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Abstract

Real-life cyber-physical systems, such as automotive vehicles, building automation systems, and groups of unmanned

vehicles are monitored and controlled by networked control systems. The overall system dynamics emerges from the inter-

action among physical dynamics, computational dynamics, and communication networks. Network uncertainties such as

time-varying delay and packet loss cause significant challenges. This paper proposes a passive control architecture for de-

signing wireless networked control systems that are insensitive to network uncertainties. We describe the architecture for a

system consisting of a robotic manipulator controlled by a digital controller over a wireless network and we show that the

system is stable even in the presence of time-varying delays. We present simulation results that demonstrate the advantages

of the architecture with respect to stability and performance and show that the system is insensitive to network uncertainties.

1 Introduction

1.1 Emerging Challenges

The heterogeneous composition of computing, sensing, actuation, and communication components has enabled a modern

grand vision for real-world Cyber Physical Systems (CPSs). Real-world CPSs, such as automotive vehicles, building au-

tomation systems, and groups of unmanned air vehicles are monitored and controlled by networked control systems and the

overall system dynamics emerges from the interaction among physical dynamics, computational dynamics, and communica-

tion networks. Design of CPSs requires controlling real-world system behavior and interactions in dynamic and uncertain

conditions.

Figure 1 represents a simplified model-based design flow of a CPS composed of a physical plant and a networked control

system. In a conventional design flow, the controller dynamics is synthesized with the purpose of optimizing performance.

The selected design platform (abstractions and tools used for control design in the design flow) is frequently provided by

a modeling language and a simulation tool, such as MATLAB/Simulink [16, 17]. The controller specification is passed

to the implementation design layer through a “Specification/Implementation Interface”. The implementation in itself has

a rich design flow that we compressed here only in two layers: System-level design and Implementation platform design.

The software architecture and its mapping on the (distributed) implementation platform are generated in the system-level

design layer. The results - expressed again in the form of architecture and system models - are passed on through the next

Specification and Implementation Interface to generate code as well as the hardware and network design. This simplified

flow reflects the fundamental strategy in platform-based design [20]. Design progresses along precisely defined abstraction

layers. The design flow usually includes top-down and bottom-up elements and iterations (not shown in the figure).

Effectiveness of the platform-based design largely depends on how much the design concerns (captured in the abstraction

layers) are orthogonal, i.e., how much the design decisions in the different layers are independent. Heterogeneity causes major

difficulties in this regard. The controller dynamics is typically designed without considering implementation side effects (e.g.

numeric accuracy of computational components, timing accuracy caused by shared resource and schedulers, time varying
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Figure 1. Simplified CPS design flow.

delays caused by network effects, etc.). Timing characteristics of the implementation emerge at the confluence of design

decisions in software componentization, system architecture, coding, and HW/network design choices. Compositionality in

one layer depends on a web of assumptions to be satisfied by other layers. For example, compositionality on the controller

design layer depends on assumptions that the effects of quantization and finite word-length can be neglected and the discrete-

time model is accurate. Since these assumptions are not satisfied by the implementation layer, the overall design needs to be

verified after implementation - even worst - changes in any layer may require re-verification of the full system.

An increasingly accepted way to address these problems is to enrich abstractions in each layer with implementation

concepts. An excellent example for this approach is TrueTime [15] that extends MATLAB/Simulink with implementation re-

lated modeling concepts (networks, clocks, schedulers) and supports simulation of networked and embedded control systems.

While this is a major step in improving designers’ understanding of implementation effects, it does not help in decoupling de-

sign layers and improving orthogonality across the design concerns. A controller designer can now factor in implementation

effects (e.g., network delays), but still, if the implementation changes, the controller may need to be redesigned.

Decoupling the design layers is a very hard problem and typically introduces significant restrictions and/or over-design.

For example, the Timed Triggered Architecture (TTA) orthogonalizes timing, fault tolerance, and functionality [8], but it

comes on the cost of strict synchrony, and static structure. In an analogous manner, we propose to encompass passivity into

traditional model-driven development processes in order to decouple the design layers and account for the effect of network

uncertainties.

