design the DSML, we have used
the WebGME modeling environment [19] to create the meta-
models, writing model interpreters, and encoding generative
logic for synthesizing artifacts. WebGME itself is a cloud-
based service that provides a browser-based design environ-
ment and supports creating visual DSMLs.1

UPSARA’s visual DSML provides several benefits when
compared to manually written scripts. The visual component
blocks provide an easy way to instrument and construct an
experiment which can then be deployed as specified [20],
[21], [22]. This reduces barrier to entry for developers that can
rapidly and concisely describe and start running experimental
scenarios without learning a new programming language ter-
minology and syntax [23]. The visual blocks are intuitive and
hence the learning curve for using UPSARA is negligible.
Next, we describe the main aspects of the UPSARA DSML
and their responsibilities.

1) UPSARA Main Meta-model: Figure 3 shows the main
building block of the DSML. It includes the following meta-
model components:

Fig. 3. UPSARA Main Meta-model

Project: represents the top-level meta-model block of UP-
SARA. Project comprises an application set, and includes
information about the instrumentation metrics to be collected
on the runtime platform. The Project component also contains
a scenarios model. Scenarios describe different deployment
schemes for running applications on the runtime platform.

1A textual DSML is an alternative approach but we did not explore it.

Platform: The platform represents the cloud platform on
which the application performance study will be conducted.
This usually represents target host machines which includes:
virtual machine, lightweight containers (e.g., Docker), bare-
metal, as well as a cluster of host machines.

FrameworkMgr: This component represents the monitoring
framework which the user can configure with the desired set
of metrics to monitor. Individual frameworks can be custom-
built with a predefined set of metrics that are supported
for the specific performance monitoring activity. Specialized
frameworks can be built by extending the FrameworkMgr to
suit different application performance monitoring scenarios.

Instrumentation: This component defines how the metrics
collection will be configured on the underlying cloud platform
using one or more concrete frameworks, e.g., collectd. The
metrics are associated with frameworkmgr. Moreover, the
runtime platform is represented by platform. The relationship
between frameworkmgr and the platform is represented by the
connection semantics in WebGME.

deployedON: This represents connection semantics in We-
bGME which capture the relation between two nodes. Here
deployedON represents a connection between FrameworkMgr
and Platform, database element and platform.

Scenarios: As mentioned earlier, this component includes
the different deployment options for running the applications
on cloud platforms. A user may want to study application
performance on multiple runtime platforms at once. For such
usecases, the user will define a scenario that captures the appli-
cation to the runtime platform mapping. Scenario component
facilitates describing such mapping for the performance study.

Visualization: Visualization of data and results is provided
as an important aid in conducting performance analysis of
applications. The visualization component generates plots that
are specific to the FrameworkMgr being developed. Every
FrameworkMgr instance can have a custom set of visualization
artifacts that meaningfully represent the performance analysis
data for the framework. Visualization can be produced using
a set of Jupyter notebooks [18] that capture specifics of the
application performance.

Database: This component is used for storing the collected
performance metrics data.

2) UPSARA Metric Meta-model: Figure 4 showcases a
snippet of the metric monitoring meta-model. The system met-
ric to be monitored can be macro-level metrics such as CPU,
memory, network, disk, load, as well as micro-architectural
metrics such as the context switches, L1 cache, L2 cache,
L3 or LLC cache utilization, cache hit and miss counts,
scheduler specific metrics, Docker container-specific metrics,
etc. Figure 4 shows a snippet of the micro-architectural meta-
model. As shown in Figure 4, using attribute selection we
allow fine-grained access to specific aspects of the system
metrics that a user would want to collect. As an example,
the figure shows that cache-miss property can be set to TRUE
or FALSE.



Fig. 4. Snippet of UPSARA Micro-metric Meta-model

B. UPSARA Platform Meta-model

Figure 5 illustrates the cloud platform meta-model. Platform
represents the target runtime platform on which the application
performance needs to be studied. Platform could be any
of baremetal host machine (Host), a virtual machine (VM),
or a lightweight Docker container (Docker). All these are
derived from an abstract machine concept in the DSML.
Cluster comprises a group of machine elements. A cluster
could be either in the form of a Datacenter, FogPlatform,
or an EdgePlatform that represents the clouds, fog and edge
computing resources, respectively [24].

