
Reflex and Healing Architecture for
Software Health Management

Abhishek Dubey, Nagbhushan Mahadevan, Robert Kereskenyi
Institute for Software Integrated Systems

Vanderbilt University, Nashville, TN

Abstract—This paper discusses the applicability of reflex and
healing architecture for implementing software health manage-
ment in complex ‘system of systems’, such as those used in
interplanetary space missions.

I. INTRODUCTION

Complex systems such as those used in space missions are
built as composition of systems. Each sub-system is a collec-
tion of components which are implemented either in hardware
or software or as a combination of both. A component can
contain other components, giving the ‘global level’ system a
recursive structure that has potentially several levels. Mission
critical and safety critical nature of these systems require
implementations that are resilient to failures. Ariane 5, Mars
Climate Orbiter and Mars Polar Lander are a few examples of
the catastrophic consequences of software and related system
failures.

Delay in communications due to distance, especially in in-
terplanetary missions, requires these systems to be autonomic
i.e. they have to provide resilience to faults by adaptively mit-
igating faults and failures through self-management. In order
to achieve this, a system must be able to detect occurrences
of discrepancies that signify failures, diagnose and isolate the
probable fault sources, take actions to contain the faults i.e.
stop them from propagating outwards to the parent component,
and mitigate their effects on the functionality of the sub-system
where the fault occurred.

Rasmussen [1] suggests that one of the traditional problems
with implementing fault-tolerance is that it is seen as an add-
on that is orthogonal to the system development process. He
argues that fault-protection behavior should be integrated with
the control problem during the design process. This is the basis
of goal-based control paradigm [2] that supports a deductive
controller that is responsible for observing the plant’s state
(mode estimation) and issuing commands to move the plant
through a sequence of states that achieves the specified goal.
This approach inherently provides for fault recovery by using
the control program to set an appropriate configuration goal
that negates the problems caused by faults in the physical
system.

However, these control algorithms are typically imple-
mented in software and are therefore reliant on the fault-
free behavior of related software components. This imposes
stringent requirement on software dependability. Of current
interest are tools and techniques that provide an integrated

health management infrastructure for software components.
We believe that this infrastructure will be complementary to
the main control executive.

A ‘software health management’ infrastructure needs to
monitor software components at various levels for discrepan-
cies, which are deviations from the expected behavior. Upon
detection of faults, an online diagnosis engine is required to
isolate and identify the fault source. This should be followed
with appropriate mitigation actions. In this paper, we identify
an architecture that could potentially be extended and applied
to software health management.

II. REFLEX AND HEALING ARCHITECTURE

Reflex and Healing (RH) [3], [4], [5] is a biologically
inspired two stage mechanism for recovering from faults in
large distributed real-time systems. In the first stage, the
primary building blocks of fault management are components
called reflex engines (also referred to as managers) that are
arranged in a hierarchical management structure. They offer
pre-specified reactive responses called reflexes to faults as
they are discovered. In the context of this paper, reflex is
considered synonymous to fault-mitigation. Next stage of RH
architectures is associated with system healing. It refers to
a planned reconfiguration of the system at the global level.
This is required if no suitable reflex exists for a fault-event
or to optimize system performance after several reflexes.
This architecture has been successfully demonstrated for
the BTeV real-time embedded systems project (http://www-
btev.fnal.gov/public/hep/detector/rtes/) [6].

RH architecture is typically deployed in a three level hierar-
chy of local level, regional level and global level, where ‘local’
means a specific component, ‘regional’ means a groups of
components that are in close proximity, and ‘global’ refers to
the entire system (see Figure 1). Interactions between different
reflex engines are restricted to four types:

1) S ↔ M : Interaction between an operator/system
interface and a manager

2) M
up↔ M : Interaction between a subordinate manager

and a governing manager
3) M

down↔ M : Interaction between a governing manager
and subordinate managers

4) M ↔ C : Interaction between a manager and a managed
unit component

A Global Manager G is defined as a manager, which is
capable of both S ↔ M and M

down↔ M behavior. A Regional



Manager R is defined as any manager that is capable of both
M

up↔ M and M
down↔ M behaviors. There can be multiple

levels of regional hierarchy. Finally, local managers L are
managers which are only capable of M

up↔ M and M ↔ C
behaviors.

Fig. 1. The layout of management entities involving global (G), regional (R)
and local (L) managers.

