
2004 IEEE International Conference o n Systems, Man a n d Cybernetics

Synthesis of Robust Task Schedules for Minimum
Disruption Repair?

Nagarajan Kandasamy, David Hanak, Chris van Buskirk,
Himanshu Neema, and Gabor Karsai

Institute for Software Integrated Systems
Vanderbilt University, Nashville, TN 37203, U.S.A

[nkandasa, dhanak, vhuskirk, himanshu, gahor) @isis.vanderhilt.edu

Abstract: An of-line scheduling algorithm considers
resource. precedence, and synchroniiariori requiremenrs of
a task graph, and generates a schedule guaranteeing its
timing reqiiiremenrs. This schedule must, howe~~er , be
executed in a d y a m i c arid rrnpredictoble operating
envirotiment nhere resources may fail arid tasks may
ereciite loriger than eryected. To accormnodate such
execution iincerrairities, this paper addresses the synthesis
of robirst task schedirles using a slack-based approach and
proposes a solution using integer linear prograninling
(ILP). An ILP mode/, whose solirrion nia.vimiies the
teniporal j7e.ribility of rhe overall task schedule, is
fornirrlated; Tiuo different ILP solvers are used to solve this
model and their perforniarice compared. For laige task
graphs. an efJicienr approximate method is presented arid
its peiformartce evaluated.

Keywords: Robust scheduling, slack-hased scheduling,
integer linear programming.

1 Introduction
Scheduling plays a crucial role in manufacturing and

service industries where companies must sequence their
activities (or tasks) appropriately to meet customer dead-
lines. An off-line schedrrlirig strategy considers resource,
precedence, and synchronization requirements of tasks, and
generates a static schedule satisfying task timing con-
straints [Z]. This schedule executes in a dynamic and
unpredictable operating environment where cri t ical
resources m a y fail , tasks may e x e c u t e longer than
expected, or certain new tasks may need urgent processing.
Consequently, the task schedule must accommodate such
execution uncertainties.

This paper addresses the synthesis of robust task sched-
ules using a slack-based approach. We develop a method to
construct schedules where individual tasks retain some
ternporalflexibility i n the form of slack while satisfying
their timing requirements. Therefore, some execution dis-
ruptions can he absorbed hy the schedule without requiring
repair or rescheduling.

There are two general approaches to dealing with sched-
ule disruptions. Reactive merliods recover from the disrup-
tion after it happens, and aim to repair the original schedule
in least-disruptive fashion [9] [IO]. The authors of [4] pre-
compute a set of contingency schedules and use the one
most suited to the prevailing operating conditions. Proac-
tive methods, including the one proposed in this paper, con-
struct schedules that can absorb some disruptions without
the need for rescheduling. In previously proposed slack-
based methods [3] [6] , some slack, corresponding to the
expected repair time of the resource(s) used by a task, is
added to the task execution time prior to scheduling. Stan-
dard techniques are then used to generate a robust schedule
at the expense of increasing its makespan. On the other
hand, this paper assumes tasks with explicit deadline and
resource requirements.

Given a task graph with deadl ine constraints, we
address the prohlem of synthesizing a robust schedule that
maximizes the slack added to individual tasks while satis-
fying their timing requirements. We first discuss how the
end-to-end graph deadline is distributed to individual tasks
to generate possible scheduling ranges for them. We then
present a technique based on integer linear programming
(ILP) to select a valid scheduling range for each task such
that the temporal flexibility of the overall schedule is maxi-
mized. We formulate the ILP model and present experi-
mental results evaluating the performance of two ILP
solvers having very different solution methods. Finally, for
large task graphs, an approximate or greedy method is pro-
posed and its performance evaluated.

The rest of this paper is organized as follows. Section 2
presents the task model and discusses the deadline distrihu-
tion algorithm. Section 3 formulates the ILP model for
robust schedule generation while Section 4 presents experi-
mental results for two ILP solvers. An approximate method
for large graphs is proposed and evaluated in Section 5. We
conclude the paper with a discussion on future work in
Section 6.

'0-7,0,-*,,.7/,/$,0.00 0 2004 IEEE.

5056

mailto:isis.vanderhilt.edu

Fig. 1 : An example task graph G with end-to-end
deadlines

2 Preliminaries
This section discusses the task model, sources of slack

in a task schedule, and the slack distribution algorithm.

