
A Performance Interference-aware Virtual Machine Placement Strategy for
Supporting Soft Real-time Applications in the Cloud

Faruk Caglar, Shashank Shekhar and Aniruddha Gokhale
Department of Electrical Engineering and Computer Science

Vanderbilt University, Nashville, TN 37235, USA
Email: {faruk.caglar, shashank.shekhar, a.gokhale}@vanderbilt.edu

Abstract—It is a standard practice for cloud service
providers (CSPs) to overbook physical system resources to
maximize the resource utilization and make their business
model more profitable. Resource overbooking can, however,
lead to performance interference between the virtual machines
(VMs) hosted on the physical resources thereby causing perfor-
mance unpredictability for applications hosted in the VMs. As
applications with soft real-time requirements get increasingly
hosted in cloud environments, performance jitter caused due
to resource overbooking will be unacceptable to these applica-
tions. Addressing these conflicting requirements needs a careful
design of the placement strategies for hosting soft real-time
applications such that the performance interference effects are
minimized while continuing to allow resource overbooking.
These placement decisions cannot be made offline because
run-time workload changes and satisfying the priorities of
collocated VMs may require VM migrations, which requires
an online solution. This paper presents a machine learning-
based, online placement solution to this problem that learns
from a publicly available trace of a large data center owned
by Google. Our approach first classifies the VMs based on
their historic mean CPU and memory usage, and performance
features. Subsequently, it learns the best patterns of collocating
the classified VMs by employing machine learning techniques.
These extracted patterns are those providing the lowest perfor-
mance interference level on the specified host machines making
them amendable to hosting soft real-time applications while still
allowing resource overbooking.

Keywords-virtual machine placement, cloud computing, de-
ployment algorithm, performance interference and QoS.

I. INTRODUCTION

Resource overbooking [1], [2] is used as a means to
increase resource utilization in servers of a data center and
making the services more profitable in cloud computing. The
idea behind resource overbooking in the cloud data centers is
to commit more resources, such as CPU and memory, than
are actually available on the physical host machines. The
intuition behind the overbooking strategy is that users often
request more resources than their applications actually need
thereby providing an opportunity to the cloud provider to
overbook. Considering this trend, contemporary hypervisors,
such as Xen [3], KVM [4] and VMware ESX Server [5],
provide the necessary support to make the overbooking
possible.

At the same time, we are witnessing an increasing trend
towards hosting soft real-time applications, such as air-
line reservation systems, virtual reality applications, Netflix
video streaming and Coursera online digital learning, on
the cloud. These applications demand more stringent per-
formance requirements, e.g., being sensitive to latency and
response times. The resource overbooking used by cloud
providers may incur negative impact on their performance
because multiple colocated VMs caused by resource over-
booking can trigger significant performance interference [6],
[7], [8], [9] for applications hosted on their respective VMs.

Although there exists prior work on performance iso-
lation [9] among VMs colocated on an overbooked host
machine, it is still a challenging task to shield the VMs from
its neighbors due to the nature of resource sharing, resource
overbooking practices employed, and the fluctuating work-
load characteristics in the cloud. Therefore, an application
running on one VM might impact the performance of
another application running on a separate VM on the same
host machine. Specifically, network-intensive and compute
intensive applications might be affected considerably.

Since performance interference is caused because of how
one VM interacts with another colocated VM, addressing the
performance interference challenges that stem from resource
overbooking and satisfying the response time requirements
of soft real-time applications will require effective placement
of VMs on host machines by carefully considering the actual
workload characteristics of the VMs. Due to the changing
dynamics of the workloads on the VMs and also because
VMs often tend to migrate from one physical machine
to another for a variety of reasons, traditional and offline
heuristics such as bin packing will not be applicable for
interference-aware VM placement in cloud computing. Thus,
in this paper, we have focused on a VM placement strategy
considering not only the performance interference effects but
also the workload characteristics of VMs.

