
A Rapid Testing Framework for a Mobile Cloud
Infrastructure

Daniel Balasubramanian, Abhishek Dubey, William R. Otte, William Emfinger, Pranav S. Kumar, Gábor Karsai

ISIS / Vanderbilt University, Nashville, TN 37212
Email: {daniel.a.balasubramanian, abhishek.dubey, w.otte,

william.a.emfinger, pranav.s.kumar, gabor.karsai}@vanderbilt.edu

Abstract—Mobile clouds such as network-connected vehicles
and satellite clusters are an emerging class of systems that
are extensions to traditional real-time embedded systems: they
provide long-term mission platforms made up of dynamic clusters
of heterogeneous hardware nodes communicating over ad hoc
wireless networks. Besides the inherent complexities entailed by
a distributed architecture, developing software and testing these
systems is difficult due to a number of other reasons, including
the mobile nature of such systems, which can require a model
of the physical dynamics of the system for accurate simulation
and testing. This paper describes a rapid development and
testing framework for a distributed satellite system. Our solutions
include a modeling language for configuring and specifying an
application’s interaction with the middleware layer, a physics
simulator integrated with hardware in the loop to provide the
system’s physical dynamics and the integration of a network
traffic tool to dynamically vary the network bandwidth based
on the physical dynamics.

I. INTRODUCTION

Mobile clouds are an emerging class of distributed, real-
time embedded systems comprised of multiple mobile nodes
communicating over ad hoc wireless networks. These systems
have two main characteristics. The first is the mobile nature
of the hardware nodes, meaning that their physical location
changes over time. The second is that the physical resources
located on the hardware are shared between the nodes over the
wireless network. There are several advantages that this type
of architecture entails. By sharing resources among nodes, a
hardware malfunction in one node can be mitigated by using
the hardware provided by another node. This provides a fault
tolerant platform ideal for long-term missions in remote areas.

Realizing the full potential of such mobile cloud sys-
tems necessitates a software application platform that supports
secure and fault-tolerant sharing of resources: processors,
storage, communication links and devices. The system must
enable secure, on-demand collaboration between applications
operated by different organizations. Clearly, the economic
viability of these systems depends on the ability to rapidly as-
semble reliable distributed applications from reusable software
components, including those sourced from various vendors.

Our team recently built the operating system (OS) and mid-
dleware layers for a particular type of mobile cloud platform:
a distributed satellite cluster [1]. The individual satellites form
the mobile hardware nodes, and individual units of hardware,
such as cameras and sensors, are shared between the satellites

over the wireless network. The OS provides a core set of low-
level abstractions to user-level applications, such as temporal
process isolation and security, and the middleware provides a
higher level set of abstractions on top of the OS.

In order to validate that the OS and middleware layers
provide the expected level of service to user-level applications,
we needed a testing framework that was as close to the actual
distributed satellite system as possible. In particular, we needed
the ability to check whether mixed criticality applications run-
ning on the system all met their process scheduling deadlines.
This was challenging for the following reasons.

1) We didn’t have access to the actual hardware onto
which the OS, middleware and applications would
eventually be deployed.

2) The physical dynamics (the flight path) of the system
affects the distance between nodes, which in turn
affects network quality, such as bandwidth.

3) Applications have to interact with and configure
several aspects the middleware.

The first challenge above (not having access to the real
hardware) meant that we had to find a suitable way to
emulate the actual hardware. This raised question whether cost-
effective software virtual machines (VMs) would be sufficient
to accurately emulate process scheduling and network links,
or if dedicated hardware would be required.

The second challenge stems from the mobility of these
nodes. Because the nodes (e.g., a cluster of satellites) form
a dynamic physical system, the physical position of nodes
will change over time depending upon the orbital mechanics
and the resulting flight path. The changing distance impacts
the quality of the radio signal, which affects the available
bandwidth distributed applications can use. Therefore, a testing
framework needs to incorporate a ‘simulation’ of the physical
dynamics in order to test the applications and see if the
fluctuating quality of the network affects the communication
between applications, which in turn can affect whether they
meet their scheduling deadlines.