Fig. 5. Snippet of UPSARA Runtime Platform Meta-model

1) UPSARA Application Deployment Scenario Meta-model:
To test the performance of an application on various platforms

we provide an application deployment scenario meta-model.
The scenario meta-model shown in Figure 6 illustrates how
an application maps to runtime platforms.

Fig. 6. Snippet of UPSARA Scenario Meta-model

A scenario for an experimentation can involve an application
or a group of applications being deployed on a single or a set of
runtime platforms. ApplicationRef references the Applications
meta-model. Similarly, MachineRef references the machine
meta-model. As an example, a user might be interested in
knowing how an application runs on platform A, and would
also like to see the application’s performance on platform
B. Using the UPSARA language one can easily create these
application deployment scenarios by reusing existing artifacts
and simply referencing them.

2) UPSARA Specialized Framework Meta-model: To cater
to the commonalities and variabilities of the concrete met-
rics collection frameworks, we provide extensible meta-
models with constraints for each such framework that can
be specialized from the abstract meta-model. An exam-
ple of a specialized framework that can be built using
the UPSARA DSML is shown in Figure 7. This special-
ized framework, which we have named as FECBench, has
been configured to support a subset of monitoring met-
rics. These include cpu util, Docker macro, Docker micro,
memory bandwidth local, memory bandwidth remote, and
LLC bandwidth system resource metrics. Also, the fec viz
object of the type visualization meta element is included as a
part of this FECBench. fec viz includes information about the
custom type of visualization that is needed to support analysis
for the FECBench framework.

This example shows how users create a concrete prod-
uct line variant from the UPSARA DSML and bring more
specialized visualization and analysis aspects as required for
each of the custom frameworks. Also, using this meta-model
design, the framework can enforce design constraints. For
example, it only allows the subset of the metrics as defined
by the specialized framework to be available to the end user



Fig. 7. UPSARA Specialized Framework Meta-model

thereby enforcing constraints and following the correct-by-
construction principle [14].

IV. UPSARA’S GENERATIVE CAPABILITIES

UPSARA’s generative capabilities are built using the We-
bGME tool. In WebGME terminology, the model interpreters
and the generation can both be handled by writing custom pro-
grams called plugins. Thus, UPSARA implements the model
interpreters and the generators using the plugins infrastructure.
The plugins can be instantiated by users or they can run as
service processes. In UPSARA, instantiation of plugins happen
when users invoke the plugin by clicking the plugin button
in the WebGME environment. Figure 8 shows the process
of generation, synthesis and deployment in the UPSARA’s
generative toolchain.

A. Metric Monitoring Configuration Generation and Provi-
sioning

As described in Section III-A2, a range of metrics collection
can be modeled in UPSARA. However, based on the actual
underlying metrics collection framework used, only a subset
of the metrics are realistically available to the end user at
runtime. An example of such a specialized framework is
illustrated in Figure 7. Also as shown in Figure 3, there is a
mapping between the specialized framework and the platform
on which it needs to be deployed. Each metric that needs to
be measured can be configured to be monitored from a set of
available system monitoring tools. The generative capabilities
of UPSARA capture the above relationships between differ-
ent entities. Moreover, based on the target monitoring tools,
UPSARA synthesizes appropriate configuration scripts.

Algorithm 1 depicts the steps involved in the metric config-
uration generation and deployment. As shown, the generator

Fig. 8. UPSARA Generative Process

first needs to traverse the model and get a list of metrics and
the hosts on which the metrics are to be configured (Line 2,
3). UPSARA then checks if the selected metric is actually
supported by the target runtime platform. This platform ca-
pability information is pre-populated and is available to the
generator for lookup. If the metric is not supported by the
underlying platform, a constraint violation is registered as
shown in Line 9. If the metric is supported, we first get the
monitoring tool information associated with the metric (Line
10).

Once the appropriate monitoring tool is determined, the
associated tool’s configuration template is fetched. UPSARA
generates an Ansible playbook for configuring that metric
on the selected cloud platform. UPSARA also generates the
configuration script for the monitoring tool to configure the
metric selection.

