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Abstract: An of-line scheduling algorithm considers 
resource. precedence, and synchroniiariori requiremenrs of 
a task graph, and generates a schedule guaranteeing its 
timing reqiiiremenrs. This schedule must, howe~~er ,  be 
executed in a d y a m i c  arid rrnpredictoble operating 
envirotiment nhere resources may fail arid tasks may 
ereciite loriger than eryected. To accormnodate such 
execution iincerrairities, this paper addresses the synthesis 
of robirst task schedirles using a slack-based approach and 
proposes a solution using integer linear prograninling 
(ILP). An ILP mode/, whose solirrion nia.vimiies the 
teniporal j7e.ribility of rhe overall task schedule, is 
fornirrlated; Tiuo different ILP solvers are used to solve this 
model and their perforniarice compared. For laige task 
graphs. an efJicienr approximate method is presented arid 
its peiformartce evaluated. 

Keywords: Robust scheduling, slack-hased scheduling, 
integer linear programming. 

1 Introduction 
Scheduling plays a crucial role in manufacturing and 

service industries where companies must sequence their 
activities (or tasks) appropriately to meet customer dead- 
lines. An off-line schedrrlirig strategy considers resource, 
precedence, and synchronization requirements of tasks, and 
generates a static schedule satisfying task timing con- 
straints [Z]. This schedule executes in a dynamic and 
unpredictable operating environment  where cri t ical  
resources m a y  fail ,  tasks  may  e x e c u t e  longer than 
expected, or certain new tasks may need urgent processing. 
Consequently, the task schedule must accommodate such 
execution uncertainties. 

This paper addresses the synthesis of robust task sched- 
ules using a slack-based approach. We develop a method to 
construct schedules where individual tasks retain some 
ternporalflexibility i n  the form of slack while satisfying 
their timing requirements. Therefore, some execution dis- 
ruptions can he absorbed hy the schedule without requiring 
repair or rescheduling. 

There are two general approaches to dealing with sched- 
ule disruptions. Reactive merliods recover from the disrup- 
tion after it happens, and aim to repair the original schedule 
in least-disruptive fashion [9] [IO]. The authors of [4] pre- 
compute a set of contingency schedules and use the one 
most suited to the prevailing operating conditions. Proac- 
tive methods, including the one proposed in this paper, con- 
struct schedules that can absorb some disruptions without 
the need for rescheduling. In previously proposed slack- 
based methods [3] [6 ] ,  some slack, corresponding to the 
expected repair time of the resource(s) used by a task, is 
added to the task execution time prior to scheduling. Stan- 
dard techniques are then used to generate a robust schedule 
at the expense of increasing its makespan. On the other 
hand, this paper assumes tasks with explicit deadline and 
resource requirements. 

Given a task graph with deadl ine constraints,  we 
address the prohlem of synthesizing a robust schedule that 
maximizes the slack added to individual tasks while satis- 
fying their timing requirements. We first discuss how the 
end-to-end graph deadline is distributed to individual tasks 
to generate possible scheduling ranges for them. We then 
present a technique based on integer linear programming 
(ILP) to select a valid scheduling range for each task such 
that the temporal flexibility of the overall schedule is maxi- 
mized. We formulate the ILP model and present experi- 
mental results evaluating the performance of two ILP 
solvers having very different solution methods. Finally, for 
large task graphs, an approximate or greedy method is pro- 
posed and its performance evaluated. 

The rest of this paper is organized as follows. Section 2 
presents the task model and discusses the deadline distrihu- 
tion algorithm. Section 3 formulates the ILP model for 
robust schedule generation while Section 4 presents experi- 
mental results for two ILP solvers. An approximate method 
for large graphs is proposed and evaluated in Section 5. We 
conclude the paper with a discussion on future work in 
Section 6. 
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Fig. 1 : An example task graph G with end-to-end 
deadlines 

2 Preliminaries 
This section discusses the task model, sources of slack 

in a task schedule, and the slack distribution algorithm. 

