Modeling of supply chain: a multi-agent approach

Surya Dev Pathak, Greg Nordstrom, Susumu Kurokawa

School Of Engineering, Vanderbilt University

Nashville, TN 37212.

Abstract

This paper describes the development of an agent-based software system for assisting in decision-making regarding supply chain management and the efficient and effective use of Electronic Data Interchange (EDI) in the automobile industry. Such a system can be applied to different types of industries with some domain specific modifications. The core architecture is built around the concept of a software-based agent that is programmed internally to interact with other external agents in a predefined manner. We are developing a MIC-based supply chain management-modeling environment. This environment will allow domain experts to create models of the software agents to simulate, and control, the actual on-line negotiation processes. The modeling environment will allow modeling of agent behavior, as well as defining agent-to-agent interaction scenarios.
1. Introduction
As companies continuously seek to provide products and services to customers faster, cheaper, and with better quality, the Supply Chain (SC) system is becoming recognized as a strategically critical aspect of the firm. SC encompasses all of those activities associated with moving goods from the raw material stage through to the end user stage. This includes sourcing and procurement, production scheduling, order processing, inventory management, transportation, warehousing, and customer service. Importantly it also embodies the information systems so necessary to monitor all of these activities [1]. In this paper we discuss the development of an agent-based software system for automating the negotiation process between buyers and sellers (manufacturers and suppliers) and assisting in decision-making regarding supply chain management. The distributed system of autonomous agents functions as an organization, floating bids about contracts, gathering and analyzing responses, formulating bid strategies based on global and local conditions, and presenting their results to management.
2. Model Integrated Computing

A particularly appealing technology for developing such a multi-agent-based supply chain modeling system is Model Integrated Computing (MIC). MIC systems are multi-aspect in nature, allowing detailed sub-system design to occur within the system-wide framework [2]. This is accomplished by enforcing various domain-specific design rules – rules that are specified by the tool designer in the form of domain-specific constraints. These constraints ensure that a MIC-based design environment will produce only valid design time models. Additionally, because MIC design environments behave in ways consistent with standard domain practice, both system-level and component-level programmability can be safely and reliably extended to end users (e.g. domain experts) while ensuring robust, reliable generated software that will integrate seamlessly into the overall system [3]. Because the models constructed are higher-level representations, the end user can make changes in the models, without having to change the software employed in the integration solution, and thus are capable of evolving the software system over a period of time.
3. Software System Requirements

We are developing a MIC-based supply chain management-modeling environment. This environment will allow domain experts to create models of the software agents used to simulate and control the actual on-line negotiation processes. The modeling environment allows modeling of agents, their behavior (i.e. interaction protocols), as well as defining agent-to-agent interaction scenarios (e.g. how agents negotiate across supply tier boundaries). Each participant (i.e. supplier and manufacturer) in the supply chain will be represented by a software agent on a network. We allow end-users to model the behavior of the agents such that they can interact with other agents to accomplish specified tasks. Software agents are designed such that they can be configured as suppliers, manufacturers, or both, giving the end user the maximum amount of flexibility, such as cases where second tier suppliers become first tier suppliers, and vice versa.

4. Software System Architecture

The system we are developing requires two major components. We need an agent building application package, which allows us to define agents, their interaction protocols, and their environment. And we needed to do all of this graphically. ZEUS [5] is an agent building toolkit developed by British Telecom for building agent-based applications. ZEUS also provides a form-based graphical interface, but due to some shortcomings in it’s modeling processes, discussed below, we decided to use the Generic Modeling Environment (GME) [4] as our graphical modeling tool.

4.1 ZEUS

The ZEUS Agent Building Toolkit is an integrated environment for the rapid development of collaborative agent applications [5]. ZEUS is entirely implemented in Java (JDK2) and runs on all major hardware platforms.

Each ZEUS agent consists of a definition layer, an organizational layer and a coordination layer.