1.2 Passivity-Based Design

This paper is motivated by the rapidly increasing use of network control system architectures in constructing real-world

CPSs and aims at addressing fundamental problems caused by networks effects, such as time-varying delay, jitter, limited

bandwidth, and packet loss. To deal with these implementation uncertainties, we propose a model-design flow on top of pas-

sivity, a very significant concept from system theory [5]. A precise mathematical definition requires many technical details,

but the main idea is that a passive system cannot apply an infinite amount of energy to its environment. The inherent safety

that passive systems provide is fundamental in building systems that are insensitive to implementation uncertainties. Passive

systems have been exploited for the design of diverse systems such as smart exercise machines [14], teleoperators [12], digital

filters [6], and networked control systems [2, 10, 18].

Our approach advocates a concrete and important transformation of model-based methods that can improve orthogonality

across the design layers and facilitate compositional component-based design of CPSs. By imposing passivity constraints on

the component dynamics, the design becomes insensitive to network effects, thus establishing orthogonality (with respect to

network effects) across the controller design and implementation design layers.

The primary contributions of this paper are three-fold: (i) we present a passive control architecture for a system consisting
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of a robotic manipulator controlled by a digital controller over a wireless network, (ii) we provide analytical results that prove

that our architecture ensures stability of the networked control system in the presence of time varying delays assuming that

the communication protocols does not process duplicate transmissions, (iii) we implement the passive control architecture

using MATLAB/Simulink/TrueTime models and present simulation results for a typical 6 degree-of-freedom robotic arm

controlled by a digital controller over a 802.llb wireless network. Furthermore, the simulation demonstrate that the passivity-

based design offers significant advantages with respect to stability and performance. Specifically, the proposed solution: (a)

allows for lower sampling rates which reduces bandwidth requirements, (b) allows for higher gains which improve settling

times, and (c) ensures robustness to time-varying network delays.

The work presented in the paper demonstrates that passivity can be exploited to account for the effects of network un-

certainties, thus improving orthogonality across the controller design and implementation design layers and empowering

model-driven development. Preliminary results of the approach have been presented in [11]. This paper contains a com-

prehensive description of the proposed architecture, theoretical analysis for stability in the presence of time-varying delays,

and extensive simulation results based on systematic tuning of the control gains. It should be noted that passive structures

offer additional advantages for robustness to finite length representations and saturation [6] but this paper focuses on network

effects which is one of the most significant concerns in the development of CPSs.

2 Background on Passivity

There are various precise mathematical definitions for passive systems [10]. Essentially all the definitions state that the

output energy must be bounded so that the system does not produce more energy than was initially stored. Continuous

(discrete) strictly-output passive and strictly-input passive systems with finite gain have a special property in that they are

Lm
2 (lm2 )-stable. Passive systems have a unique property that when connected in either a parallel or negative feedback manner

the overall system remains passive. By simply closing the loop with any positive definite matrix, any discrete time passive

plant can be rendered strictly output passive. This is an important result because it makes it possible to directly design

low-sensitivity strictly-output passive controllers using the wave digital filters described in [6].

When delays are introduced in negative feedback configurations, the network is no longer passive. One way to recover

passivity is to interconnect the two systems with wave variables. Wave variables were introduced by Fettweis in order to

circumvent the problem of delay-free loops and guarantee that the implementation of wave digital filters is realizable [6].

Wave variables define a bilinear transformation under which a stable minimum phase continuous system is mapped to a

stable minimum phase discrete-time system, and thus, the transformation preserves passivity.

Networks consisting of a passive plant and a controller are typically interconnected using power variables. Power variables

are generally denoted with an effort and flow pair whose product is power. However, when these power variables are subject to

communication delays, the communication channel ceases to be passive which can lead to instabilities. Wave variables allow

effort and flow variables to be transmitted over a network while remaining passive when subject to arbitrary fixed time delays

and data dropouts. If additional information is transmitted along with the continuous wave variables, the communication

channel will also remain passive in the presence of time-varying delays [18]. More recently it has been shown that discrete

wave variables can remain passive in spite of certain classes of time-varying delays and dropouts [2, 21]. In addition, a

method which states how to properly handle time-varying discrete wave variables and maintain passivity has been developed

in [10] and is used in our passive control architecture.

Before discussing our passive control scheme in Section 3 we recall the following definitions in regards to passivity and

Lm
2 -stability. These standard definitions which generalize “input-output” properties of many linear and nonlinear systems

will be particularly useful when discussing the proof for Theorem 2 and understanding Corollary 1. In doing so, we choose

to use the following compact notation.