The third challenge, configuring the middleware, is an issue
in any middleware-based platform for embedded systems. The
configuration space for middleware can be very large and the
configuration files themselves rather low-level, and hence a
testing framework needs a way to hide this complexity.

This paper describes the testing framework we developed
for quickly prototyping applications running on our OS and



middleware that addresses each of the challenges above. Our
main contributions are (1) the description of our hardware
infrastructure and how it integrates a physical dynamics sim-
ulator to emulate the movement of the hardware nodes, (2)
integration of a network traffic shaper to account for the vary-
ing network characteristics, and (3) model-based methods for
configuring an application’s interaction with the middleware.
We feel that these techniques are general enough to be reused
by any distributed embedded system facing similar challenges.

The remainder of this paper is structured as follows.
Section II gives background information on the OS, middle-
ware and target platform. Section III describes our technical
solutions. Section IV demonstrates how the pieces of our
testing framework interact using an example. Related work
is presented in Section V, and we conclude in Section VI.

II. BACKGROUND

Recently, we built the operating system and middleware
layers for a fractionated spacecraft system. Together, the
operating system and middleware are referred to as DREMS:
Distributed Realtime Managed System [1]. The operating
system provides a unique temporal partitioning scheduler and
a novel communication mechnanism, which together help
to ensure that mixed criticality processes can be scheduled
deterministically and their performance and information flows
can remain isolated. The middleware abstracts the lower-
level features of the operating system by providing high-
level interfaces and configuration mechanisms for application
communication, including network quality of service (QoS).

P1P2 P3 P1P2 P4 P1P2 P3 P1P2

Hyperperiod

Major frame
Minor frame

Fig. 1. A Major Frame. The four partitions (period,duration) in this frame
are P1 (2s, 0.25s), P2 (2s, 0.25s), P3 (4s, 1s), and P4 (8s, 1.5s).

Figure 1 shows an example of how the temporal par-
titioning for processes works. As shown in the Figure, a
partition specifies two things: a duration, which tells how long
a partition should run, and a period, which tells how often the
partition should run for an amount of time equal to duration.
The operating system provides direct support for this process
model by implementing a temporal partition scheduler, which
guarantees temporal isolation between processes belonging to
different partitions. This process scheduling model is similar
to that described by the ARINC-653 [2] standard for avionics
computing. While most tasks perform application functions,
some tasks are critical for system management. To reduce
the execution latency for critical system tasks, the platform
supports grouping these tasks into a different criticality level,
which are not subject to temporal partitioning and can execute
as soon as possible. Lastly, the platform supports best effort
tasks that are scheduled only when there are no runnable tasks
from the partitions and critical category.

The network QoS requirements for an application specify
the quantity of network resources an application requires

during different periods of its execution. This can include
metrics such as bandwidth (available bit rate) and latency
(time interval for communication). A testing framework for
this system must be able to validate that the network QoS
requirements of each application are met while also satisfying
the scheduling demands of both temporally partitioned and
time-critical processes. With a static deployment where the
network infrastructure is fixed, this is a fairly straightforward
problem. However, the unique challenge here is the mobile
nature of the system: the distance between the nodes changes
over time. As the distance between the nodes changes, the
radio signal degrades and it takes longer to transfer the
messages, which lowers the effective bandwidth. This has a
huge impact on the way in which applications are tested.

III. TESTING FRAMEWORK

This section presents our technical solutions to the chal-
lenges described above in three parts. The first part describes
the testing hardware/infrastructure. The second part describes
how we integrated the physical system dynamics and network
quality control. The third part describes our model-based
methods for configuring the middleware.