Message from

 Other Agents

 Sensors Effectors

Fig 1: The Conceptual Structure of a ZEUS Agent

 The definition layer comprises the agent's reasoning (and learning) abilities, its goals, resources, skills, beliefs, preferences, etc. The organization layer describes the agent's relationships with other agents, e.g. what agencies it belongs to, what abilities it knows other agents possess, etc. At the coordination layer the agent is modeled as a social entity, i.e. in terms of the coordination and negotiation techniques it possesses. Built on top of the coordination layer are the communication protocols that implement inter-agent communication, whilst beneath the definition layer is the application programmer's interface (API) that links the agent to the physical realizations of its resources and skills [5].

The ZEUS toolkit allows a designer to build an application based on the following methodology [5]:

1) Problem Analysis

The purpose of the initial analysis stage is to model and understand the application problem. By the end of this stage the developer will have identified the agents required for the application.

2) Problem Design

This stage involves translating the role responsibilities identified for each of the candidate agents into the agent-level problems they represent, and then deriving appropriate solutions

3) Application Realization

This process consists of several sub-stages:

Ontology Definition: – Before implementing any agents the developer must define the application ontology: the declarative knowledge that represents the significant concepts, attributes, and values within the application domain.

The ontology definition process in ZEUS is restrictive in certain ways. It forces a designer to design agents, which have a complete knowledge of the entire ontology. This may not be required in all situations, as agents might exist which require only the knowledge of a sub-domain, rather than the entire domain.

Agent Definition: - Here the developer specifies the attributes of each agent: - what tasks it can perform, the initial resources available, and the agent's planning abilities. ZEUS provides a form-based interface for modeling the ZEUS agents. The designer enters all the details. It does not provide a way to depict the complete scenario pictorially i.e. how the agents are connected to each other, their hierarchies etc.

Task Definition: - Agent tasks consume certain resources to produce their products, with each task lasting for a finite time period. This stage defines tasks in terms of their costs, prerequisites, products, constraints and preconditions.

Agent Organization: - During this stage the relationships between agents are defined using a visual editor. This enables the developer to specify acquaintances and attributes of each relationship, such as superiority and any abilities the acquaintance is believed to possess. If the numbers of agents are large, then such relationships can be difficult to visualize.

Agent Coordination: - This phase uses another visual editor to equip each agent with the strategies necessary for social interaction. The applicability of these strategies is dependent on the status and role of the agent. The ZEUS tool-kit provides a set of strategies, such as contract-net and client-server.

ZEUS provides a set of strategies as mentioned above. But ZEUS does not allow the designer to specify his/her own strategies/interaction protocols. The user has to use the existing ones. This is a severe restriction.

Agent Implementation: - This stage is performed after the ZEUS Generator has produced the agent source code. All external actions, of which tasks or database accesses are the best examples, are created by the ZEUS tool-kit in the form of callback functions. This final stage is the only time during the development process where program code needs to be written.

Once the application specific code has been supplied the agents can be compiled and executed. The ZEUS Visualization tools can then be used to obtain a graphical depiction of the agent society.

4.2 Graphical Modeling Environment

The centerpiece of the MIC infrastructure is the Graphical Modeling environment (GME) [4]. The GME supports the modeling task in MIC and is generic in the sense that it has no direct knowledge of the particular entities, relationships, attributes, and constraints of the models to be constructed. Rather, it is supplied this knowledge through a metamodel, or “model of the models”. The metamodeling is also done using the GME and is based on industry standard UML and OCL. The GME is configurable, which means it can be "programmed" to work with vastly different domains. Another important feature is that GMEs are generated from formal modeling environment specifications. This allows a particular GME to be efficiently designed and implemented, and ensures that it can be quickly and safely evolved as modeling requirements change. Some important features of the GME are:

· It is used primarily for model-building. The models take the form of graphical, multi-aspect, attributed entity-relationship diagrams. The semantics of a model is not the concern of GME – that is determined later during the model interpretation process.

· It supports various techniques for building large-scale, complex models. The techniques include: hierarchy, multiple aspects, module interconnection, parts and model references.

· It contains one or more integrated model interpreters, which perform translation and analysis of models currently under development.
From the above discussion we see that we can use the GME for generating user defined interaction protocols. It also allows the designer to model agents with knowledge about only a sub-domain and not the entire domain. It also provides a mechanism to graphically define the agents and their attributes and then generate the definition file required by ZEUS environment with the help of a model interpreter.