Modeling Assumptions
Fig. 1 shows a directed acyclic graph G modeling task

interaction. Tasks are non-preemptive and have resource,
precedence, and synchronization requirements. The graph
comprises vertices and edges representing tasks and prece-
dence constraints, respectively. Each vertex is labeled
Ti(ci). where Ti is a task and ci its estimated execution time
i n appropriate time units (seconds in this example). ‘We
denote the precedence constraint between tasks Ti and Ti in
the graph by T i + T . Tasks without predecessors iire
called enfiy tasks andtasks having no successors are called
exit tasks. We also assume that each task Ti requires a sei. of
resources [R,?,] for its execution where R,,, denotes a
resource of type nr. Also, for each resource R,, its available
capacity is given by cnp(R,,,).

Scheduling is a mapping of tasks on to resources such
that the specified precedence and deadline constraints are
satisfied. The desired result is a feasible schedule specify-
ing the release time for each task Tp It is also necessary to
introduce some slack in this schedule to improve its robust-
ness to execution uncertainties, and in many cases, the nec-
essary slack may be obtained by appropriately distributing
the end-to-end graph deadline among tasks.

Assume that tasks To and T I start at 0 secs., and that G
must meet a deadline of 17 secs., i.e., T, and T, must finish
before 17 secs. Note, however, that the longes! path
ToT~T,T,T, through G is only 7 secs. long. This implies
that a slack of 17 - 7 = 10 secs. can he distributed to tasks
along that path to retain some temporal flexibility during
their scheduling. We now discuss a method aimed at dis-
tributing G’s deadline among tasks such that the slack
added to each intermediate task is maximized. This process
results in a scheduling range [ri, di) for each T, wmhere ri and
di denote the earliest release time and task deadline, repec-
tively.

Deadline Distribution
Initially, only entry and exit tasks having no predeces-

sors and successors, respectively, have their release times
and deadlines fixed. In the deadline nssignnienf problem,
the graph deadline must be distrihuted over each intermedi-
ate task such that all tasks are feasibly scheduled on their
respective resources. Deadline assignment is NP-complete
and various heuristics have been proposed to solve it. We
use the approach proposed in [SI to maximize the slack
added to each task in graph G while still satisfying its dead-
line D. The heuristic is simple, and for general task graphs,
its performance compares favorably with other heuristics

As part of deadline distribution, entry and exit tasks in
the graph are first assigned release times and deadlines. A
path parhp through Gcomprises one or more tasks [T i] ; the
slack available for distribution to these tasks is

VI.

Fig. 2 : (a)-(c) Steps corresponding to the deadline assignment algorithm in [SI; the selected paths are shown as
bold edges

5057

slack, = Dq-Cc i where D, is the end-to-end deadline of
path, and ci the execution time of task Ti along this path.
The distribution heuristic in [SI maximizes the minimum
slack added to each Ti along path, by dividing slack, equal-
ly among tasks. During each iteration through G, path, min-
imizing slack / n . where n denotes the number of tasks
along path,, is chosen and the corresponding slack added to
each task along that path. The deadlines (release times) of
the predecessors (successors) of tasks belonging to path,
are updated. Tasks along path, are then removed from the
original graph, and the above process is repeated until all
tasks are assigned release times and deadlines.

The graph in Fig. 1 is used to illustrate the above proce-
dure. First, we select the path ToT2T4T6T8 shown in hold-
face in Fig. 2(a); the total execution time of tasks along this
path is 7 secs. and as per the heuristic, a slack of
(17 - 7)/5 = 2 sec. is distributed to each task. Once their
release times and deadlines are fixed, these tasks are re-
moved from the graph. Path T,T9 in Fig. 2(b) is then chosen
and a slack of L(8 - 3) /2J = 2 is added to each task. (Any
remaining slack could he distributed to tasks with longer ex-
ecution times.) Fig. 2(c) shows the final path TIT3Ts and the
scheduling ranges for the corresponding tasks.

4

3 Robust Schedule Synthesis
Once tasks are assigned deadlines, each Ti has a sched-

uling range given by [ri, d;) . However, to generate a feasi-
ble mapping of tasks on to a limited number of resources,
these scheduling ranges must he modified appropriately to
account for resource contention during task execution; we
adapt concepts from interval scheduling [SI to solve this
problem.

The scheduling range for Ti is first decomposed into a
number of overlapping intervals (I i j] . Each IB, correspond-

ing to the jth possible scheduling interval for Ti, spans [rib
d i j) where ri j and d i j may assume va lues such tha t
ri i rij 5 di - ci and ri + ci i dij i di . Also, lij is assigned a

weight (d . . - r . . - c i) / (d . . - r . .) denoting the scheduling

flexibility within that interval in terms of available slack.
Robust schedule generation can now be formulated as

an interval selectiori problem where exactly one scheduling
interval for each task must he selected such that: (I) at any
point in the schedule, the overlapping task intervals do not
consume more than the number of available resources and
(2) the sum of the interval weights is maximized.