Moreover, as a part of monitoring and analysis, a Jupyter
notebook template associated with the framework is loaded
and deployed as shown in Line 20. The jupyter notebook
files have .ipynb extension and comprise a list of json
objects. The jupyter notebook can be dynamically populated
with the metrics parameters that need to be monitored whose
information is available in the model.

B. Application Configuration Generation and Orchestration

The process for obtaining application-specific details is
similar to the scheme described in Algorithm 1. The generator
program first loads the model and gets the information about
the applications to be studied. Next it finds the association
between the application and the deployment platform on
which it needs to be studied. Once the target applications and



Algorithm 1 Metric and Visualization Configuration Genera-
tion and Deployment

1: Input← (Model)
2: ListofMetrics← getMetrics(Model)
3: ListofHosts← getP latformNodes(Model)
4: iframeworkV iz ← getFrameworkV iz(Model)
5: mapMetricToHost← getMappingofMetricsToHost(Model)
6: if mapMetricToHost! = ∅ then
7: for all Vm,h ∈ mapMetricToHost do
8: if isMetricSupportedbyHost(m,h) = False then
9: Skip . Constraint Violation

10: metricTool← getMetricTool(Model,m)
11: metricConfTemplate ←

getTemplate(m,metricTool)
12: . Generate Artifact
13: hostF iles[h].insert(metricConfTemplate)

14: for all host ∈ hostF iles do
15: for all files ∈ hostF iles[host] do
16: InstantiateDeployment(host, files)
17: . Deploy Artifact
18: if iframeworkV iz! = ∅ then
19: vizTemplate← getV izTemplate(iframeworkV iz)
20: deployTemplate(vizTemplate) . Deploy Visualization

the runtime platform are determined, UPSARA generates a
configuration script. This configuration script is further used by
the main framework program which performs the application
deployment and execution on the target platform.

V. MEETING THE REQUIREMENTS

Based on the description of UPSARA’s DSML design and
generative capabilities, we now show how UPSARA addresses
the challenges and meets the requirements described in Sec-
tion II-A.

1. Ease of Use: UPSARA provides a visual DSML for
easy construction of very large scale experimentation. The
performance engineer can also easily and rapidly select metrics
of interest which need to be analyzed for the application
under test. The generative capabilities in UPSARA create
monitoring metric configuration scripts without the need for
manual writing of scripts for configuring the monitoring tool.

2. Ensuring the correctness of the configuration: The
UPSARA DSML embeds the relationship and constraints
between the meta elements of the language. As such these
rules ensure that when the user starts designing experiments
using WebGME, only the constructs that are supported by the
language are available and visible to the user for instantiating.
Also, the model interpreter enforces constraint checking which
ensures that the experiment that is designed by the user
also is checked for constraint violations. This is addressed
in Section IV-A.

3. Well-formedness of the generated artifacts: UPSARA
provides automated synthesis of application configurations,
experimental configurations, metric configurations and the
result visualization artifacts. UPSARA’s generative process as
described in Section IV includes constraint checking rules
that detect any violations encountered in the model design.
Capturing the violation allows it to ensure that the artifacts

generated actually ensure correct functional aspects of the
performance measurement study.

4. Extensibilty and tool reuse: Section III-B2 explains
how a user can create a specialized framework using existing
elements from the UPSARA DSML. It also demonstrated how
a user can use existing language elements and build new
models using the UPSARA DSML.

5. Support for heterogenous runtime platforms: Sec-
tion III-B discusses how the UPSARA platform meta-model is
able to support heterogeneous runtime platforms. The correct-
by-construction generative and deployment capabilities eases
the generation and deployment of large-scale configuration
artifacts on the heterogeneous runtime platform. This also
avoids the accidental complexities involved in configuring such
large-scale systems.

VI. EVALUATING UPSARA VIA USE CASES

In this section we use three different use cases and their
analyzed performance data to highlight the significant benefits
derived from using UPSARA. For our use cases, we have used
an experimental setup comprising an Intel Xeon processor
whose configuration is listed in Table I. The software details
utilized are as follows: the underlying metrics collection
frameworks are Collectd (v5.8.0.357.gd77088d), Linux Perf
(v4.10.17) and Likwid Perf (v4.3.0). Configuring different
monitoring metrics is achieved by utilizing UPSARA. We
used applications from the PARSEC [25], SPLASH-2 [25],
and DaCaPo [26] benchmarks for the performance analysis.