To assure that latency-sensitive soft real-time applica-
tions receive their required Quality of Service (QoS) while
allowing cloud service providers the ability to overbook
resources, we present an online VM placement technique
based on machine learning and made available in a middle-
ware called hALT (The harmonious Art of Living Together).

Our solution is organized along two contributions. First, we
analyze a trace log of a production data center published
by Google [10]. This analysis provides us insights on how
colocation of VMs resulting from a migration from one ma-
chine to another can cause undue performance interference
despite the target machine having more capacity. Using these
insights, we use machine learning to learn about the desired
VM placement patterns and use these as a means of making
runtime placement decisions.

The rest of this paper is organized as follows: Section II
describes relevant related work comparing it with our contri-
butions; Section III describes our findings from the analysis
of the Google production data; Section IV presents the
system architecture for our machine learning-based solution;
and Section V presents concluding remarks alluding to
future work.

II. RELATED WORK

This section presents related work on VM placement and
solutions to address performance interference, and compares
it with our solution.

Q-Clouds [6] is a QoS-aware framework to manage per-
formance interference in the cloud. It works on the principle
of provisioning additional resources to alleviate performance
interference. It applies an online feedback mechanism to
build a model for capturing interference interactions and use
it for resource management. Moreover, the system employs
a staging server to determine the resource requirements and
leaves a head-room i.e., slack resource for performance man-
agement. This makes under utilization of resources inherent
to the system even though it also utilizes an application
called “Q States” to maximize resource utilization. The
frequent resource allocation due to feedback mechanism can
also cause performance overhead for the hypervisor.

Zhu et al. [11] proposed an interference model which
predicts application QoS. It considers a time-variant inter-
dependence amongst the different levels of resource con-
tention. It develops a resource usage profile as a vector
of matrices for different performance metrics and then ap-
plies a consolidation algorithm to accommodate applications
to minimize interference and achieve QoS. In contrast to
this work that focuses on developing simplistic models
for complex resource utilization relationships, we use k-
means clustering to group the VMs in different classes
and then apply machine learning to determine performance
interference.

TRACON [12] is a task and resource allocation frame-
work for data-intensive applications. It develops three inter-
ference prediction models: weighted mean method model,
linear model and non-linear model using statistical machine
learning for reasoning. It then employs an interference-aware
scheduler for reducing performance interference. The focus
of this technique is data-intensive applications whereas our
approach is focused on CPU-based applications. Moreover,

the training data used by TRACON is generated with a
workload generator compared to ours which utilizes traces
from a production data center.

In another related work, Kambadur et al. [13] studied the
performance interference in data centers due to resource
contention. They have also used the Google production
workloads. In this work, the authors have measured the
performance interference, tried to identify interference rela-
tionships and classes but have not demonstrated its applica-
tion. We have leveraged some of the insights and parameters
identified in the work.

In [14], Moreno et al. proposed a method for interference-
aware virtual machine placement by analyzing its impact
on energy efficiency in data centers. The combined interfer-
ence score utilized in this work requires the knowledge of
maximum throughput of each workload running on a host
machine when mixed with other workload types. This might
require employing some applications to reside on VMs to
populate this information from the workload which may
result in high overhead when a host runs numerous different
types of workloads. In contrast, hALT discovers and ex-
tracts the best VM patterns by employing machine learning
algorithms to predict future performance interference level.
hALT also differs from that work with its VM classification
features by using performance.

The modern day hypervisors like Xen and KVM used
for virtualization do not provide an effective solution for
performance isolation. Even though resources are sliced
and allocated to different VMs, they are still shared. The
isolation across VMs provided by hypervisors reduces the
visibility of application performance from one VM to other,
thus making it difficult to triage the performance issues.
The problem is further aggravated as the host machines get
overloaded by VMs. This performance interference has been
demonstrated by several works [15], [8], [6]. The LXC Linux
Container [16] is another virtualization technology which
promises to provide better performance. It avoids hypervisor
overhead by running the guest operating systems within the
same host kernel. However, linux containers suffer from
resource contention and security issues. Thus, we need a
solution which can minimize the performance interference
and provide better results, which is the focus of our work
in hALT.