Fig.3 shows an ILP model for the interval selection
problem whose solution maximizes the sum of interval
weights while satisfying a set of linear constraints. The
model assumes that while Ti may use multiple resource
types, it is allocated exactly one resource from each type.
This assumption, however, may he relaxed quite easily.

A schedule of length D (equal to the graph deadline)
comprises execution slots of unit length. A feasible solu-

11 11 11 0

Constants:
L := { i I i is the index of task T i]
Y- , ’ .= [c i , ci + I , ..., (d , - ri)J (Interval lengths for Ti)

k - c i (Weight corresponding to
wik = -, I E L, k E K.

k ‘ an interval of length k for Ti:

Variables:
1 if interval for Ti occupies slot j

0 if interval for Ti does not occupy slot j

I if interval of length k is selected for Ti
0 otherwise

‘I i ,c.. =

Y i t =

Waximize C yikivirl subject to:
i e L t s K i

Resource availability:
VR3,, ,Vje {O, ..., D } : .r . . 5cap(Rgt,) ‘I

;E { i l r i u s e s ~ , ,))

Interval contiguity:
Vi E L, V j E { r i - I , ..., d i - 4). VI E { j + 2, ..., d i - 21:

. r i j + , - x i j + x i , + I - x i , < 2

Interval duration:

V i E L, Vj E { 0, ..., r i - 1, d. , ._., D J : .r.. = 0
‘ I

v i s L : c X i j ’ C i

j s { r p ..., d i }

Interval binding:

V i s L: [
j s { r ;,..., d i }

V i s L : .) ‘ i k = 1

. r i d - [c kyi l) = 0
k e Ki

k s Ki

Fig. 3 : The ILP model for interval selection

tion assigns tasks to these slots such that the following con-
straints are met.
1 . Resource capacity: For each resource type R,,, the
capacity constraints ensure that overlapping task intervals
do not consume more than the available resources.
2. Interval contigwity: Since nonlpreemptive tasks are
assumed, the corresponding scheduling intervals must he
contiguous. Therefore, this constraint ensures that a valid
schedule comprises only those task intervals spanning con-
tiguous execution slots. We use a simple example to show
that these constraints ensure interval contiguity. Assume a
non-contiguous interval with “holes”, and let j + 1 he the

5058

12 17

Ta 1 3 17
TY

T7
T6 Y 13

T5 7 1 0 - !I

T4
T3
T2
TI
To O- 3

9 10 12 ---

6 Y
4 7

3 6
0 4

I I I I
I

0 5 10 15 17

Fig. 4 : The robust schedule generated for the task
graph in Fig. 1 by the ILP method given two available

resources; each task uses exactlj- one resource

index of its first slot. Also, let I he the index of the last slot
of the (first) hole in the interval. Therefore, x . . = xi, = 0 ,
and xij+l = = 1, and X ~ ~ + ~ - X . . + X ~ ~ + ~ - J : ~ ,
yields 2, which contradicts the constraint.
3. Intenol dumtion: For each task Ti, its scheduling
interval must be at least as long as its execution time ci.

4. Inrerval binding: Once a task interval satisfying the
above constraints is selected in the schedule, its length is
then determined using the interval binding equations. Since
interval weights corresponding to each possible length
have been precomputed (to linearize the objective func-
tion), the obtained interval length is simply used as an
index to the appropriate weight value.

Fig. 4 shows a robust schedule for the task graph in Fig.
I , generated using the ILP method. We assume that each
task uses exactly one of two available resources. The inter-
vals corresponding to tasks T, and T7 are shown in bold.
The dashed lines indicate portions of the original schedul-
ing ranges pruned to satisfy resource constraints.

‘I
‘I

4 Performance Evaluation
The foregoing ILP model has been solved using two

integer solvers based on widely varying solution tech-
niques.

The random task graphs used in our experiments are
obtained as follows. To generate a graph with a specific
number of tasks, we randomly distribute a number of inde-
pendent tasks to each graph layer. Next, we randomly link
the edges between tasks in different layers. Finally, tasks
are assigned execution times uniformly distributed between
[2, 51 secs. A set of resource types (R , ,] , each with a spe-
cific capacity is also generated. In our experiments, these
resources are distributed uniformly among tasks such that
each task is allocated exactly one resource of a certain type.
The original resource capacity can also he increased
(decreased) as needed. Finally, the graph deadline D i s set
to (I + slack). p,,, where pma denotes the longest path
length through the graph and slack is a user-specified
value.