A. Simulation hardware

In order to provide a flexible and low cost (i.e., free)
environment in which developers could test and evaluate
both infrastructure (i.e., the operating system, middleware,
and deployment infrastructure) and applications, we developed
a virtualized simulation platform that could be run on a
normal developer’s workstation. This virtualized environment
was built using the Quick EMUlator (QEMU) [3], a free and
open source hosted hypervisor that emuates a wide variety of
processor architectures. QEMU requires as parameters a binary
kernel image and a root file system, which contains all of
the necessary executables, libraries and configuration scripts
necessary for the operating system to boot. As the root file
system will likely be modified by the running DREMS OS,
each QEMU instance requires a private copy of the root file
system. Using QEMU, we were able to configure our build
system to launch a configurable number of instances of the
DREMS OS that are able to communicate via network links
provided by Virtual Distrubuted Ethernet (VDE) [4], a software
defined networking infrastructure that allows virtual network
topologies.

Fig. 2. Virtualized Simulation

This virtualized infastructure proved to be an extremely
convenient and effective tool for developers to quickly evaluate
the functionality of the various pieces of the infrastructure
and application programs. Moreover, this allowed us to easily



and inexpensively set up automated continuous integration
services that automatically build and ran a test suite for the
entire DREMS stack. However, we quickly noticed that the
price for this convenience and flexibility was a tremendous
lack of determinism: testing and debugging timing critical
software gave very inconsistent results. This resulted from two
sources. First, we did not have precise control of when the
host operating system would schedule the QEMU instances to
run, and how the execution would be interleaved — especially
of multi-node tests/experiments — would change from one
execution to another. Second, there was a wide disparity of host
hardware used by infrastructure and application developers:
problems that would manifest for a developer running the
simulation environment under Linux hosted on bare metal
might not manifest for a developer running the same under
Linux hosted inside a VM.

As a result of the non-deterministic behavior of the virtu-
alized simulation infrastructure, we created a multi-node hard-
ware simulation infrastructure. This multi-node environment
consisted of several fanless single board computers with a 1.6
GHz Atom N270 processor and 1 GB of RAM each. Each
node had a single Compact Flash (CF) card that acted as the
hard disk drive. These computers were connected via a private
gigabit ethernet switch and utilized software traffic shaping,
described in Section III-B. In order to configure these systems,
the CF card was initially imaged with the same root file system
and kernel image generated for the virtualized infrastructure.
This is a lengthy process that requires manually manipulating
the CF card, but fortunately can be avoided (presuming that the
node is capable of booting) by copying over future software
updates using SSH.

B. Network

For accurate simulation of distributed systems and their
applications, dedicated hardware must provide not only accu-
rate, deterministic timing, but also accurate emulation of the
expected network behavior that the system will experience.
This section will explain (1) why accurate network emulation
is important, (2) what makes network emulation challenging
and (3) our solution to system prototyping with accurate
network emulation.

Because mobile clouds, and more generally, embedded
systems, are increasingly utilizing mobile ad-hoc networks, the
communication of both the applications and infrastructure is
subject to the dynamics and variations of the network, which
is further influenced by the node mobility. As the network be-
comes an increasingly important resource for systems and their
applications, accurate reliable emulation of the network must
be incorporated into the system simulation. Without this inte-
gration, the system simulation would be incomplete and would
provide a partial perspective on the system’s performance.
Further, an application’s timing and execution are increasingly
dependent on the stimuli provided by information from the
network. Just as real hardware must be used to accurately
simulate application processor timing characteristics, so too
must a real network be used to acccurately simulate application
network timing and execution performance.

Simulating the system’s network is a complex task for two
main reasons: (1) the complex physical dynamics of the system

itself, and (2) the configuration of the network control. One of
the key factors in determining the network resources available
at a point in time is the positions of the nodes, which vary
with time. By incorporating the physical dynamics along with
the physical characteristics of the network transceivers into a
simulation engine, part of the problem is solved. However,
the network characteristics must still be simulated, and the
information from this simulation must be fed into the node
network emulation hardware. There are several choices for
simulating the dynamics and also for network control, and thus
the integration of the two is not simple.