TABLE I
HARDWARE & SOFTWARE SPECIFICATION OF COMPUTE SERVER

Model Name Intel(R) Xeon(R) CPU E5-
2620 v4 @ 2.10GHz

Number of CPU cores 16
Memory 32 GB

Operating System Ubuntu 16.04.3 64-bit

A. Case Study 1- Co-located workload performance analysis

Recent literature indicates that datacenter resources often go
underutilized [1]. To increase the utilization, cloud providers
tend to consolidate applications by means of overbooking.
However, co-location of applications without proper knowl-
edge of the applications’ performance profile can result in
performance interference, which degrades performance. This
occurs due to contention for shared resources. In this use case,
we use UPSARA to measure the application’s degradation
with co-located background workloads.

Our use case application is a computer vision application
performing image feature recognition. The image processing
application uses Scale Invariant Feature Transform (SIFT)
to find the scale and rotation independent features of an
image [27]. The application is a server-side application with
the clients continuously sending an image of fixed size to
be processed. We measure the server-side execution time for



processing a single client request. The image processing ap-
plication is also co-located with other background workloads
that share resources on the same host machine.

Figure 9 depicts that the performance of the image pro-
cessing application deteriorates significantly when co-located
with background loads due to varying interference impact. To
analyze this variation in the performance of the application,
the user utilizes UPSARA to configure the metrics to be
monitored, and also to execute the image processing client
and server application. Using UPSARA, the user leverages
UPSARA’s runtime machine learning approaches to determine
the dominant metrics that are highly correlated with the appli-
cation’s QoS metric: execution time. The figure reveals that L1-
iCache-Loads, IPC, IPS, L1-dCache-Loads, LLC-loads, cache-
miss are highly correlated with the performance of the appli-
cation. Using this knowledge, intelligent resource schedulers
can be designed, which avoid placing this application with
other co-located workloads that are not compute and cache
intensive.

100 150 200 250 300 350 400 450
Time (msec)

0.0

0.2

0.4

0.6

0.8

1.0

F(
x)

Image Processing Completion time Analysis

L1
_ic

ac
he

_lo
ad

_m
iss

es IP
C IP
S

L1
_d

ca
ch

e_
lo

ad
s

L1
_d

ca
ch

e_
lo

ad
s_

m
iss

es

LL
C_

lo
ad

s

ca
ch

e_
m

iss
es

ca
ch

e_
re

fe
re

nc
es

co
nt

ex
t_

sw
itc

h

cp
u_

cy
cle

s

cp
up

er
ce

nt

dT
LB

_lo
ad

_m
iss

es

dT
LB

_lo
ad

s

di
sk

_io

iT
LB

_lo
ad

_m
iss

es

System Metrics

0.0

0.2

0.4

0.6

0.8

1.0
Feature importances (f-regression)

Fig. 9. Performance analysis of image processing service. a) Shows the
latency distribution of the completion times of the image processing. b) Shows
the dominant measurement metrics that are correlated with the increase in the
latency of image processing

B. Case Study 2: Application Resource Utilization Modeling

When deploying applications in the cloud environment,
resource management solutions need to allocate sufficient
resources to meet application SLOs. The rapid growth of new
type workloads such as deep learning and distributed machine
learning, are moving to the cloud. As such, studying how
different resources are utilized by such workloads becomes
critical for cloud/cluster schedulers. As an exemplar, we use

the same benchmarks as before for analysis. Our aim was to
study the resource utilization of different applications from
these benchmarks. Figures 10 and 11 depict the normal-
ized number of system context switches and shared memory
bandwidth utilization obtained by orchestrating monitoring
components using the UPSARA framework. Due to space
constraints we are not displaying rest of the resource utilization
metrics. This collected information on resource utilization
can be leveraged in building predictive resource utilization
models for co-located workloads. Such predictive models can
be useful for cloud providers in improving resource allocation
algorithms.

pa
rs

ec
.b

la
ck

sc
ho

le
s

pa
rs

ec
.b

od
yt

ra
ck

pa
rs

ec
.d

ed
up

pa
rs

ec
.fe

rre
t

pa
rs

ec
.fl

ui
da

ni
m

at
e

pa
rs

ec
.fr

eq
m

in
e

pa
rs

ec
.c

an
ne

al
sp

la
sh

2.
ba

rn
es

sp
la

sh
2.