III. ANALYZING PERFORMANCE IMPACT OF VIRTUAL
MACHINE MIGRATION AND COLLOCATION

This section presents results from analyzing a trace log
of Google’s data center [10] revealing how the performance
of a VM is affected when it is migrated to a different host
machine in the data center. This information provides key
insights into making decisions on what factors to consider
in placing a VM such that performance interference can be
minimized and soft real-time applications can obtain more
predictable performance.

To analyze the performance interference in a production,
large-scale data center, we chose the usage trace published
by Google [10]. The trace contains a dataset for about 12,000
distinct machines collected over a 29 day period in the month
of May, 2011. The size of the data is huge. Hence, we have
utilized only three days of data, which turned out to be
sufficient to study the performance interference problem.

Each machine in the cluster was defined by their CPU and
memory capacity. There were three distinct CPU capacities
and five levels of memory capacities. Having said that, the
values provided are relative and we do not know what the
actual number for CPU or memory it corresponded to. For
our analysis, the relative values are adequate since we work
with normalized data.

According to the Google usage trace, a task or job is
migrated into another host machine if either the actual host
machine is overloaded, or because of a high priority task
or job entering the system, or any other issue related to the
physical host machine, such as a failure. Table I shows how
these event types are represented in the cluster trace, where

t1: time interval between when Task A is scheduled to
run on Host A till it is evicted from Host A and migrated
to Host B.

t2: time interval between when Task A is scheduled to
run on Host B till it is finished on Host B.

t3: overall time interval for Task A and Task B (3 days).

Table I
SOME EVENT TYPES IN CLUSTER TRACE

Event Name ID Description
SCHEDULE 1 A task or job is scheduled to

run on a host machine
EVICT 2 A task or job is descheduled on

a host machine
FINISH 4 A task or job has completed its

task successfully

All of the resource usage and request measurements (e.g.,
CPU and memory) are normalized between zero to one by
scaling them to the largest capacity of the resource in the
cluster [10]. The “Cycles Per Instruction” (CPI) [9] metric
is used as a performance metric since it represents the
application response time well enough for compute-intensive
applications. Based on [9], the lower the CPI value, the
better the performance is. Thus, performance values in all
the figures in this section are represented by 1/CPI.

How co-located tasks running on the same physical host
machine and heterogeneous host machines might affect the
performance of the soft real-time applications and how this
scenario should be carefully considered at VM placement
algorithms are analyzed for two different tasks in the cluster
trace.

In this paper, a task in the cluster trace is considered as a
VM and the resource overbooking ratio is the value obtained

by dividing the total amount of resources requested by the
capacity of the physical host machine. An overbooking ratio
greater than one obviously indicates that actual resource de-
mand exceeds the physical host machine’s resource capacity.

The “Total number of tasks” column in Table II does not
include the tasks which have zero mean CPU and memory
utilization values for the tasks shown in Table III. It was
assumed that those are just abnormal data (i.e., outliers) or
binaries were being copied on host machine [10].

As seen in Table III, Task A has highest CPU utilization
and quite high memory utilization before migration while
the resource requests remain same before and after the
migration. The CPU utilization has high fluctuation before
migration, but remains low after migration. The reason for
over utilization values is because of the usage of exceeding
the allocated resource [10].

Figure 1. CPU, Memory Usage, and Performance of Task A on Host A
and Host B

Figure 2. Overall and Time Limited Overbooking Ratios of Host A and
Host B

The CPU usage, memory usage, and performance of Task
A is depicted in Figure 1. Task A was initiated to be migrated
(i.e., EVICTED event type in cluster trace) from Host A to
Host B at the beginning of t2 as shown by a sudden drop
at resource usage values in Figure 1. As seen in Table II,

Table II
HOST MACHINE INFORMATION FOR ONLY THE TIME INTERVAL WHEN THE TASK BEING ANALYZED RESIDES

Name ID Total Num-
ber of Tasks

CPU Utilization
(Mean)

CPU Utilization
(Stdev)