〈G(u), u〉T
△
=

∫ T

0

G(u(t))Tu(t)dt

‖(G(u))T ‖2
2

△
=

∫ T

0

G(u(t))TG(u(t))dt

We also denote Lm
2e

(U) as the extended Lm
2 space for the function u(t) ∈ U in which U ⊂ R

m as all possible functions for a

given T ≥ 0 which satisfy:

‖(u)T ‖2
2 < ∞.
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In the limit as T → ∞, then u ∈ Lm
2 (U) is any function which satisfies

∫ ∞

0

uT(t)u(t)dt < ∞ or more compactly,‖u‖2
2 < ∞.

Note also that Lm
2 (U) ⊂ Lm

2e(U).

Definition 1 [22] Let G : Lm
2e

(U) → Lm
2e

(U) then for all u ∈ Lm
2e

(U) and all real T ≥ 0:

I. G is passive if there exist a constant β such that (1) holds.

〈G(u), u〉T ≥ −β (1)

II. G is strictly-output passive if there exists some constants β and ǫ > 0 such that (2) holds.

〈G(u), u〉T ≥ ǫ‖(G(u))T ‖2
2 − β (2)

Definition 2 [22, Definition 1.2.3] Let G : Lm
2e

(U) → Lm
2e

(U), it is said to be Lm
2 -stable if

u ∈ Lm
2 (U) =⇒ y = G(u) ∈ Lm

2 (U), (3)

and G is said to have finite-Lm
2 -gain if ∃γq, βq s.t. for all T ≥ 0

u ∈ Lm
2e(U) =⇒ ‖(y)T ‖2 ≤ γq‖(u)T ‖2 + βq. (4)

Any G : Lm
2e

(U) → Lm
2e

(U) which has finite-Lm
2 -gain is Lm

2 -stable.

The following theorem will allow us to complete the proof of our main result (Theorem 2) in which it is shown that the

network control system depicted in Fig. 2 is strictly-output passive for any passive robot (plant).

Theorem 1 [22, Theorem 2.2.14] Let G : Lm
2e

(U) → Lm
2e

(U) be strictly-output passive. Then G has finite Lm
2 -gain.

The definitions chosen for passivity are chosen from the input-output perspective similar to the definition for positive

systems given in [23]. Numerous linear and non-linear systems satisfy the above passivity definition such as positive real

systems and dissipative passive systems [7]. When a dissipative dynamical system can be described by a Hamiltonian (the

sum of kinetic and potential energy, H = T + V) a passive mapping typically exists in which the Hamiltonian serves as

−β [7]. This is illustrated in our discussion of the passive structure of robotic systems. However, there are some limitations

with the study of passive systems. For example, systems which consist of cascades of passive systems (such as two integrators

in series) are not necessarily a passive system.

3 Passive Control Architecture

3.1 Robotic System

Our control strategy takes advantage of the passive structure of a robotic system [19]. The robot dynamics which are

denoted by Grobot(τ(t)) in Figure 2 are described by

τ = M(Θ)Θ̈ + C(Θ, Θ̇)Θ̇ + g(Θ). (5)

The state variables Θ denote the robot joint angles, τ is the input torque vector, M(Θ) is the mass matrix, C(Θ, Θ̇) is the

matrix of centrifugal and Coriolis effects, and g(Θ) is the gravity vector. The inertia matrix M(Θ) = M(Θ)T > 0 and the

matrix C and Ṁ are related as follows:

− (Ṁ − 2C) = (Ṁ − 2C)T =⇒ xT(Ṁ − 2C)x = 0, ∀x ∈ R
n. (6)

It is the skew-symmetry property given by (6) which makes it possible for the robot (with or without gravity compensation) to

achieve a passive mapping. Despite the complexity of robotic manipulators, simple control laws can be used in a number of
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Figure 2. Proposed Wireless Control Scheme

cases. A fundamental consequence of the passivity property is that a simple independent joint continuous-time proportional-

derivative (PD) control can achieve global asymptotic stability for set-point tracking in the absence of gravity [13]. Therefore,

we employ a PD controller but we consider a discrete-time equivalent implementation that communicates with the robotic

system via a wireless network. To compensate gravity, we select as the control command τu = τ − g(Θ). Then the following

supply rate

s(τu(t), Θ̇(t)) = Θ̇T(t)τu(t)

and corresponding storage function

V (Θ̇(t)) =
1

2
Θ̇T(t)M(Θ(t))Θ̇(t)

can be used to show that the robot is a passive dissipative system which is also lossless in which all supplied energy is stored

as kinetic energy in the robot [7]. Mathematically, this lossless property is characterized as follows:

∫ T

0

Θ̇(t)Tτu(t)dt = V (x(T )) − V (x(0)) (7)

∫ T

0

Θ̇(t)Tτu(t)dt ≥ −V (x(0)). (8)

V (x(0)) represents all the available storage energy which can be extracted from the robot at time t = 0.