4.3 System Architecture

 Graphical Visualization

 Model Interpreters

Fig 2 Software System Architecture

The core of the system is the ZEUS Agent Builder Toolkit. GME forms a top layer over ZEUS and allows the designer to develop graphical models for the agents, ontology for the problem domain, and the interaction protocol between the agents. Once the designer has defined the agents, ontology and the interaction protocols, the respective model interpreters can be invoked on each set of models to generate the Agent Definition file, the ontology files etc., required by ZEUS. ZEUS Package also requires that the initial resources for each agent. The resource initialization is done within ZEUS.

5. Graphical Modeling of Ontology and Protocols

Ontology definition and interaction protocol definition are two important aspects that have to be realized in a ZEUS environment.

5.1 Ontology Editor

Currently an Ontology editor for the ZEUS environment has already been built with GME [6]. This graphical editor allows the designer to graphically model the ontology definition and then generate the ontology file required by ZEUS with the help of a model interpreter. The current GME Ontology editor allows a designer to develop ontology definitions, which need not represent the entire environment. It allows the designer to build agents, which have knowledge about a particular sub-domain and not the entire domain.

5.2 Protocol Implementation

A GME interface also exists for defining the interaction protocol between the agents. This is shown in Fig 3. This interface allows the user to define his/her own interaction protocols, which was not possible to do in ZEUS. The designer can drag in different components, like agents, their roles etc, fill in their attributes, and connect the components to each other, to model the interaction protocols. As shown in Fig 4, the designer can attach pieces of Java code in the attribute field of some of the components. For a complete reference to the existing environment, the reader is referred to [6].

[image: image1.png]ContractNet]

=8| x|
Fie Edt Options View Window Help EEY
=31 v O Y W P [y = Rl = A
[Nane [Coroctis._[Frtoel rtarce Aspect [Stasierconnecton = [Patocdls
= | aton
% Agent
o
Agentl
ModifiedInitiator
b2
Responder
pro
Ac 2 ref ac
gen Fe Suc
int
ModifiedResponder et e
Attributes of Modifiediniiator pre——
JavaPackage i

Paticipant Type. riator

Global Variables

[boclean bRiediect = fase;

Create Java il

==

For Help, press F1

EDIT [100% [Protocal [12:52 FM

Fig 3 Interaction Protocol Editor

[image: image2.png]ME - ZeusIPModels - [ContractNet]

=18 x|
Fie Edt Options Vew Widaw_Help E
S8 v sl=(e plelt T Elx Smelse]
[Nane [Coroctis._[Frtoel [Fetance Aspect [Groph Layout =][Prtocals
= | o
= A
= ContractNetlhitiatorGraph Graph
o ModifiedCantractNetinitiatorGraph
— er suc
buy_drect — nitiatorDone
=
Agentl Modifiedinitiator & x
! JavaPackage eusisiip
CheckOutput Code Text
LocaDstuct =
Is = (LocaDStmuctirput;
(Core DEBLIGI 3, "SPRINKLE - testing s esul
S e DERlal 3 "SPANKLE o= b))
o e geCis(rstance{ newVecta)
Agent? [Vector any = Vectarls.any
| ModifiedResponder ‘(,[‘EME{WE/”, ey
uy
COr |Core DEBUG 3, "SPRINKLE - st
ModifiedContractNetResponderGraph ore. (3. inside the ty..")

For Help, press F1

[Boolean b = (Booleanjany fistElemen()
e DEELG(2 "SPHINKLE -bis 5}

lcatch(Exception ex]

ICore.DEBUG(3, "SPRINKLE - exception getfing the fist eleme|
etunn false:

==

EDIT [100% [Pratocal [12:54 FM

Fig 4 Example of code attachment

6. Agent Definition

As discussed in previous sections the designer graphically models agents using the GME. The agents can be connected to each other to specify a particular relationship. Also agents can contain other agents, depicting hierarchy (see Fig 6). A good example for such a situation is to consider a case of an organization with a common interface agent representing the organization on the external network (Fig 5). The interface agent encapsulates the society of agents that exists within the organization (Fig 6). The designer enters all the relevant information in the models as shown below in Fig 5. Once the necessary details have been captured, the designer can invoke the model interpreter to generate the agent definition file, required by ZEUS Agent builder toolkit.