We solved the model in Fig. 3 using two solvers;
LP-SOLVE (ahhreviated as LP in Table 2). a freely avail-
able generic linear programming solver [12], and PBS, a
specialized 0-1 ILP solver targeting pseudo-boolean opti-
mization problems [I] . (To use PBS, the integer constraints
i n the ILP model were converted to their appropriate
pseudo-boolean and conjunctive normal forms).

Table 1 summarizes the performance of the two solvers
given four resources types, each with a capacity of three.
The experiments were performed on a 3.2 GHz Pentium 4
processor with one Gigabyte of RAM. Graph deadlines are
derived using slack = 1.0. The table shows the first solu-
tion (value of the objective function i n the ILP model)
returned by both solvers as well as the time taken to do so.
The solvers were then allowed to improve on their initial
solutions up to a time-out period of five minutes and the
best solution returned by the solvers after that period is also
shown. If a problem is shown to be infeasible by the solv-
ers, it is denoted by “Inf.” in the appropriate cell while a
solver time-out without returning any solution is denoted
by ‘-’. For small numbers of scheduling intervals, the solu-

Table 1: Experimental results summarizing the perfarmance of LP-SOLVE and PBS with four resource types, each
with a maximum ca,pacity of three, and slack = 1.0

5059

Table 2: Effect of shck values on solver performance

Tasks
slack = 0.5 shck = 0.8 slack = 1.0

Scheduling Scheduling Scheduling
intervals LP PBS intervals LP PBS intervals LP PBS

I I I I I I

-25 I 436 I 9.48 I 6.98 I 747 1 12.42 1 10.42 I 892 I 13.02 I 10.66

-50 1338 15.69 14.27 1961 - 17.63 2628 21.26 18.92

I I

-100 I 1384 I Inc. I ~nf. I 2277 1 Inf. I I d . I 3091 I - 1 21.83
I I I I

-150 I 3638 I - I 20.36 I S834 I - 128.49 I 7326 1 - 1 33.03

Pmedure GREEDY(@ I* a:= Wreshold value *I
s:=0;
K := Set of all task intervals in non-decreasing right

endpoint order;
for (each interval in K) hegin

i :=Current interval;
C; := Minimumweight subset of K such that

i f (w e i g h r (C i) S a . n v i g h r (i)) S : = (S \ C ;) u (i):

I* Return the set of selected intervals *;I

I' Set of currently accepted intervals */

(S \ Ci) U { i) is feasible;

end: '

return S:

Fig. 5 : The greedy algorithm for interval selection,
summarized from [5]

tions returned by LP-SOLVE are superior to PBS at the
cost of greater time overhead. For larger numbers of inter-
vals, however, LP-SOLVE is unable to return a solution
within the time-out period whereas PBS returns the first
solution very quickly.

Table 2 summarizes the effect of increasing slack values
on solver performance. Clearly, increasing the slack value
generates larger numbers of possible scheduling intervals
for each task i n the graph while providing better schedule
robustness. Again, LP-SOLVE is superior to PBS for small
problems, while for larger ones, PBS finds feasible solu-
tions when LP-SOLVE does not.

The PBS solver is substantially faster than the more
generic 1.P solver since it has been optimized to specifi-
cally handle 0-1 ILP models such as ours. Experimental
results presented in [I 1 also support this conclusion.

5 Approximate Method
We discuss and evaluate an approximate or greedy tech-

nique for interval selection when the number of intervals is
very large number. We use the algorithm proposed in [SI
and summarized io Fig. 5

The algorithm GREEDY accepts a parameter a which
can assume values within [0, I] . The set S of selected inter-
vals is initialized and the scheduling intervals of all tasks
are sorted in order of non-decreasing endpoint. When the
algorithm processes an interval i, it identifies a minimum-
weight se t C i c S of those selected intervals having

resource conflicts with i (including any interval in S
belonging to the same task as i). The set Ci is called the
cheapest conflict set fori , and the interval i could be added
to S if those in Ci are dropped from S . Interval i is selected
if iue ighr (Ci)Sa . wr ighr(i) , i.e., the total weight of the
selected intervals increases by at least (1 - a) . w e i g h r (i) if
i is selected and intervals belonging to Ci are dropped.
Determining the conflict set Ci is equivalent to a graph col-
oring problem and Ci can be efficiently computed i n O(n)
time where 11 is the number of intervals. Therefore, the
overall complexity of the greedy algorithm in Fig. 5 is

We have evaluated the pcrformance of the greedy algo-
rithm on random task graphs and the results are shown in
Table 3. We use slack = 1.0 to derive graph deadlines and
assume four resource types, each with a capacity of three.
The GREEDY algorithm is repeatedly invoked with a
assuming values between [O, 11 i n increments of 0.1. The
table shows the sum of selected interval weights, the per-
centage of tasks successfully scheduled, and the time taken
for the entire run. Note that GREEDY is unable to fully
schedule the entire tasks set given the above setup.