Furthermore, the robot can be made to be strictly-output passive by adding negative velocity feedback [10]. Therefore,

we select the control command τu to have the following final form

τu = τ − g(Θ) + ǫΘ̇, ǫ ≥ 0. (9)

The gravity compensation and the velocity damping are implemented locally at the robotic system and it can be shown that

the gravity compensated system with velocity damping denoted G : τu 7→ Θ̇ is passive when ǫ = 0 and strictly-output

passive for any ǫ > 0 respectively. Therefore, the following conditions are satisfied:

∫ T

0

[

Θ̇(t)Tτu(t) − ǫΘ̇T(t)Θ̇(t)
]

dt ≥ V (x(T )) − V (x(0)) (10)

∫ T

0

Θ̇(t)Tτu(t)dt ≥ ǫ

∫ T

0

Θ̇T(t)Θ̇(t)dt − V (x(0)). (11)

Note that the velocity damped robot is a strictly-output passive system which is a Lm
2 -stable system. It is the robots’ strictly-

output passive property which allows us to interconnect a strictly-output passive controller over a wireless network using

wave variables such that the overall system remains strictly-output passive and Lm
2 -stable. The proof for Theorem 2 requires

these properties in order to show that digital control system depicted in Fig. 2 is Lm
2 stable.
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3.2 Wireless Control Architecture

Figure 2 depicts the proposed wireless control architecture. The robotic system G : τu 7→ Θ̇ is controlled by a a passive

digital controller Gpc : ė1[i] 7→ τuc[i] using wave variables defined by the bilinear transformation denoted as b in Figure 2.

The communication of the wave variables is subject to time-varying delays incurred in the wireless network that must be

accounted for in order to ensure passivity and stability of the overall closed loop system.

The digital controller Gpc is interconnected to the robot via a passive sampler (PS) at sample rate Ts which converts the

continuous wave variable up(t) to an appropriate scaled discrete wave variable up[i]. Conversely, a passive hold device

(PH) converts the discrete time wave variable vucd[i] to an appropriately scaled wave variable vucd(t) which is held for Ts

seconds.

The inner-product equivelant sampler (IPES) and zero-order-hold (ZOH) blocks at the input of the digital controller are

used to ensure that the overall system Gnet : [Θ̇T

−t(t), τ
T

d (t)]T 7→ [τT

uc(t), Θ̇
T(t)]T is (strictly output) passive. Θ̇−t(t) denotes

a (negative) desired velocity profile for the robot to follow, τuc(t) is the continuous time passive control command, and τd(t)
is a corresponding “disturbance” torque applied to the robots joints.

3.3 Wave Variables

The continuous robot input and output wave variables vucd(t), up(t) ∈ R
m depicted in Figure 2 are related to the

corresponding torque and velocity vectors τucd(t), Θ̇(t) ∈ R
m as follows:

1

2
(uT

p (t)up(t) − vT

ucd(t)vucd(t)) = Θ̇T(t)τucd(t). (12)

The wave variable vucd(t) and velocity measurement Θ̇(t) are considered inputs and the wave variable up(t) and delayed

control torque τucd(t) are considered outputs and are computed as follows:

[

up(t)
τucd(t)

]

=

[

−I
√

2bI

−
√

2bI bI

] [

vucd(t)

Θ̇(t)

]

(13)

where I ∈ R
m×m denotes the identity matrix.

The digital control input and output wave variables upd[i], vuc[i] ∈ R
m depicted in Figure 2 are related to the corre-

sponding discrete torque and velocity vectors τuc[i], Θ̇d[i] ∈ R
m as follows:

1

2
(uT

pd[i]upd[i] − vT

uc[i]vuc[i]) = τuc[i]
TΘ̇d[i] (14)

The wave variable upd[i] and control torque τuc[i] are considered inputs and the wave variable vuc[i] and delayed velocity

Θ̇d[i] are considered outputs and are computed as follows:

[

vuc[i]

Θ̇d[i]

]

=





I −
√

2
b
I

√

2
b
I − 1

b
I





[

upd[i]
τuc[i]

]

(15)

The received wave variables upd[i], vucd[i] are delayed versions of the transmitted wave variables up[i], vuc[i] such that

upd[i] = up[i − p(i)]

vucd[i] = vuc[i − c(i)].