 [image: image3.png]4'o GME - GMEL - [Environme L] EEIES
Fle Edt Options View Window Help 18]]
S(E| v s[m(@ oot |7 Sm<ls?
[y Name: [Erviormens —[ervtonment—[tance Aspec [pspec ~ [gentCazaoy
|
=
I
— Ontlogy
| Acaame
Einp Ooutl
PrtocoNane u
Second Tier Supplier E—
Aeceaion Poer Moo ot
o Ageniame
o e
i
FirstTier Supplier
Agentoon
Einp Ooutl
Second Tier Supplier . Visualizerl
Concel
2 £
o mropoTe

For Help, press F1

out

inp

Second Tier Supplier

FirstTier Supplier

Infoport

&

Fascilitator]

EDIT [100% |agentCategory 3:13 PM

Fig 5 Agent Definition Editor

[image: image4.png]ME - Demo

[Manufacturer]

Fie_Edt_Options View Window Help

=l81x]

AR EEEE

s[w SIels|?|

Narme: [Farufochaer

(=2

=181

otarce Aspect s

~ [[RgeriCategory

[E[0ld]s] |®

For Help, press F1

o3 o

PurchaseAgent
2} o) > oo Out
Input
InterfaceAgent Sales
o3 o
ManufacturingAgent
Output

EDIT [100% |AgentCategory 3:30 PM

Fig 6 Hierarchy within an organization

Fig 7 and Fig 8 depicts how initial facts required for a task and the tasks themselves can be defined in the current GME environment.

[image: image5.png]ME - [PurchaseAgent]
File_Edt_Options View Window Help

=l81x]
=181

Make Vehicles

Tope
1d
Atibutes

Modfiers

S8 v sl 2ot |w@ v ST<le]
[y Name Puchassigens_[agent [tance Aspect [Task. ~ [gentCazaoy
|
=]
=
=
By
InitialFacts

attributes of InitilFacts'

Camry

2234

g

i

=

For Help, press F1

EDIT [100% |agentCategory 3:19 PM

Fig 7 Initial Facts for an agent

[image: image6.png]2ot | T wfw
E-

ProducedFacts

GetResourcel

attributes of FinalOutput

GetResource2
FinalOutput

GetResourced

Fig 8 Task Definition for an agent

Another advantage of the above environment is that it allows the end user to create his/her own agent environments and test the developed strategies before actually implementing them. Thus the current environment also serves as a simulation tool.

7. Implementation of Supply Chain Strategies
The task implementation stage of ZEUS, mentioned in the earlier section, allows a designer to specify his/her own strategies for the agents to follow. There are many standard strategies that have been developed to work with different agent application [10]. We have developed a preliminary five-stage decision-making model (Fig 9) [11]. This model drives the Supply Chain strategy development for our system. The five stages of this model, although depicts a logical flow of progression, do not necessarily flow in chronological order. In fact, a firm may be operating simultaneously in any or all of the five stages depending on its existing situation.

Fig 9 Five decision stages for integrative supply chain
We are developing strategies based on game theory and classical economic concepts [7]. The degree of rationality awarded to an agent in this is different from conventional game theory agents, where they are assumed to be hyper-rational [7]. In our system we are following the approach that agents are not perfectly rational and fully informed about the world in which they live. They base their decisions on fragmentary information, they have incomplete models of the processes they are engaged in, and they may not be especially forward looking. Still, the agents are not considered to be completely irrational. To a certain extent they can adjust their behavior based on what they think the other agents are going to do, and these expectations are generated endogenously by information about what other agents have done in the past [8]. The strategies being developed also take into account that players on the network are not fixed, but are drawn from a larger population of potential players. Also, the probability of individual interactions between players depends on exogenous factors, such as where they live, and more generally on their proximity in some suitably defined social space [8].

We are still in the process of developing these strategies in the form of textual requirements and mathematical formulations. Once the requirements are drawn up, they will be converted to executable Java code and supplied to the ZEUS environment.