ch
ol

es
ky

sp
la

sh
2.

fft
sp

la
sh

2.
fm

m
sp

la
sh

2.
lu

_c
b

sp
la

sh
2.

lu
_n

cb
sp

la
sh

2.
oc

ea
n_

cp
sp

la
sh

2.
oc

ea
n_

nc
p

sp
la

sh
2.

ra
di

x
sp

la
sh

2.
ra

yt
ra

ce
sp

la
sh

2x
.w

at
er

_n
sq

ua
re

d
sp

la
sh

2x
.w

at
er

_s
pa

tia
l

lu
se

ar
ch

pm
d

xa
la

n
lu

in
de

x
su

nf
lo

w h2
ba

tik fo
p

Application Name

0.00

0.05

0.10

0.15

0.20

0.25

No
rm

al
ize

d 
ho

st
_c

on
te

xt
_s

wi
tc

h Amount of Context Switches

Fig. 10. Normalized amount of context switches imposed by applications
from the PARSEC, DaCaPo and Splash-2 benchmarks.

pa
rs

ec
.b

la
ck

sc
ho

le
s

pa
rs

ec
.b

od
yt

ra
ck

pa
rs

ec
.d

ed
up

pa
rs

ec
.fe

rre
t

pa
rs

ec
.fl

ui
da

ni
m

at
e

pa
rs

ec
.fr

eq
m

in
e

pa
rs

ec
.c

an
ne

al
sp

la
sh

2.
ba

rn
es

sp
la

sh
2.

ch
ol

es
ky

sp
la

sh
2.

fft
sp

la
sh

2.
fm

m
sp

la
sh

2.
lu

_c
b

sp
la

sh
2.

lu
_n

cb
sp

la
sh

2.
oc

ea
n_

cp
sp

la
sh

2.
oc

ea
n_

nc
p

sp
la

sh
2.

ra
di

x
sp

la
sh

2.
ra

yt
ra

ce
sp

la
sh

2x
.w

at
er

_n
sq

ua
re

d
sp

la
sh

2x
.w

at
er

_s
pa

tia
l

lu
se

ar
ch

pm
d

xa
la

n
lu

in
de

x
su

nf
lo

w h2
ba

tik fo
p

Application Name

0.00

0.01

0.02

0.03

0.04

0.05

0.06

No
rm

al
ize

d 
ho

st
_m

em
_b

w

Memory Bandwidth Utilization

Fig. 11. Normalized memory bandwidth utilization of applications from the
PARSEC, DaCaPo and Splash-2 benchmarks.

C. Case Study 3: Studying the impact of Application’s Re-
source configuration

As more and more jobs are migrated to the public cloud,
users are faced with a challenge of which configurations
to select from a range of virtual machine options provided.
The cloud users usually would like to find a cost effective
configuration which meets their application’s QoS metric.
We use UPSARA to measure the application’s QoS metric



- execution time, for different application container config-
urations. We measure the execution time for five different
CPU core resource configuration options: [1,2,4,8,16] cores.
Figure 12 shows the impact of resource configuration on
the execution completion times for applications. Using these
insights appropriate configuration can be selected such that it
satisfies the user requirements.

pa
rs

ec
.b

la
ck

sc
ho

le
s

pa
rs

ec
.b

od
yt

ra
ck

pa
rs

ec
.d

ed
up

pa
rs

ec
.fe

rre
t

pa
rs

ec
.fl

ui
da

ni
m

at
e

pa
rs

ec
.fr

eq
m

in
e

pa
rs

ec
.c

an
ne

al
sp

la
sh

2.
ba

rn
es

sp
la

sh
2.

ch
ol

es
ky

sp
la

sh
2.

fft
sp

la
sh

2.
fm

m
sp

la
sh

2.
lu

_c
b

sp
la

sh
2.

lu
_n

cb
sp

la
sh

2.
oc

ea
n_

cp
sp

la
sh

2.
oc

ea
n_

nc
p

sp
la

sh
2.

ra
di

x
sp

la
sh

2.
ra

yt
ra

ce
pa

rs
ec

sp
la

sh
2x

.w
at

er
_n

sq
ua

re
d

sp
la

sh
2x

.w
at

er
_s

pa
tia

l
lu

se
ar

ch
pm

d
xa

la
n

lu
in

de
x

su
nf

lo
w h2

ba
tik fo
p

Application

0.0

0.5

1.0

1.5

2.0

Ex
ec

ut
io

n_
Ti

m
e_

se
c

Fig. 12. Impact of different resource configurations on the applications’
execution time. Variability in the execution time is due to scaling up in the
configuration of the resources assigned to the application.