3.4 Passive Sampler and Passive Hold

The passive sampler denoted (PS,Ts) in Figure 2 and the corresponding passive hold denoted (PH,Ts) must be designed

such that the following inequality is satisfied ∀N > 0:

∫ NTs

0

(uT

p (t)up(t) − vT

ucd(t)vucd(t))dt−

N−1
∑

i=0

(uT

p [i]up[i] − vT

ucd[i]vucd[i]) ≥ 0. (16)

7



This condition ensures that no energy is generated by the sample and hold devices, and thus, passivity is preserved.

Denote each jth element of the column vectors up(t), up[i] as upj
(t), upj

[i] in which j = {1, . . . ,m}. An implementation

of the PS that satisfies condition (16) is given by

upj
[i] =

√

∫ iTs

(i−1)Ts

u2
pj

(t)dt sign(

∫ iTs

(i−1)Ts

upj
(t)dt). (17)

in which j = {1, . . . ,m}.

Denote each jth element of the column vectors vucd(t), vucd[i] as vucdj
(t), vucdj

[i] in which j = {1, . . . ,m}. An imple-

mentation of the PH that satisfies condition (16) is

vucdj
(t) =

1√
Ts

vucdj
[i − 1], t ∈ [iTs, (i + 1)Ts]. (18)

We note that the PS effectively scales the feedback velocity from the robot as follows:

Θ̇d[i] ∝
√

TsΘ̇((i − 1)Ts − τ((i − 1)Ts)). (19)

Furthermore, we note that the passive controller Gpc has infinite DC gain, and for a small ǫc > 0 at steady state:

Θ̇[i] ≈ −Θ̇−t[i].

Therefore, Θ̇−t[i] can be related to a discrete time sampled robot velocity trajectory Θ̇t[i] = Θ̇t(iTs) as follows:

Θ̇−t[i] = −
√

TsΘ̇t[i].

3.5 Passive controller

Typically a passive continuous-time PD controller is implemented as

ė1(t) = (Θ̇d(t) + Θ̇−t)

τuc(t) = Kpe1(t) + Kd(Θ̇d(t) + Θ̇−t).

A state-space realization of the controller can be described by

ẋ(t) = Ax(t) + Bu(t) (20)

y(t) = Cx(t) + Du(t). (21)

where A = 0, B = I, C = Kp = KT

p > 0, D = Kd = KT

d > 0} (all matrices are in R
m×m).

To obtain a digital controller, we implement the discrete-time equivalent passive controller Gpc : ė1[i] 7→ τuc[i] computed

from the state-space realization (20,21) with sampling period Ts. The resulting controller is implemented as

x[k + 1] = Φox[k] + Γou[k]

y[k] = KsCpx[k] + KsDpu[k]. (22)

where Ks > 0 is a real diagonal scaling matrix and u[k] = (Θ̇d[k] + Θ̇−t[k]). Details for computing the digital controller

and a theoretical result showing that the controller is strictly-output passive can be found in [9, Section 2.3.1].

4 Stability of the Networked Control System

This section presents the main analytical result that proves the stability of the networked control system. The proof can be

found in Appendix A.
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Theorem 2 For the wireless control architecture depicted in Fig. 2 consists of the passive robot described by (5) and (6) and

the passive digital controller described by (22), if the communication protocol ensures that

∫ NTs

0

Θ̇T(t)τucd(t)dt ≥
(N−1)
∑

i=0

τT

uc[i]Θ̇d[i] (23)

always holds then when

ǫc = ǫ = 0

the system depicted in Figure 2 is passive. Furthermore, if

ǫc > 0, and ǫ > 0

then the system is both strictly-output passive and Lm
2 stable.

Condition (23) can be imposed on the wireless communication protocol by not processing duplicate transmissions of

wave variables [10, Lemma 3-I]. The proof is fairly intuitive in noting that if the controller or plant processes duplicated

transmitted wave variables the system will generate energy which is a non passive operation. Communication protocols such

as TCP are appropriate because they provide an un-duplicated ordered stream of data where as the User Datagram Protocol

UDP protocol is not appropriate (without checking for duplicated transmissions) since checking of duplicated datagrams is

not required. Note that (23) does not require that the data needs to be ordered or for all the data to arrive as is guaranteed by

the TCP protocol, so choosing to use the UDP protocol may be a better choice for transmitting data as long as the control

application is able to drop duplicated datagrams.