We evaluated several options for configuring the network
emulation: (1) network emulation in a (programmable) switch
or router connecting the nodes, (2) network emulation on each
node itself or (3) network emulation on a dedicated network
emulation node. Network emulation on the switch or router
is an excellent choice for performance reasons, as it has the
least processing overhead. However, the configuration of the
switch or router is not easy to set up and is not easy to control
remotely or dynamically in a programmatic fashion. Further,
the addition of nodes to the network may require the use
of more switches which must also be configured, increasing
the complexity. Network emulation on each system node is
a valid distributed approach to simulating the network and is
easier to configure than a switch, but may be difficult due
to the requirement of porting the network emulation software
to the hardware and the infrastructure that the system uses.
Additionally, network emulation in this manner will again
share processing time with the application code and therefore
impact the application’s timing accuracy.

Using a dedicated network emulation node combines the
ease of configuration of network emulation on each node
with the performance and application independence of running
the network emulation on a programmable switch. The node
configuration for this setup merely requires assigning to each
node: (1) a physical IP address to use on the interface, (2)
a virtual IP subnet that the applications will use that is not
assigned to any interface, (3) configuring each node to use the
network emulation node as its default gateway. The network
emulation node is then configured to act as a router and
run network address translation (NAT) from the virtual IP
addresses to the physical IP addresses. This NAT-ing ensures
that all application traffic must pass through the network
emulation node.

To actually perform the network emulation on the node,
each network link in the system must be controlled according
to the system’s physical and network dynamics. This traffic
control requires both the use of special network emulation
programs and the integration with the physical dynamics
simulation. For providing the network emulation, we evalu-
ated the following options: (1) using Linux with its built-in
functionality such as the Traffic-Cop (TC), (2) using Linux
with Dummynet - a special network emulation program, and
(3) using BSD (FreeBSD) with Dummynet1 built-in. Using
Linux’s built-in traffic control features proved non-ideal sim-
ply because of the difficulty in mapping the application-
level system network characteristics, i.e. bandwidth, latency,
and packet loss, into the parameters exposed by the tool.

1http://info.iet.unipi.it/ luigi/dummynet/



Fig. 3. Physical and virtual connections between the system simulation nodes,
the network emulation node and the physical dynamics simulation node.

Dummynet, which exists for both Linux and BSD, solves
this problem by exposing a clean, easy to use interface for
configuring and controlling network links based on their link
bandwidth, the link latency and the link packet loss ratio.
However, the Dummynet port to Linux is incomplete and is not
completely integrated with the operating system. Therefore, we
configured our network emulation node with FreeBSD because
Dummynet (and its underlying ip-firewall framework) is built
into the operating system and is easier to configure.

By running Dummynet on FreeBSD, we can use simple
scripts to set up the network by using Dummynet to configure
all of the subnet’s traffic to be NAT-ed and then apply link
profiles to each virtual link of the system. This configuration
separates the NAT functionality from the network emulation
functionality while keeping the relevant parameters in simple
to use configuration files. However, the network emulation is
incomplete without including the information from the physi-
cal system dynamics simulation. Using the Orbiter space-flight
simulation2 to simulate a cluster of satellites, we can run a
script on the network emulation node to periodically query the
satellite positions from Orbiter. This script can then calculate
the appropriate link characteristics between each node (based
on the inverse-square law and configurable parameters) and
apply them to the network traffic through Dummynet. Based
on the calculations of our system’s capabilities, the system’s
network bandwidth on each link varies from 10 kbps to 3
Mbps, which are data rates easily emulated by Dummynet on
the gigabit ethernet links connecting the nodes.

Using this simulation system (shown in Figure 3), extend-
ing the network with an additional node requires only minor
modifications to a small number of configuration files. For
our setup, a corresponding satellite needs to be added to the
Orbiter simulator so that its dynamics are simulated, and the
configuration file on the network emulation node which lists
the nodes in the system needs to be updated. Because our
design and development infrastructure automatically creates
the OS images and configures the network for each node, the
user does not need to edit any configuration parameters on the
nodes themselves.