Modeling Assumptions 
Fig. 1 shows a directed acyclic graph G modeling task 

interaction. Tasks are non-preemptive and have resource, 
precedence, and synchronization requirements. The graph 
comprises vertices and edges representing tasks and prece- 
dence constraints, respectively. Each vertex is labeled 
Ti(ci). where Ti is a task and ci its estimated execution time 
i n  appropriate time units (seconds in this example). ‘We 
denote the precedence constraint between tasks Ti and Ti  in 
the graph by T i +  T .  Tasks without predecessors iire 
called enfiy tasks andtasks having no successors are called 
exit tasks. We also assume that each task Ti requires a sei. of 
resources [R,?,]  for its execution where R,,, denotes a 
resource of type nr. Also, for each resource R,, its available 
capacity is given by cnp(R,,,). 

Scheduling is a mapping of tasks on to resources such 
that the specified precedence and deadline constraints are 
satisfied. The desired result is a feasible schedule specify- 
ing the release time for each task Tp It is also necessary to 
introduce some slack in this schedule to improve its robust- 
ness to execution uncertainties, and in many cases, the nec- 
essary slack may be obtained by appropriately distributing 
the end-to-end graph deadline among tasks. 

Assume that tasks To and T I  start at 0 secs., and that G 
must meet a deadline of 17 secs., i.e., T, and T, must finish 
before  17  secs. Note, however, that the longes! path 
ToT~T,T,T, through G is only 7 secs. long. This implies 
that a slack of 17 - 7 = 10 secs. can he distributed to tasks 
along that path to retain some temporal flexibility during 
their scheduling. We now discuss a method aimed at dis- 
tributing G’s deadline among tasks such that the slack 
added to each intermediate task is maximized. This process 
results in a scheduling range [ri, di) for each T, wmhere ri and 
di denote the earliest release time and task deadline, repec- 
tively. 

Deadline Distribution 
Initially, only entry and exit tasks having no predeces- 

sors and successors, respectively, have their release times 
and deadlines fixed. In the deadline nssignnienf problem, 
the graph deadline must be distrihuted over each intermedi- 
ate task such that all tasks are feasibly scheduled on their 
respective resources. Deadline assignment is NP-complete 
and various heuristics have been proposed to solve it. We 
use the approach proposed in [SI to maximize the slack 
added to each task in graph G while still satisfying its dead- 
line D. The heuristic is simple, and for general task graphs, 
its performance compares favorably with other heuristics 

As part of deadline distribution, entry and exit tasks in 
the graph are first assigned release times and deadlines. A 
path parhp through Gcomprises one or more tasks [ T i ] ;  the 
slack available for distribution to these tasks is 

VI. 

Fig. 2 : (a)-(c) Steps corresponding to  the deadline assignment algorithm in [SI; the  selected paths  are  shown as 
bold edges 
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slack, = Dq-Cc i  where D, is the end-to-end deadline of 
path, and ci the execution time of task Ti along this path. 
The distribution heuristic in [SI maximizes the minimum 
slack added to each Ti along path, by dividing slack, equal- 
ly among tasks. During each iteration through G, path, min- 
imizing slack / n  . where n denotes the number of tasks 
along path,, is chosen and the corresponding slack added to 
each task along that path. The deadlines (release times) of 
the predecessors (successors) of tasks belonging to path, 
are updated. Tasks along path, are then removed from the 
original graph, and the above process is repeated until all 
tasks are assigned release times and deadlines. 

The graph in Fig. 1 is used to illustrate the above proce- 
dure. First, we select the path ToT2T4T6T8 shown in hold- 
face in Fig. 2(a); the total execution time of tasks along this 
path is 7 secs. and as per the heuristic, a slack of 
(17 - 7)/5 = 2 sec. is distributed to each task. Once their 
release times and deadlines are fixed, these tasks are re- 
moved from the graph. Path T,T9 in Fig. 2(b) is then chosen 
and a slack of L(8 - 3) /2J = 2 is added to each task. (Any 
remaining slack could he distributed to tasks with longer ex- 
ecution times.) Fig. 2(c) shows the final path TIT3Ts and the 
scheduling ranges for the corresponding tasks. 