VII. RELATED WORK

We now compare UPSARA with prior related works.
Wienke et. al. [28] have developed a domain-specific language
(DSL) for performance profiling, however it is restricted to
application profiling only and is coupled to the robotics
domain. It utilizes code generation facility to create artifacts
required for testing application performance using the Java
testing framework.

In [29], a DSL is introduced for web application perfor-
mance profiling under various load configurations. The DSL
automates the cloud resource allocation problem based on the
desired QoS goals for the web application. The DSL also
generates test cases for load testing the application and moni-
toring both the system and the application metrics. Similarly,
in [30], a DSL called DSLBench is presented. DSLBench
generates load testing codes for web application testing. It
leverages the Microsoft Visual studio and generates codes
in C-Sharp language. AutoPerf [12] presents an automated
load testing and resource usage profiling for web service
applications. It provides a facility for monitoring resource
usage for per request calls in a web session. It also provides
a load generation facility.

In [31], an OMG Data Distribution Service-centric per-
formance testing suite is designed leveraging a DSML. It

uses model-driven generative capabilities to generate test plans
for testing the application’s end-to-end QoS under various
configurations. It also automates the deployment of the test
plans on the cloud environment. Expertus [32] provides an
automated performance testing of applications on the cloud
environment. It also leverages generative aspects to generate
test specification and deployment of the applications using the
aspect oriented weaving techniques.

Similar in spirit to our paper, [33] presents a declar-
ative DSL and accompanying model-driven framework for
automated end-to-end performance testing of container based
micro-services. Similar to application profiling which is the
focus of our work, performance testing also involves complex
set-up of performance tests, configuration and management
of loading infrastructure, deployment under different testing
scenarios and post analysis of collected performance data.

While the above DSL tools and methodologies address
some of the problems in application performance and system
analysis, they still have some drawbacks. In some cases
the techniques are tied to a specific programming language,
application and/or the runtime platform. As such they cannot
be used for heterogeneous runtime platforms and use case
scenarios, which UPSARA supports. For example, the solution
presented in [31] is tailored towards DDS messaging platform.
In [28], performance profiling is geared towards robotic appli-
cations running on Java platform. Similarly, web application
specific tooling is presented in [29], [30], [12].

Another important differentiation when compared to ex-
isting tools is that they do not allow configuring system
metrics as captured in the UPSARA DSML. Users still have
to write manual configuration scripts for various metric collec-
tion probes on the desired runtime platform for performance
monitoring. UPSARA’s generative, constraint checking and
deployment facilities allow for automated synthesis of these
monitoring metrics configurations and deployment on the
runtime platform.

Moreover, existing tools and approaches lack visual model-
ing elements which UPSARA’s modeling environment pro-
vides. This makes configuring of performance monitoring
applications much more intuitive thereby presenting a user
friendly environment for performance monitoring. UPSARA
also creates auto-analysis and visualization notebooks using
the Jupyter environment for performance analysis.

VIII. CONCLUSIONS

The utility of cloud computing and its services can be
significantly improved if performance engineers can rapidly
and with ease analyze performance anomalies in cloud-based
applications and define appropriate solutions to overcome
these problems. Unfortunately, users today face daunting chal-
lenges in using existing resource monitoring and application
performance modeling frameworks due to the significant vari-
ability incurred across these frameworks in terms of APIs,
granularity of monitoring, and making sense of the collected
data. To that end this paper presents UPSARA, which is
an extensible platform based on model-driven engineering



technology that has the potential to significantly reduce the
entry to barrier for performance monitoring and modeling of
applications deployed across the cloud, fog and edge resource
systems. UPSARA provides high-level, intuitive abstractions
which enable users to quickly set up performance experimen-
tation using visual drag and drop components. Generative and
constraint checking components within UPSARA ensure that
the generated low-level scripts, such as metric configurations,
required for the performance experimentation are correct by
construction. The configuration deployment component of the
framework, e.g., using Ansible [17], satisfies the deployment
of the generated configuration artifacts on the runtime plat-
form. The framework also provides the user with an ability
to automate the visualization of results and analysis, which
enables users to gain deeper insights into the application
performance behaviors.