Memory
Utilization
(Mean)

Memory
Utilization
(Stdev)

CPU Capac-
ity

Memory Ca-
pacity

Host A 294823364 9 %6.02 %13.31 %4.64 %6.14 0.5 0.2493
Host B 4874238388 19 %3.15 %5.70 %3.64 %4.80 1 1

Table III
TASK INFORMATION BEFORE AND AFTER THE MIGRATION FOR THE TIME INTERVAL SPECIFIED

Name Job ID Task Index CPU Utilization
(Mean)

CPU Utilization
(Stdev)

Memory
Utilization
(Mean)

Memory
Utilization
(Stdev)

CPU
Request

Memory Re-
quest

Task A
(before)

6276036736 12 %102.38 %34.57 %72.62 %3.39 0.1814 0.06165

Task A
(after)

6276036736 12 %103.91 %10.94 %74.45 %2.45 0.1814 0.06165

the capacity of the Host A is lower than the capacity of
Host B. When the task is migrated to Host B from Host A,
the performance of Task A dropped about %17. As seen in
Table II, the number of tasks on Host B is much more than
Host A. Host A and Host B have 9 and 19 tasks, respectively.
One of the reasons for the bad performance on Host B is
highly likely because of the performance interference caused
by CPU contention.

As depicted in Figure 2, this could also be seen by
overbooking ratios of hosts during t1 and t2. Host A has
mean overbooking ratios of 1.81 for CPU and 2.56 for
memory during t1 which considerably exceeds the Host
A’s resource capacity. These two values are also higher
than the mean overbooking ratios of Host A during t3.
The mean overbooking ratios for Host A during t1 is
also apparently greater than the machine’s mean CPU and
memory overbooking ratios of 1.55 and 2.01, respectively,
during t3. This could be interpreted as even though the
requested resource and mean utilization values remain the
same, and Host B has higher capacities, more number of
tasks on Host B and more resource demand than the actual
resource capacity by 1.23 and 1.15 may have triggered more
performance interference and resource contention between
tasks.

More importantly, these analyses results indicate that
there might be performance differences in soft real-time
applications on different host machines even though allo-
cated capacity is identical and resource usage pattern is
similar. Therefore, VM placement decisions must be con-
ducted by considering performance interference and resource
contention on the host machine. Moreover, latency-sensitive
applications must be placed into that host machine where
they will receive their desired application performance.

IV. SYSTEM ARCHITECTURE FOR VIRTUAL MACHINE
PLACEMENT

This section presents hALT’s system architecture that
supports soft real-time systems in the cloud to be minimally
affected by performance interference.

A. Rationale Behind the Techniques Leveraged

Our solution approach first classifies the Google usage
dataset into meaningful categories using heuristics and then
applies machine learning to find best VM collocation pat-
terns. The classification is performed using a k-means clus-
tering algorithm [17]. k-means is an unsupervised learning
algorithm that helps to classify the VMs in different classes
based on their performance. It provides good results with
large datasets such as the one used in our approach. The
Silhouette [18] method is used for graphically representing
objects within the cluster. It fits well with the k-means clus-
tered data and is employed in our approach to analyze the
VM clusters. To capture the non-linear relationships between
performance interference amongst the VMs and the large set
of input factors for various classes of VMs, we have applied
back propagation-based artificial neural network [19]. It is
a supervised machine learning technique used to predict
the performance interference which is otherwise difficult to
estimate in our complex model.

B. System Architecture

The architectural diagram of our proposed system hALT
is depicted in Figure 3. hALT comprises three main com-
ponents: (1) virtual machine classifier, (2) back propagation
neural network, and (3) decision maker for placement. hALT
utilizes CPU usage, memory usage, and performance infor-
mation of the VMs as inputs to the virtual machine classifier
component. The virtual machine classifier classifies VMs
into specific classes by employing the k-means algorithm
and the silhouette method. These classes of VMs are then
used by the back propagation neural network to extract best
VM patterns, which lead to minimal performance interfer-
ence on the host machines. After the neural network is
trained, if and when a VM migration is requested, then hALT
finds the aptly suited host machine which has the minimal
performance interference. Details of each hALT component
are explained below.