A. Reflex Engine

A reflex engine is composed of three distinct processes:
a sensor process, an observer process and a mitigator pro-
cess (see Figure 2). Monitoring information is generated
by instrumenting embedded computing node with software
sensors (scheduled using a sensor scheduler) that generate
traces of value-events - a structure containing a value and a
corresponding global time stamp. An example of these sensors
is the ‘heartbeat’ sensor that periodically generates ‘I am alive’
messages. Other example is a CPU utilization sensor. It is
important for the sensors to be least intrusive in terms of
performance. They are critical component of this architecture
and should be therefore certified rigorously.

Reflex engine integrates several fault management devices
expressed as timed state machine models. While some of
these state machines are used as observers that generate
’fault-events’ (discussed in next section), others are used as
mitigators to perform bounded time reactive actions upon
occurrence of certain fault-events. Fault-events are propagated
up in the hierarchy from local to global until a suitable
mitigation strategy is found. A database (not shown in figure)
stores all event exchanges for statistical investigations that
require historical information.

An incoming event is forwarded to a scheduler, which
maintains a lookup table for the event-type and the state
machine that can use the event. The scheduler uses the lookup
table to forward the event to the appropriate state machine.
A challenge in this architecture is to verify that none of the
state machines will ever be deadlocked. A potential verification
procedure for this has been described in [5].

Fig. 2. A computing node in the real time reflex and healing framework.

B. Observers: Detecting Discrepancies

In the RH architecture, faults are detected through the
observation of discrepancies that are deviations from the
expected behavior. Expected behavior is specified as a Timed
Computation Tree Logic (TCTL) formula. This formula is
used to manually construct a timed automaton observer, which
uses the monitoring information generated by software sen-
sors. Violation of specified condition leads the observer to
a faulty-state, where the entry action generates a fault-event.
Presence of such an event indicates a discrepancy.

C. Distributed Diagnosis

A discrepancy could be potentially caused by many fault
sources. It is useful to employ a diagnosis engine that can
progressively use the discrepancy information and identify the
fault source(s). We are investigating the use of distributed
Timed Fault Propagation Graphs (TFPG) reasoner [7] for
diagnosis. A TFPG-model is a directed acyclic graph (DAG) in
which nodes depict faults (root-nodes) and discrepancies (non-
root nodes). Edges represent propagation of failure between
the nodes (faults to discrepancies, discrepancy to other dis-
crepancies). Edges specify additional properties with regards
to failure propagation - minimum/maximum time limits &
permissible mode(s) for failure propagation.

When a discrepancy event (alarm) is generated, the reasoner
(diagnosis engine) tries to identify the possible causes (or
sources) for the alarm using the current configuration of
the graph. This would most likely generate a set of valid
hypotheses (faults) as the possible sources. Upon generation
of further alarms, the valid hypothesis set is refined to include
only those that can explain all the alarms. Once, the fault is
suitably identified after the diagnosis, the mitigation strategy
can be triggered by sending out the appropriate fault-event.
Further, based on the model of the system, the TFPG diagnosis
engine can also forecast / predict an impending failure /
discrepancy, which could be extremely useful information,
especially with regards to preventing catastrophic failures. The
TFPG diagnosis engine employs a robust reasoning algorithm
that can account for false alarms, missing alarms, intermittent
alarms. Also, a single TFPG-model can be configured to
enable multiple modes of operations for various components.

However, there are two challenges with adapting TFPG
for use in online diagnosis in a RH architecture: (i) System



components can operate in different modes, which leads to
different software dependency chains during runtime. This
might require large-scale rewiring of models based on the
concepts of modes supported by TFPG. Or, it might require
choosing a different TFPG model itself. (ii) Search space
of a global TFPG model could be very large. Hence, we
will need a component-based distributed reasoning approach
where local reasoners generate local hypothesis in individual
components, which could subsequently be improved by a
global reasoner. A distributed and hierarchical TFPG reasoning
scheme is currently being developed to address this problem.
The TFPG model is split into a global model and multiple
regional models where each region model accounts for a
specific sub-system. This distribution of the model, allows
individual regional reasoners to reason about the events in
their sub-system. The failure interactions between the regions
is captured in the Global model, which is responsible for
ensuring that the regional reasoners are kept in a consistent
state relative to one another (in terms of the effects of their
failure propagation interactions).

D. Mitigation

Once the discrepancy source is identified (or faults are
diagnosed), an appropriate mitigation strategy could be em-
ployed. This is done in the first stage of RH architecture
using reflex strategies. These strategies are specified as timed
state machines. They react to fault-events that are generated
by other state machines in the architecture. The strategy can
be reactive or proactive. In the reactive case, it is triggered by
a discrepancy condition that indicates a system state after the
failure has occurred and defines recovery actions. In proactive
case, the condition describes a system state that can lead to a
failure with a high probability and defines preventive actions.