2http://orbit.medphys.ucl.ac.uk/

Domain-
specific model 

Build system 
files 

Deployment information 
(hardware assignments + 

temporal partitions) 

Compilable 
skeleton code 

(C++) 

Generated from 
model 

Code 
generators 

Fig. 4. Overview of the artifacts automatically generated from models.

C. Model-based methods for configuration

Applications running on our distributed satellite platform
must configure several aspects of both the OS and middleware.
This includes tasks like configuring the operating system so
that it knows about the temporal partitions of each process and
configuring the middleware to establish the required network
communication paths. This configuration is largely comprised
of tedious, low-level tasks, such as writing XML configuration
files. To facilitate faster application coding/debugging cycles,
we created a model-driven development environment for spec-
ifying several parts of an application and its configuration,
including its software architecture and communication links,
its temporal partition schedule and its mapping onto physical
hardware nodes.

Our model driven environment relies on a domain-specific
modeling language and a set of software generators that are
used to produce various configuration files as well as the neces-
sary glue code that enables the application developers to focus
on business logic. These tools also generate automation scripts
for system integrators to launch the testing framework. The
modeling language has a graphical syntax that not only allows
domain experts to quickly define models, but also enables other
stakeholders to intuitively understand the concepts and ideas
represented by the models.

The software architecture of an application is defined using
components that run on top of the middleware. Component-
based programming is well-suited for distributed computing
platforms in part because it provides location transparency:
an application that communicates with or uses functionality
provided by an external component does not need to know
the location details of the external component. Instead, the
application developer defines a link between the components
inside a model, and a code generator creates the appropriate
settings in the generated configuration file.

Figure 4 shows a high-level overview of what is generated
from a model. The generated deployment information includes
a description of both the application to hardware mapping as
well as a list of the temporal partitions needed to configure the
OS and middleware. The compilable skeleton code includes a
programmatic description of the communication interfaces ex-
posed and used by software components. The generated build
system files relieve the developer from manually specifying
makefiles to compile the application.

In our experience, we found that using a high-level mod-
eling language along with code generators to automatically
produce low-level configuration files greatly increased the
speed at which applications could be designed and configured
reconfigured.



Fig. 5. System setup with the Cluster Flight Application (CFA) and Image Processing Application (IPA). Each satellite has an instance of both the CFA and
IFA.

IV. EXAMPLE

This section presents an end-to-end example showing
how mixed-criticality applications can be tested and their
requirements validated using our framework. The scenario
consists of a cluster of 3 satellites in orbit, each running two
types of applications: a critical platform application cluster
flight application (CFA), and a regular CPU-intensive image
processing application (IPA), which is scheduled in its own
temporal partition. In short, the CFA periodically observes
sensor readings and manages the flight dynamics of the satellite
while logging the relative positions of all other satellites.
Concurrently, the IPA records images from camera modules
attached on each satellite and then performs CPU-intensive
calculations and transformations on the observed data.

The goal of testing these applications together is to ensure
that the CFA still has an adequate response time even when
running beside the CPU-intensive IPA. This requires that (1)
each CFA receives sensor data from the CFAs running on the
other nodes despite dynamically varying distances between the
nodes, (2) the CPU resource is strictly measured and allocated
for the vendor applications (like the IPA), (3) The presence
of such application activity does not interfere with the safe
and timely operation of critical tasks such as CFA. This is
especially necessary as trajectory changes that are imposed by
the CFA are safety-critical and must be responded to with low
latency.

A. System setup

Figure 5 shows the basic workflow for this example.
The cluster flight application consists of four software com-
ponents: OrbitalMaintenance, TrajectoryPlanning, Command-
Proxy, and ModuleProxy. The ModuleProxy behaves as the
interface to the satellite hardware. The OrbitalMaintenance

component uses the ModuleProxy to obtain the satellite state
vector. On observing fresh sensor data, each satellite’s Orbital-
Maintenance publishes this data to every other satellite in the
cluster. This is done by a group publish subscribe interaction
between all Orbital Maintenance components across all nodes.
The CommandProxy exposes an interface that is used to
receive remote commands from a ground control. These com-
mands can include queries on data structures, and even highly
time-critical trajectory-specific commands. A scatter command
received on the CommandProxy, if handled correctly, results in
a coordinated change in cluster orientation. This is especially
important when the satellites need to switch orbits to avoid
collision with space debris. The CFA is a system-level critical
application that is handled by critical threads that operate as
required.