Figure 3. hALT architectural diagram

C. Virtual Machine Classifier

The virtual machine classifier component classifies VMs
based on their mean CPU, memory usage, and performance
metrics. Only the tasks having CPU usage more than 25%
are considered for the classifier since the performance
metric we use is “cycles per instruction” and it is well
correlated with the response times of compute-intensive
applications [9].

Total number of tasks we utilize for the classification
is 1001 which are the representatives of compute-intensive
tasks for three days of cluster trace. To decide the best
number of clusters, the silhouette method is employed for
the cluster data we utilize. The higher the silhouette value is,
the better the classification is. As seen in Table IV, the best
cluster number for the dataset is found as 6 with a maximum
mean silhouette value of 0.8051 over other cluster numbers.
Even though there were some negative silhouette values for
the six clusters, they could be considered as outliers in the
dataset.

Table IV
SILHOUETTE VALUES OF CLUSTERS

Number of Cluster Mean Silhouette
Value

3 0.7129
4 0.7427
5 0.7560
6 0.8051
7 0.7372
8 0.6577
9 0.6212
10 0.6170

D. Back Propagation Neural Network

hALT relies on the historic data to model and capture
the relationships between input and output parameters to
discover the patterns of VM combinations and the result-
ing degree of performance interference. A two-layer, feed-
forward, back propagation artificial neural network (ANN)
depicted in Figure 4 is trained to capture the relationships
on how the different types and numbers of VMs impact the
performance interference.

Figure 4. Two Layer Back Propagation Artificial Neural Network for
Performance Interference Level Prediction

Input parameters for the ANN are follows:
N1 = Total number of VMs of Class 1
N2 = Total number of VMs of Class 2
N3 = Total number of VMs of Class 3
N4 = Total number of VMs of Class 4
N5 = Total number of VMs of Class 5
N6 = Total number of VMs of Class 6
C = Mean CPU utilization of the host machine
M = Mean Memory utilization of the host machine
ANN predicts the performance interference level. The

performance interference level is the mean performance
difference of a specified VM before and after a VM is
migrated on a host machine. The reason to choose number
of VMs of each class is to capture the relationships between
the different VM combinations along with host machine
resource utilization levels and discover the regularities how
these patterns affect the performance interference level on a
host machine.

E. Decision Maker

When a VM placement request is made or if a VM must
be migrated, the decision maker component is responsible
to iterate over all the host machines in the cluster, run the

trained ANN, and return the host machine info which will
provide the lowest performance interference level. The VM
can then be placed in the machine despite the cloud provider
utilizing overbooking strategies.

V. CONCLUSION

This paper presented our preliminary work on a perfor-
mance interference-aware virtual machine placement algo-
rithm named hALT that is used as an online algorithm for
VM placement to support the QoS requirements of soft real-
time, cloud-hosted applications. The approach comprises
two steps. First, a large, trace log of a production data
center from Google is analyzed to glean away key insights
into performance interference caused due to VM collocation.
These insights are used in finding an aptly suited host
machine for VMs to minimize the performance interference
effects and reduce the performance degradation in soft real-
time applications. To achieve this goal, a classification-based
VM placement algorithm was designed by utilizing feed
forward, back propagation neural network.

In this work, we considered only the compute-intensive
applications because of the performance metric available in
the cluster trace log. A more generic performance metric
such as response time and throughput which might be
representative of a wide range of applications in the cloud
is planned as future work. Additionally, the middleware that
provides a pluggable framework to utilize this algorithm
is still in preliminary stages of development. To that end,
we will conduct the experimental study at our in-house
private cloud to precisely analyze only the performance
interference effects of VMs to each other and convert it
to a pluggable component. Additionally, analyzing hALT’s
energy efficiency effects in data center is left as future work.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation NSF SHF/CNS Award CNS 0915976 and NSF
CAREER CNS 0845789. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

REFERENCES

[1] I. S. Moreno and J. Xu, “Neural network-based overal-
location for improved energy-efficiency in real-time cloud
environments,” in Object/Component/Service-Oriented Real-
Time Distributed Computing (ISORC), 2012 IEEE 15th Inter-
national Symposium on. IEEE, 2012, pp. 119–126.