O(,*) .

6 Discussion
This paper has addressed the problem of generating

robust task schedules under explicit deadline constraints
and proposed an UP-based solution. We formulated an ILP
model whose solution maximizes the temporal flexibility

Table 3: Experimental results summarizing the
performance of the greedy algorithm

5060

of the overall task schedule. This model was solved wing
two integer solvers LP-SOLVE and PBS that use widely
varying solution techniques. Our experiments show !:hat
while LP-SOLVE provides superior solutions for small
problems, PBS is able to quickly find feasible solutions for
larger problems that LP-SOLVE cannot solve. An efficient
and approximate algorithm to generate robust schedules
was also presented and evaluated for large task graphs.

Greedy algorithms for interval selection appear reason-
able for very large task graphs, such as those found in some
real-world scheduling problems; for example, aircraft
maintenance [I I] . However, these algorithms may be
unable to schedule entire task sets (as indicated by our
experiments). Task priorities, if taken into account during
interval selection, can improve solution quality by schedul-
ing higher priority tasks over others. Slack distribution
strategies taking into account task priorities, execution-
time uncertainties associated with individual tasks, :and
failure rates of critical resources used by the tasks as well
as their repair-time distribution can also he investigai.ed.
These issues are a focus of ongoing and future work.

Acknowledgements
Effort sponsored by the Defense Advanced Research

Projects Agency (DARPA) and Air Force Research Labo-
ratory, Air Force Material Command, USAF, under agiee-
men1 number F30602-99-2-0505. The US Government is
authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright annotation
thereon.

References
E A. Aloul, A. Ramani, I. L. Markov, and S. A.
Sakallah, “Generic ILP versus Specialized 0-1 ILP:
An Update,” IEEE Col$ Computer Aided Design
(ICCAD), pp. 450-457,2002,
P. Brucker, Schedirliiig Algorithms, 2”d Edition,
Springer Verlag, Berlin, 1998.
A. J. Davenpon, C. Gefflot, and J. C. Beck, “Slack-
based Techniques for Robust Schedules,” Proc. 6Ih
European Con$ Plonning, 2001.
M. Drummond, M. Bresina, and K. Swanson, “Just-
in-Case Scheduling,” Prac. lZih ConJ AltiJirial
Inrelligence (AAAI), pp. 1098.1 104, 1994.
T. Erlebach and F. C. R. Spieksma, Interval Selec-
tion: Applications, Algorithms, and Lower Bounds,
Tech. Report No. 152, Computer Engineering &
Networks lab., Swiss Federal Institute of Technol-
ogy, Zurich, October 2002.
H. Gao, Building R o b ~ s t Schedules using Tempornl
Prorection-An Empirical Srudy of Consrraint-bared
Schedirling under Machine Failure Uncertainty, M.
S. Thesis, University of Toronto, 1995.

[7] B. Kao and H. Garcia-Molina, “Deadline Assign-
ment in a Distributed Soft Real-Time System,”
IEEE Trans. Parollel and Distributed Syst., vol. 8,
no. 12, pp. 1268-1274, Dec. 1997.
M. D. Natale and J. A. Stankovic, “Dynamic End-to-
End Guarantees in Distributed Real-Time Systems,”
PIVC. Real-Time Systems Symp., pp. 216-227, 1994.
S. Smith, “OPIS: A Methodology and Architecture
for Reactive Scheduling,” Intelligent Schedirling,
(Eds. M. Zwehen and M. S. Fox), pp. 29-66, Morgan
Kaufmann, San Mateo, CA, 1994.

[IO] T. K. Tsukada and K. G. Shin, “PRIAM: Polite
Rescheduler for Intelligent Automated Manufactur-
ing,” IEEE Trans. Robotics & Automation. vol. 12,
no. 2, pp. 235-245, April 1996.
MAPLANT, Institute for Software Integrated Sys-
tems, Vanderbilt University, http://www.isis.vander-
bilt.edu/maplant

[SI

[9]

[I I]

[I21 LP-SOLVE, ftp://ftp.es.ele.tue.nl/pub/lp-solve

5061

http://www.isis.vander
ftp://ftp.es.ele.tue.nl/pub/lp-solve