Additionally, four image processing applications (IPA) are
deployed as application tasks. These IPAs were written so that
we can configure the percentage of CPU cycles consumed
by them. The four IPAs are isolated from each other and
periodically use the satellite camera feed for processing. The
IPAs are handled by application threads of lower priority than
CFA. These IPA threads, when scheduled, take up a large part
of the CPU.

Once these applications are modeled using our modeling
tools, the integrated code generators generate much of the
necessary code to complete the software development. The
modeling tools establish the (1) component structure, (2)
communication interfaces, (3) assembly of components, (4)
interaction patterns through component ports, (5) scheduling
policy, and (6) integration with the assumed hardware. The
modeling tools do not, however, model the business logic
of the software components. Therefore, the code generators
generate the application and infrastructure code that captures
this general structure. Development is greatly simplified by



0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

La
te

n
cy

 (
s)

 

Cluster Emergency Response Latency 

Satellite 1

Satellite 2

Satellite 3

SCENARIO 1 
Hyperperperiod = 250 ms 
Application code utilization < 100 % 
Sat 1 Latency : (𝜇 =37.2,𝜎2 =0.19) ms 
Sat 2 Latency : (𝜇 =34.6, 𝜎2 =0.18) ms 
Sat 3 Latency : (𝜇 =33.9, 𝜎2 =0.18) ms 

SCENARIO 2 
Hyperperperiod = 250 ms 
Application code utilization = 100 % 
Sat 1 Latency : (𝜇 =39.1, 𝜎2 =0.14) ms 
Sat 2 Latency : (𝜇 =37.9, 𝜎2 =0.16) ms 
Sat 3 Latency : (𝜇 =37.4, 𝜎2 =0.16) ms 

SCENARIO 3 
Hyperperperiod = 100 ms 
Application code utilization = 100 % 
Sat 1 Latency : (𝜇 =36.3, 𝜎2 =0.14) ms 
Sat 2 Latency : (𝜇 =36.5, 𝜎2 =0.14) ms 
Sat 3 Latency : (𝜇 =36.5, 𝜎2 =0.14) ms 

Fig. 6. This is the time between reception of the scatter command by satellite 1 and the activation of the thrusters on each satellite. The three regions of
the plot indicate the three scenarios: (1) IPA has limited use of its partitions the system’s hyperperiod is 250 ms, (2) IPA has full use of its partitions and the
system’s hyperperiod is 250 ms, and (3) IPA has full use of its partitions and the system’s hyperperiod is 100 ms. The averages and variances for the satellites’
latencies are shown for each of the three scenarios. The x-axis indicates different sampling points.

this code generation capability as the only bit of code that the
developer needs to write is business logic of the components
(the application logic of the CFA).

The code generators also generate a deployment plan that
describes the application’s structure, the hardware resources
and the software configuration required by the infrastructure
to deploy the applications. A system-level process called the
Operations Manager uses the deployment plan and manages
the safe and correct deployment of application-specific pro-
cesses. As part of this management, the necessary software
packages are uploaded on the hardware devices and the plan
is started. Once the applications are deployed on each node,
run-time management includes dynamic changes to scheduling
policies, dynamic reconfiguration of application assembly and
structure,monitoring facilities for the application processes,
and termination of the executing plan.

In a mixed-criticality scenario such as this, one of the
many important run-time challenges is validating the timing
requirements of the software components being deployed.
Each software component in the application has real-time
deadlines to service operations. Time delays incurred due
to (1) execution of operations, (2) temporal partitioning and
(3) network latencies directly affect the timeliness of the
application. Large deviations in critical response times (e.g.,
the latency between the reception of a scatter command from
the ground station and the activation of the satellites’ thrusters)
affect the safe and reliable operation of the satellites. To miti-
gate these challenges, both design-time analysis and run-time
measurement and monitoring facilities have been integrated
into the framework. Monitoring component activity with a
logging framework, network properties of the system can be
measured for analysis.