As future work we plan to extend the DSML to support
additional kinds of performance testing usecases, such as the
effect of hardware configuration, NUMA bounded placement
schemes, cache contention scenarios on application perfor-
mance. We also plan to support experiment workflows that
define dynamic operational patterns as seen in real world
situations and analyze application and system performance.
These patterns include application workload variability, sys-
tem failure injections, and collocation application execution
scenarios.

UPSARA is available in open source at https://github.com/
doc-vu/UPSARA.

ACKNOWLEDGMENTS

This work is supported in part by NSF US Ignite CNS
1531079 and AFOSR DDDAS FA9550-18-1-0126 and NIST
70NANB17H274. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of NSF or
AFOSR or NIST.

REFERENCES

[1] C. Delimitrou and C. Kozyrakis, “ibench: Quantifying interference for
datacenter applications,” in Workload Characterization (IISWC), 2013
IEEE International Symposium on. IEEE, 2013, pp. 23–33.

[2] S. Shekhar, Y. Barve, and A. Gokhale, “Understanding performance
interference benchmarking and application profiling techniques for
cloud-hosted latency-sensitive applications,” in Proceedings of the10th
International Conference on Utility and Cloud Computing. ACM, 2017,
pp. 187–188.

[3] Y. Barve, S. Shekhar, A. Chhokra, S. Khare, A. Bhattacharjee, and
A. Gokhale, “Poster: Fecbench: An extensible framework for pinpointing
sources of performance interference in the cloud-edge resource spec-
trum.” in Proceedings of the Third ACM/IEEE Symposium on Edge
Computing. ACM, 2018.

[4] “Keras application models,” https://keras.io/applications, 2018.
[5] W. Barth, Nagios: System and network monitoring. No Starch Press,

2008.
[6] R. Olups, Zabbix Network Monitoring. Packt Publishing Ltd, 2016.
[7] F. Forster, “Collectd open source project,” http://www.collectd.org, 2017.
[8] “Cache monitoring technology and cache allocation technology,” https:

//github.com/intel/intel-cmt-cat, 2018.
[9] C. Heger, A. van Hoorn, M. Mann, and D. Okanović, “Application

performance management: State of the art and challenges for the future,”
in Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering. ACM, 2017, pp. 429–432.

[10] J. Walter, S. Eismann, J. Grohmann, D. Okanovic, and S. Kounev,
“Tools for declarative performance engineering,” in Companion of the
2018 ACM/SPEC International Conference on Performance Engineer-
ing. ACM, 2018, pp. 53–56.

[11] N. Michael, N. Ramannavar, Y. Shen, S. Patil, and J.-L. Sung, “Cloud-
perf: A performance test framework for distributed and dynamic multi-
tenant environments,” in Proceedings of the 8th ACM/SPEC on Inter-
national Conference on Performance Engineering. ACM, 2017, pp.
189–200.

[12] V. Apte, T. Viswanath, D. Gawali, A. Kommireddy, and A. Gupta,
“Autoperf: Automated load testing and resource usage profiling of multi-
tier internet applications,” in Proceedings of the 8th ACM/SPEC on
International Conference on Performance Engineering. ACM, 2017,
pp. 115–126.

[13] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[14] D. C. Schmidt, “Model-driven engineering,” COMPUTER-IEEE COM-
PUTER SOCIETY-, vol. 39, no. 2, p. 25, 2006.

[15] K. Fatema, V. C. Emeakaroha, P. D. Healy, J. P. Morrison, and T. Lynn,
“A survey of cloud monitoring tools: Taxonomy, capabilities and objec-
tives,” Journal of Parallel and Distributed Computing, vol. 74, no. 10,
pp. 2918–2933, 2014.