[2] S. A. Baset, L. Wang, and C. Tang, “Towards an under-
standing of oversubscription in cloud,” in Proceedings of
the 2nd USENIX conference on Hot Topics in Management
of Internet, Cloud, and Enterprise Networks and Services.
USENIX Association, 2012, pp. 7–7.

[3] T. Abels, P. Dhawan, and B. Chandrasekaran, “An overview
of xen virtualization,” 2005.

[4] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori,
“kvm: the Linux virtual machine monitor,” in Proceedings of
the Linux Symposium, vol. 1, 2007, pp. 225–230.

[5] A. Muller and S. Wilson, “Virtualization with vmware esx
server,” 2005.

[6] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: man-
aging performance interference effects for qos-aware clouds,”
in Proceedings of the 5th European conference on Computer
systems. ACM, 2010, pp. 237–250.

[7] O. Tickoo, R. Iyer, R. Illikkal, and D. Newell, “Modeling
virtual machine performance: challenges and approaches,”
ACM SIGMETRICS Performance Evaluation Review, vol. 37,
no. 3, pp. 55–60, 2010.

[8] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, and C. Pu, “Un-
derstanding performance interference of i/o workload in vir-
tualized cloud environments,” in Cloud Computing (CLOUD),
2010 IEEE 3rd International Conference on. IEEE, 2010,
pp. 51–58.

[9] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale,
and J. Wilkes, “Cpi2: Cpu performance isolation for shared
compute clusters,” in Proceedings of the 8th ACM European
Conference on Computer Systems, ser. EuroSys ’13. New
York, NY, USA: ACM, 2013, pp. 379–391.

[10] C. Reiss, J. Wilkes, and J. Hellerstein, “Google cluster-usage
traces: format+ schema,” Google Inc., White Paper, 2011.

[11] Q. Zhu and T. Tung, “A performance interference model for
managing consolidated workloads in qos-aware clouds,” in
Cloud Computing (CLOUD), 2012 IEEE 5th International
Conference on. IEEE, 2012, pp. 170–179.

[12] R. C. Chiang and H. H. Huang, “Tracon: Interference-aware
scheduling for data-intensive applications in virtualized envi-
ronments,” in Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and
Analysis. ACM, 2011, p. 47.

[13] M. Kambadur, T. Moseley, R. Hank, and M. A. Kim, “Mea-
suring interference between live datacenter applications,” in
Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis. IEEE
Computer Society Press, 2012, p. 51.

[14] I. S. Moreno, R. Yang, J. Xu, and T. Wo, “Improved energy-
efficiency in cloud datacenters with interference-aware virtual
machine placement,” in Autonomous Decentralized Systems
(ISADS), 2013 IEEE Eleventh International Symposium on.
IEEE, 2013, pp. 1–8.

[15] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and
C. Pu, “An analysis of performance interference effects in
virtual environments,” in Performance Analysis of Systems &
Software, 2007. ISPASS 2007. IEEE International Symposium
on. IEEE, 2007, pp. 200–209.

[16] (2013, Sep.) lxc linux containers. [Online]. Available:
http://lxc.sourceforge.net/

[17] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-
means clustering algorithm,” Journal of the Royal Statistical
Society. Series C (Applied Statistics), vol. 28, no. 1, pp. 100–
108, 1979.

[18] P. J. Rousseeuw, “Silhouettes: a graphical aid to the in-
terpretation and validation of cluster analysis,” Journal of
computational and applied mathematics, vol. 20, pp. 53–65,
1987.

[19] R. Hecht-Nielsen, “Theory of the backpropagation neural
network,” in Neural Networks, 1989. IJCNN., International
Joint Conference on. IEEE, 1989, pp. 593–605.