To test whether or not the CFA can achieve its required

response time to the scatter command, the latency of the
scatter response itself was measured. This response latency
is the time between the cluster’s reception of the scatter
command from the ground station and the activation of each
satellite’s thrusters. Multiple software components make up the
CFA and interact to disseminate the command and coordinate
thruster activation, so the response time is dependent on the
scheduling of the components and the network latency. Using
our testbed, we can ensure that the response time is resilient
to the combined effects of the component scheduling and
the fluctuating network resources that vary with the distance
between the satellites.

Figure 6 shows the latency results for each satellite over
three scenarios. In each case, Sat 1 received the scatter com-
mand from the ground. The latency was measured by invoking
the logging facility of the middleware from the application
directly before the scatter command was sent and just after
the satellite thrusters were activated. This logging framework
allows us to rapidly and easily gather timing data from the
system which we can analyze against application constraints.
These results show that the latency experienced by the CFA
is independent of both the system’s partition schedule and the
resource utilization of the IPA.

V. RELATED WORK

Performance analysis of applications is a well-studied
problem, especially in the area of web services and cloud com-
puting. The potential of a model-based resource provisioning
method in these environments is demonstrated in [5], where
simplified analytic models of server memory, storage I/O rate,
storage response time and service response time are used to
capture the application performance for an informed policy-
driven resource allocation vector for complex resource man-



agement challenges. An approximate layered queuing model
has also been used in [6] and [7] to capture different
performance characteristics and resource contention with the
help of a function approximation method while serving a
request among multiple tiers. These efforts typically model
an entire tier as a queue. Such models are often service-
aware, which allows system management decisions involving
components and services to be executed. While this approach
works well for predictive workloads and closed environments,
it can have difficulty scaling in distributed adhoc computing
environments.

Evaluation of large scale distributed systems, particularly
on dynamic network platforms, is a non-trivial problem that
requires not only a correct model of both the application under
test and the network platforms, but also the relationship be-
tween the two. Most tools provide simulation support for either
distributed service oriented architectures [8] or for the network
[9], but not both in combination. Additionally, related efforts
for real-time embedded systems such as [10] often describe
benchmark results from single node experiments, whereas our
framework is aimed at accurate testing and simulation for
multi-node configurations.

The ideas behind virtual prototypes [11] and related refer-
ences are very close to the concepts described in this paper. In
[11], the authors describe the benefits of examining the safe
functionality of complex systems early in the design phase.
Virtualization technologies such as [12], [13], [14] provide a
mechanism to test and develop applications on single nodes.
The work described in this paper focuses on a framework to
test and evaluate applications under varying network conditions
distributed across a cluster of these nodes.

VI. CONCLUSIONS

In this paper we have presented a testing framework for the
rapid evaluation of distributed applications running on a mobile
cluster of nodes with ad hoc networking, where the network
characteristics change over time. The framework includes real
(or realistic) hardware elements for the computing nodes and
an emulated network where the performance of individual
network links can be modulated over time. This latter function
is driven by a physics simulation engine that simulates the
movement of the nodes and calculates the pairwise distance
between the nodes, which in turn determines the momentary
performance of the network links. We have successfully used
this framework for testing and experimentation where the
application software has to either satisfy stringent response
time requirements or has to be adaptive to network conditions.

The framework offers interesting opportunities for further
research and development. Here we list only a few. One, is
to provide a direct link between the measured momentary
network performance and application level adaptation (as a re-
sponse to changing network conditions). Second, the complete
elimination of one or more network links allows the testing
of fault tolerance mechanisms in the application software.
Third, as the network emulation is agnostic of higher level
protocols, it allows experimentation with various IP-based
protocols (e.g. SCTP). Arguably, such a combined network
emulation/physical system simulation framework offers unique
opportunities for developing cyber-physical systems.