Corollary 1 For the wireless control architecture depicted in Fig. 2 in which the robot (Grobot(τ(t))) is replaced by any

passive system satisfying Definition 1-I (with gravity compensation disabled g(Θ(t)) = 0) and the passive digital controller

(Gpc(ė1[i])) satisfies Definition 1-I, if the communication protocol ensures that

∫ NTs

0

Θ̇T(t)τucd(t)dt ≥
(N−1)
∑

i=0

τT

uc[i]Θ̇d[i] (24)

always holds then when

ǫc = ǫ = 0

the system depicted in Figure 2 is passive. Furthermore, if

ǫc > 0, and ǫ > 0

then the system is both strictly-output passive and Lm
2 stable.

5 Evaluation

5.1 Experimental Setup

We consider the Pioneer 3 (P3) arm which is a robotic manipulator built for the P3-DX and P3-AT ActivMedia mobile

robots. The P3 Arm has two main segments, the manipulator and the gripper. The manipulator has five degrees of freedom

and the gripper has an additional one. Figure 3 shows the home position of the P3 arm including the locations for the centers

of gravity using the point mass assumption. The simulation model includes three main subsystems. The dynamic model

of the robotic arm is described by (5) and simulated via a Simulink block from the “Robotics Toolbox for MATLAB” [4].

The simulated robot is provided gravity compensation and velocity damping as described in Section 3. To evaluate the

performance of the passive digital control scheme over a wireless network, we use the “TrueTime Toolbox 1.5” [15]. We

consider that the controller is interconnected to the robotic arm via an 802.llb wireless network. The network subsystem

contains three nodes implemented as TrueTime kernel blocks. The first node (node 1) implements the network interface of

the digital controller and the second node (node 2) the interface for the P3 arm. A third network node (node 3) is used as

a disturbance node in order to incur time-varying packet delay as described in [3]. For our simulations, we use the 802.11b
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A2 = 0.160m A1 = 0.068m

D4 = 0.137m

A5 = 0.113m

m3

m2

m1

m5

m4=0

Figure 3. Pioneer 3 Arm

wireless block in TrueTime with the throughput is set to 11 Mbps, which is the theoretical limit of 802.11b, and the remaining

parameters set to the default values. The controller wireless node and robot node are 10 meters apart while the disturbance

node is 5 meters away from both. The packet size contains a 120 bit header plus preamble and a payload of 384 bits required

to fit 6 double precision floating point values.

The controller subsystem contains two components: a block from the robotics toolbox (jtraj) which provides the reference

velocity trajectory for the robotic arm to follow and a discrete state-space model of the controller. The controller receives as

input the reference trajectory along with the actual robot velocity and computes the torque control command for the robot.

To demonstrate the advantages of the passive control architecture, we performed two sets of experiments, one using a non-

passive control architecture and one using the passive control scheme presented in Section 3. In all the experiments, the

reference provided to the controller commands the robot to go to a position of [1 0.8 0.6 0.4 0.2 0] from the start position of

all joints equal to zero.

5.2 Non-passive Control Architecture

In the first set of experiments, we consider a non-passive control scheme. To implement the digital controller, we dis-

cretize the continuous-time PD controller described by Eqs. (20)-(21) using a standard zero-order hold operation [1]. The

digital controller communicates with the robot directly without using wave variables. The gravity compensation and velocity

damping are implemented locally as in the passive control scheme.

Since we are using a zero-order hold operation to convert the continuous controller to a digital controller and are applying

a zero-order hold to the input of the robotic plant we can take working control gains for the passive framework kp−passive and

kd−passive and scale them using the following set of formulas:

α = 2T 2
s

kp = αkp−passive

kd = αkd−passive.

In spite of our best efforts to scale the gains, the non-passive system requires ǫ > .8 in order to add enough damping to

stabilize the nominal system. As ǫ is increased the system will begin to exhibit steady state error, so we chose to limit ǫ = 1
for the non-passive system. Figure 4 compares the passive system (kp−passive = 321, kd−passive = 82, ǫ = .5) to the non-

passive system (kp = 1.6, kd = .41, ǫ = 1.0). System responses are provided for both the nominal case and when subject to

moderate time varying delays (disturbance= 0.5). Due to the added phase lag from the uncompensated zero-order hold, the

overall non-passive system has little flexibility in adjusting its gains. Therefore, only the non-passive response for Ts = 0.05
seconds could be evaluated.