[16] F. Buschmann, K. Henney, and D. Schimdt, Pattern-oriented Software
Architecture: on patterns and pattern language. John wiley & sons,
2007, vol. 5.

[17] “Ansible-automation for everyone,” https://www.ansible.com/, 2018.
[18] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier,

J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay et al.,
“Jupyter notebooks-a publishing format for reproducible computational
workflows.” in ELPUB, 2016, pp. 87–90.

[19] M. Maróti, R. Kereskényi, T. Kecskés, P. Völgyesi, and A. Lédeczi,
“Online collaborative environment for designing complex computational
systems,” Procedia Computer Science, vol. 29, pp. 2432–2441, 2014.

[20] A. Bhattacharjee, Y. Barve, A. Gokhale, and T. Kuroda, “(wip) cloud-
camp: Automating the deployment and management of cloud services,”
in 2018 IEEE International Conference on Services Computing (SCC).
IEEE, 2018, pp. 237–240.

[21] Y. D. Barve, P. Patil, A. Bhattacharjee, and A. Gokhale, “Pads: Design
and implementation of a cloud-based, immersive learning environment
for distributed systems algorithms,” IEEE Transactions on Emerging
Topics in Computing, vol. 6, no. 1, pp. 20–31, 2018.

[22] Y. D. Barve, P. Patil, and A. Gokhale, “A cloud-based immersive learning
environment for distributed systems algorithms,” in Computer Software
and Applications Conference (COMPSAC), 2016 IEEE 40th Annual,
vol. 1. IEEE, 2016, pp. 754–763.

[23] H. Cho, J. Gray, and E. Syriani, “Creating visual domain-specific
modeling languages from end-user demonstration,” in Modeling in
Software Engineering (MISE), 2012 ICSE Workshop on. IEEE, 2012,
pp. 22–28.

[24] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. ACM, 2012, pp. 13–16.

[25] C. Bienia, S. Kumar, and K. Li, “Parsec vs. splash-2: A quantitative com-
parison of two multithreaded benchmark suites on chip-multiprocessors,”
in Workload Characterization, 2008. IISWC 2008. IEEE International
Symposium on. IEEE, 2008, pp. 47–56.

[26] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer
et al., “The dacapo benchmarks: Java benchmarking development and
analysis,” in ACM Sigplan Notices, vol. 41, no. 10. ACM, 2006, pp.
169–190.

[27] M. Sonka, V. Hlavac, and R. Boyle, Image processing, analysis, and
machine vision. Cengage Learning, 2014.

[28] J. Wienke, D. Wigand, N. Koster, and S. Wrede, “Model-based perfor-
mance testing for robotics software components,” in 2018 Second IEEE
International Conference on Robotic Computing (IRC). IEEE, 2018,
pp. 25–32.

[29] Y. Sun, J. White, S. Eade, and D. C. Schmidt, “Roar: A qos-oriented
modeling framework for automated cloud resource allocation and op-
timization,” Journal of Systems and Software, vol. 116, pp. 146–161,
2016.

[30] N. B. Bui, L. Zhu, I. Gorton, and Y. Liu, “Benchmark generation using
domain specific modeling,” in Software Engineering Conference, 2007.
ASWEC 2007. 18th Australian. IEEE, 2007, pp. 169–180.

[31] K. An, T. Kuroda, A. Gokhale, S. Tambe, and A. Sorbini, “Model-driven
generative framework for automated omg dds performance testing in the
cloud,” ACM Sigplan Notices, vol. 49, no. 3, pp. 179–182, 2014.

[32] D. Jayasinghe, G. Swint, S. Malkowski, J. Li, Q. Wang, J. Park,
and C. Pu, “Expertus: A generator approach to automate performance
testing in iaas clouds,” in Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on. IEEE, 2012, pp. 115–122.

[33] V. Ferme and C. Pautasso, “A declarative approach for performance
tests execution in continuous software development environments,”
in Proceedings of the 2018 ACM/SPEC International Conference on
Performance Engineering. ACM, 2018, pp. 261–272.

https://github.com/doc-vu/UPSARA
https://github.com/doc-vu/UPSARA
https://keras.io/applications
http://www.collectd.org
https://github.com/intel/intel-cmt-cat
https://github.com/intel/intel-cmt-cat
https://www.ansible.com/