ACKNOWLEDGMENT

This work was supported by the DARPA System F6 Pro-
gram under contract NNA11AC08C. Any opinions, findings,
and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of DARPA. The authors thank Olin Sibert of Oxford
Systems and all the team members of our project for their
invaluable input and contributions to this effort.

REFERENCES

[1] T. Levendovszky, A. Dubey, W. R. Otte, D. Balasubramanian, A. Coglio,
S. Nyako, W. Emfinger, P. Kumar, A. Gokhale, and G. Karsai, “Dis-
tributed real-time managed systems: A model-driven distributed secure
information architecture platform for managed embedded systems,”
IEEE Software, vol. 31, no. 2, pp. 62–69, 2014.

[2] Document No. 653: Avionics Application Software Standard Inteface
(Draft 15), ARINC Incorporated, Annapolis, Maryland, USA, Jan. 1997.

[3] F. Bellard, “Qemu, a fast and portable dynamic translator,”
in Proceedings of the Annual Conference on USENIX Annual
Technical Conference, ser. ATEC ’05. Berkeley, CA, USA:
USENIX Association, 2005, pp. 41–41. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1247360.1247401

[4] R. Davoli, “Vde: Virtual distributed ethernet,” Testbeds and Research
Infrastructures for the Development of Networks & Communities, In-
ternational Conference on, vol. 0, pp. 213–220, 2005.

[5] R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A. M. Vahdat, “Model-
based resource provisioning in a web service utility,” in USITS’03:
Proceedings of the 4th conference on USENIX Symposium on Internet
Technologies and Systems. Berkeley, CA, USA: USENIX Association,
2003, pp. 5–5.

[6] Y. Diao, J. L. Hellerstein, S. Parekh, H. Shaikh, M. Surendra, and
A. Tantawi, “Modeling differentiated services of multi-tier web appli-
cations,” MASCOTS, vol. 0, pp. 314–326, 2006.

[7] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi, “An
analytical model for multi-tier internet services and its applications,”
SIGMETRICS Perform. Eval. Rev., vol. 33, no. 1, pp. 291–302, 2005.

[8] R. Bruni, A. L. Lafuente, U. Montanari, and E. Tuosto, “Service
oriented architectural design,” in Proceedings of the 3rd Conference
on Trustworthy Global Computing, ser. TGC’07. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 186–203. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1793574.1793590

[9] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, “A
performance comparison of multi-hop wireless ad hoc network routing
protocols,” in Proceedings of the 4th Annual ACM/IEEE International
Conference on Mobile Computing and Networking, ser. MobiCom ’98.
New York, NY, USA: ACM, 1998, pp. 85–97. [Online]. Available:
http://doi.acm.org/10.1145/288235.288256

[10] D. Matschulat, C. A. Marcon, and F. Hessel, “A qos scheduler for real-
time embedded systems,” in Quality Electronic Design, 2008. ISQED
2008. 9th International Symposium on. IEEE, 2008, pp. 564–567.

[11] J. Oetjens, N. Bannow, M. Becker, O. Bringmann, A. Burger, M. Chaari,
S. Chakraborty, R. Drechsler, W. Ecker, K. Grüttner et al., “Safety
evaluation of automotive electronics using virtual prototypes: State of
the art and research challenges,” 2014.

[12] A. Aguiar and F. Hessel, “Virtual hellfire hypervisor: Extending hellfire
framework for embedded virtualization support,” in Quality Electronic
Design (ISQED), 2011 12th International Symposium on. IEEE, 2011,
pp. 1–8.

[13] D. Rossier, “Embeddedxen: A revisited architecture of the xen hy-
pervisor to support arm-based embedded virtualization,” White paper,
Switzerland, 2012.

[14] G. Heiser and B. Leslie, “The okl4 microvisor: Convergence point of
microkernels and hypervisors,” in Proceedings of the first ACM asia-
pacific workshop on Workshop on systems. ACM, 2010, pp. 19–24.