To simulate the system in the case of time-varying delays, we incorporate the disturbance node. The sampling period

is kept constant (0.05 sec), but the amount of disturbance packets on the network varies. The disturbance node samples a

uniformly distributed random variable X[k] ∈ [0, 1] every 0.01 seconds. If X[k] > d in which d is denoted as the disturbance

parameter, a disturbance packet is sent out over the network. Figure 5 is a graph of the network delay between the controller

node and the robot node caused by the disturbance traffic when d = 0.5. For comparison, Figure 6 depicts the corresponding

network delay when d = 1 and Ts = .05 seconds. Figure 4 shows that the time-varying delays (when d = 0.5) have

destabilized the robotic arm in the case of the non-passive control scheme.
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Table 1. Passive Control Parameters Summary.

Ts τt ǫ kp kd Figures

.05 2.0 1.0e−6 321.0 81.7 9

.05 2.0 0.5 321.0 81.7 4, 7, 10, 8

.10 3.0 0.5 80.2 40.9 8

.20 4.0 1.0e−6 20.1 20.4 11

.20 4.0 0.5 20.1 20.4 12, 8
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Figure 7. Joint 1 response (Ts = .05, ǫ = 0.5, d = 1.0).

5.3 Passive Control Architecture

The second set of experiments involves the proposed passive control architecture. In order to choose an appropriate set of

continuous time gains kp and kd we focus our attention on joint 1 which is subject to the largest (changes of) inertia J as can

be deduced from Figure 3.

Gpm(s) =
1

Js
(25)

Similarly we approximate the controller to be of the form

Gc(s) =
kp + kds

s
. (26)

Next using basic loop shaping techniques we desire the system to have a crossover frequency (ωc s.t. 20 log10(|Gpm(jωc)Gc(jωc)|) =
0 dB), in which ωc = ωn

N
. ωn = π

Ts
is denoted as the Nyquist frequency. Therefore, the control gains can be computed based

on a desired phase margin 0 < φ ≤ 90 (degrees) as follows:

τ =
(φ − 40)

5ωc

kp =
ω2

c

J(τωc + 1)

kd = kpτ.

Although the phase margin will never exceed 90 degrees, you can still calculate appropriate gains for kp and kd for φ > 90
using the above straight line approximation. Due to the highly non-linear nature of our system (with ǫ = 1.0e−6) we adjusted

J to closely match the expected rise time given a 1 second trajectory since overshoot was still quite a significant component

of the system response. All simulations given are for φ = 80 degrees, N = 2, and J = 2.93 kg-m2. Next, we chose

an appropriate trajectory time (τt) which minimized overshoot and settling time. Finally, we evaluated the effectiveness of

increasing ǫ while maintaining tracking. Since, ǫ and ǫc serve primarily to show that the overall system is Lm
2 -stable we kept

ǫc = 1.0e−6 for all cases, the remaining system parameters are summarized in Table 1.
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Figure 8. Joint 1 response (Ts = {.05, .10, .20}, ǫ = 0.5, d = 0.0).
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Figure 9. Joint 1 response (Ts = .05, ǫ = 1.0e−6, d = {0, 0.5, 1.0}).
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Figure 10. Joint 1 response (Ts = .05, ǫ = 0.5, d = {0, 0.5, 1.0}).
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Figure 11. Joint 1 response (Ts = .20, ǫ = 1.0e−6, d = {0, 0.5, 1.0}).
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Figure 12. Joint 1 response (Ts = .20, ǫ = 0.5, d = {0, 0.5, 1.0}).
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Figure 8 shows that as the sampling period is increased the overall system requires a larger trajectory time in order

to minimize overshoot. Next, Figures (7, 10, 12) clearly show that by increasing ǫ = 0.5 the passive system achieves

faster settling times while exhibiting greater insensitivity to time varying delays when compared to Figures (9, 11) in which

ǫ = 1.0e − 6. This robustness to time-varying delays stems from the passivity constraints imposed on all the components of

the networked control architecture and the damping effects of ǫ.