8. Conclusion
MIC presents itself as a very good solution for modeling agent-based distributed behavior, giving the end user complete freedom and flexibility to configure the agent behavior as required by the user’s particular local conditions and domain of interest. In this paper we have explained the system we are developing by integrating the existing ZEUS Agent Building toolkit and the Generic Modeling Environment. We are also investigating the use of agent negotiation simulation tools based on GME, which can simulate the agent behavior. These simulators can be configured directly from the agent-based modeling environment. This paper discusses our progress to date, presents the prototype system and recommends future research activities.

9. Future Work

Deliberative agents take into account not only the present situations but also the history of its past interactions. All such interactions can be stored and can be considered as a very large history space, theoretically infinite, limited by the hardware resources. As part of future research activities we would like to investigate the use of Ordered Binary Decision Diagrams (OBDD) [9] for the history space pruning for a particular agent. Ordered Binary Decision Diagrams are a new type of data structure for representing Boolean functions. The interactions of an agent can be represented as Boolean values. OBDD’s can be used along with some constraint satisfaction algorithms to prune the history space, so that the agent takes into account the history of interactions that are in tune with it’s current supply chain strategies. We are also developing a database for storing the agent’s interactions. Agents can then query the database for unknown situations and thus extend its knowledge base. OBDD algorithms can be used to search for particular conditions in the database also.

Acknowledgements
We would like to acknowledge the MICANTS project [6] group at Institute for Software Integrated System, for pitching in with valuable help for developing this system. We would also like to acknowledge the ZEUS Project group at British Telecom UK, whose ZEUS Agent Builder toolkit has proved to be an excellent one for developing Multi- Agent Systems. We would also like to thank Dr. Allison Watts from the Economics department, Vanderbilt University.

References
[1]
Francis J Quinn, “ What’s the Buzz”, Logistics Online.

http://www.manufacturing.net/magazine/logistic/archives/1997/log0201.97/02supply.htm
[2]
Sztipanovits J., Karsai G.: "Model-Integrated Computing", IEEE Computer, pp. 110-112, April 1997.

[3]
Nordstrom G.: "Metamodeling - Rapid Design and Evolution of Domain-Specific Modeling Environments", Ph.D. Dissertation, Vanderbilt University, 1999.

[4]
Ledeczi A., Maroti M., Karsai G., Nordstrom G.: "Metaprogrammable Toolkit for Model-Integrated Computing", Proceedings of the Engineering of Computer Based Systems (ECBS) Conference, pp. 311-317, Nashville, TN, March, 1999.

[5]
Collis J., Nudumu D., “The ZEUS Agent Building Toolkit”, Intelligent Systems Research Group, BT Labs, Release 1.01, September 1999, British Telecommunication plc.

[6]
“Model Integrated Computing and Autonomous Negotiating Teams for Autonomous Logistics (MICANTS)”, http://www.isis.vanderbilt.edu/
[7]
Young Peyton H., “Individual Strategy and Social Structure”, pp.3-5, Princeton university Press, New Jersey, 1998.

[8]
Young Peyton H., “Individual Strategy and Social Structure”, pp.5-6, Princeton university Press, New Jersey, 1998.

[9]
Bryant Randal E., “Symbolic Manipulation of Boolean Functions Using a Graphical Representation”, 22nd Design and Automation Conference, Las Vegas, NV, June 1985.

[10]
Sandholm T., “Agents In Electronic Commerce: Component Technologies for Automated Negotiation and coalition formation”; Autonomous agents and Multi-Agent Systems, 3,73-96(2000).

[11]
Kurokawa, S. (1997) "Make-or-Buy in R&D: Small Technology-Based Firms in the U.S. and Japan,” IEEE Transactions on Engineering Management

Communication Layer

Coordination Layer

Organizational Layer

 Definition Layer

Interface Layer

GME

Ontology Interaction Agent Task

Definition Protocols Definition Definition

ZEUS Agent Builder

 Resource Initialization

ZEUS Visual Interface

SC maint.

EDI

selection

SC selection

Supplier selection

Make or Buy