E. Healing

Next stage of RH architectures is associated with system
healing. It refers to a planned reconfiguration of the system at
the global level, which is required if no suitable reflex exists
for a fault-event or when system performance needs to be op-
timized after several reflexes actions. This involves a planning
step that searches over a set of candidate models obtained by
using a set of prespecified reconfiguration operations. This step
is usually multi-objective in nature and is dependent on several
factors such as system goals, resilience to future faults and
performance. Development of such techniques that result in an
optimal and healthy configuration remains an active research
challenge.

III. REFLEX AND HEALING ARCHITECTURE IN
ARINC-653 HEALTH MANAGEMENT

ARINC-653 specification describes the standard Applica-
tion Executive (APEX) that should be supported by safety-
critical real-time operating system (RTOS). It has been pro-
posed to be used as the standard operating system interface
on space missions [8]. Support for health monitoring and
management services is an integral part of this specification.

It should be noted that this specification provides a place for
implementing fault-management strategies without favoring
any particular technique.

TABLE I
MAPPING RH HIERARCHY TO ARINC-653 SPECIFICATION

RH Specification ARINC Specification
Local-level Process-level

First Regional-level Partition-level
Second Regional-level Module-level

Global-level System-level

The Health Monitoring (HM) service, as described in the
ARINC-653 specification is responsible for monitoring and
reporting hardware, application and OS software errors. The
errors could be classified as process level, partition level or
module level errors. A process level error impacts one or more
processes in the partition, or the entire partition. Partition level
errors impact a partition. A module level error impacts all the
partitions within the module. Table I maps the RH hierarchy
to the ARINC specification.

Specification of HM service supports recovery actions by
using call-back functions, which are mapped to specific error
conditions in configuration tables at the partition/ module/
system level. We can extend the functionality of call-back
functions by executing them as actions during the state tran-
sition of a reflex fault-management strategy.

IV. CONCLUSION

Implementing software health management in large safety-
critical systems requires the presence of a scalable architecture
that supports detection, diagnosis and mitigation of software
faults. We believe that the Reflex and Healing architecture
has a good potential to support hierarchical software health
management, if necessary in conjunction with ARINC-653
compliant RTOS.

REFERENCES

[1] R. Rasmussen, “GN&C fault protection fundamentals,” in American
Astronautical Society 31st Annual AAS Guidance and Control Conference,
Breckenridge, Feb 2008.

[2] B. C. Williams, M. Ingham, S. Chung, P. Elliott, M. Hofbaur, and
G. T. Sullivan, “Model-based programming of fault-aware systems,” AI
Magazine, vol. 24, no. 4, pp. 61–75, 2004.

[3] S. Neema, T. Bapty, S.Shetty, and S.Nordstrom, “Developing autonomic
fault mitigation systems,” Journal of Engineering Applications of Artifi-
cial Intelligence Special Issue on Autonomic Computing and Grids, 2004.

[4] R. Sterritt and D. Bantz, “Personal autonomic computing reflex reactions
and self-healing,” Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on, vol. 36, no. 3, pp. 304–314, May
2006.

[5] A. Dubey, S. Nordstrom, T. Keskinpala, S. Neema, T. Bapty, and
G. Karsai, “Towards a verifiable real-time, autonomic, fault mitigation
framework for large scale real-time systems,” Innovations in Systems and
Software Engineering, vol. 3, pp. 33–52, March 2007.

[6] S. A. et al., “RTES demo system 2004,” SIGBED Rev., vol. 2, no. 3, pp.
1–6, 2005.

[7] S. Hayden, N. Oza, R. Mah, R. Mackey, S. Narasimhan, G. Karsai, S. Poll,
S. Deb, and M. Shirley, “Diagnostic technology evaluation report for on-
board crew launch vehicle,” NASA, Tech. Rep., 2006.

[8] N. Diniz and J. Rufino, “Arinc 653 in space,” in Data Systems in
Aerospace, European Space Agency. European Space Agency, May
2005.


	Introduction
	Reflex and Healing Architecture
	Reflex Engine
	Observers: Detecting Discrepancies
	Distributed Diagnosis
	Mitigation
	Healing

	Reflex and Healing Architecture in ARINC-653 Health Management
	Conclusion
	References