6 Conclusions and Future Work

The paper presents a passive control architecture that offers advantages in building CPSs that are insensitive to network

uncertainties, thus improving orthogonality across the controller design and implementation design layers and empowering

model-driven development. We have presented an architecture for a system consisting of a robotic manipulator controlled

by a digital controller over a wireless network and we have proved the stability of the networked control system. Finally, we

have evaluated the system using simulations results based on a detailed model that offers significant advantages especially

in the presence of time-varying delays. Our future work focuses on three major directions: theoretical methods that provide

an effective way to interconnect multiple passive systems and controllers, an integrated end-to-end tool chain for the model-

based design of CPSs based on passivity, and experimental studies to evaluate the proposed design methodology.
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A Proof for Theorem 2

In order to discuss the proof we will use the following short-hand notation:

∫ NTs

0

fT(t)g(t)dt
△
= 〈f, g〉NTs

CT inner product

N−1
∑

i=0

fT[i]g[i]
△
= 〈f, g〉N DT inner product

〈f, f〉NTs

△
= ‖(f)NTs

‖2
2

〈f, f〉N
△
= ‖(f)N‖2

2.

Note that in order to distinguish continuous time from discrete time the integral is taken to the limit NTs while the summation

is taken to N − 1.

Proof 1 The PS and PH satisfy (16) which can be compactly written as

‖(up)NTs
‖2
2 − ‖(vucd)NTs

‖2
2 ≥ ‖(up)N‖2

2 − ‖(vucd)N‖2
2. (27)

Integrating both sides of (12) and substituting into (27) results in

〈Θ̇, τucd〉NTs
≥ ‖(up)N‖2

2 − ‖(vucd)N‖2
2. (28)

By not processing duplicate wave variables transmissions we can enforce that

‖(up)N‖2
2 − ‖(vucd)N‖2

2 ≥
‖(upd)N‖2

2 − ‖(vuc)N‖2
2 = 〈Θ̇d, τuc〉N

(29)

will always hold. Therefore, we are confident that we can satisfy (23) which can be more compactly written as

〈Θ̇, τucd〉NTs
≥ 〈Θ̇d, τuc〉N . (30)

The passive gravity compensated robot satisfies (11). Denoting V (x(0)) as βr for the robot and βc > 0 to account for

non-zero initial conditions for the passive controller. Then the robot satisfies

〈Θ̇, τu〉NTs
≥ ǫ‖(Θ̇)NTs

‖2
2 − βr, (31)

and the controller satisfies

〈τuc, ė〉N ≥ ǫc‖(τuc)N‖2
2 − βc. (32)

We recall that

τucd(t) = τd(t) − τu(t), and (33)

Θ̇d[i] = ė[i] − Θ̇−t[i]. (34)

Substituting (33) into the left side of (30) and (34) into the right side of (30) results in

〈Θ̇, τd〉NTs
− 〈Θ̇, τu〉NTs

≥ 〈ė, τuc〉N − 〈Θ̇−t, τuc〉N
〈Θ̇, τd〉NTs

+ 〈Θ̇−t, τuc〉N ≥ 〈Θ̇, τu〉NTs
+ 〈ė, τuc〉N . (35)
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Substituting (31) and (32) into (35) results in

〈Θ̇, τd〉NTs
+ 〈Θ̇−t, τuc〉N ≥

ǫ‖(Θ̇)NTs
‖2
2 + ǫc‖(τuc)N‖2

2 − (βr + βc)
(36)

The passive sampler and hold blocks insure that

N−1
∑

i=0

τuc[i]
TΘ̇−t[i] =

∫ NTs

0

τuc(t)
TΘ̇−t(t) and (37)

Ts

N−1
∑

i=0

τuc[i]
Tτuc[i] =

∫ NTs

0

τuc(t)
Tτuc(t)dt. (38)

From (37) and (38) the sampling and hold operation satisfies

〈τuc, Θ̇−t〉N = 〈τuc, Θ̇−t〉NTs
and (39)

Ts‖(τuc)N‖2
2 = ‖(τuc)NTs

‖2
2. (40)

Substituting (39) and (40) into (36) results in

〈y, u〉NTs
≥ ǫs‖(y)NTs

‖2
2 − βs. (41)

in which

y = [Θ̇T, τT

uc]
T, u = [τT

d , Θ̇T

−t]
T

ǫs = min {ǫ, ǫc

Ts

}, βs = βr + βc.

Therefore, (41) satisfies Definition 1-I for passivity when

(ǫc, ǫ) ≥ 0 and either ǫc = 0 or ǫ = 0 =⇒ ǫs = 0.

Furthermore (41) satisfies Definition 1-II when

ǫc > 0 and ǫ > 0 =⇒ ǫs > 0

in order for the system to be strictly-output passive. Furthermore, from Theorem 1 when

ǫc > 0 and ǫ > 0 =⇒ ǫs > 0

then the system is not only strictly-output passive but also Lm
2 -stable.
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