4 

3 Robust Schedule Synthesis 
Once tasks are assigned deadlines, each Ti has a sched- 

uling range given by [ri, d;) .  However, to generate a feasi- 
ble mapping of tasks on to a limited number of resources, 
these scheduling ranges must he modified appropriately to 
account for resource contention during task execution; we 
adapt concepts from interval scheduling [SI to solve this 
problem. 

The scheduling range for Ti is first decomposed into a 
number of overlapping intervals ( I i j ] .  Each IB, correspond- 

ing to the jth possible scheduling interval for Ti, spans [rib 
d i j )  where ri j  and d i j  may assume va lues  such tha t  
ri i rij 5 di - ci and ri + ci i dij  i di  . Also, lij is assigned a 

weight ( d . . - r . . - c i ) / ( d . . -  r . . )  denoting the scheduling 

flexibility within that interval in terms of available slack. 
Robust schedule generation can now be formulated as 

an interval selectiori problem where exactly one scheduling 
interval for each task must he selected such that: ( I )  at any 
point in the schedule, the overlapping task intervals do not 
consume more than the number of available resources and 
(2) the sum of the interval weights is maximized. 

Fig.3 shows an ILP model for the interval selection 
problem whose solution maximizes the sum of interval 
weights while satisfying a set of linear constraints. The 
model assumes that while Ti may use multiple resource 
types, it is allocated exactly one resource from each type. 
This assumption, however, may he relaxed quite easily. 

A schedule of length D (equal to the graph deadline) 
comprises execution slots of unit length. A feasible solu- 

11 11 11 0 

Constants: 
L := { i I i is the index of task T i ]  
Y- , ’  .= [c i ,  ci + I ,  ..., ( d ,  - ri)J (Interval lengths for Ti) 

k - c i  (Weight corresponding to 
wik = -, I E L, k E K. 

k ‘ an interval of length k for Ti: 

Variables: 
1 if interval for Ti occupies slot j 

0 if interval for Ti does not occupy slot j 

I if interval of length k is selected for Ti 
0 otherwise 

‘I i ,c.. = 

Y i t  = 

Waximize C yikivirl subject to: 
i e  L t s  K i  

Resource availability: 
VR3,, ,Vje {O, ..., D } :  .r . .  5cap(Rgt,)  ‘I 

;E { i l r i u s e s ~ , , ) )  

Interval contiguity: 
Vi E L,  V j  E { r i -  I ,  ..., d i -  4). VI  E { j  + 2, ..., d i -  21: 

. r i j + ,  - x i j  + x i ,  + I - x i ,  < 2 

Interval duration: 

V i  E L, Vj  E { 0, ..., r i -  1, d. ,  ._., D J :  .r..  = 0 
‘ I  

v i s  L :  c X i j ’ C i  

j s  { r p  ..., d i }  

Interval binding: 

V i s  L: [ 
j s  { r  ;,..., d i }  

V i s L :  . ) ‘ i k =  1 

. r i d - [  c kyi l )  = 0 
k e  Ki 

k s  Ki 

Fig. 3 : The ILP model for interval selection 

tion assigns tasks to these slots such that the following con- 
straints are met. 
1 .  Resource capacity: For each resource type R,,, the 
capacity constraints ensure that overlapping task intervals 
do not consume more than the available resources. 
2. Interval contigwity: Since nonlpreemptive tasks are 
assumed, the corresponding scheduling intervals must he 
contiguous. Therefore, this constraint ensures that a valid 
schedule comprises only those task intervals spanning con- 
tiguous execution slots. We use a simple example to show 
that these constraints ensure interval contiguity. Assume a 
non-contiguous interval with “holes”, and let j +  1 he the 
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Fig. 4 : The robust schedule generated for the task 
graph in Fig. 1 by the ILP method given two available 

resources; each task uses exactlj- one resource 

index of its first slot. Also, let I he the index of the last slot 
of the (first) hole in  the interval. Therefore, x . .  = xi, = 0 ,  
and xij+l  = = 1, and X ~ ~ + ~ - X . . + X ~ ~ + ~ - J : ~ ,  
yields 2, which contradicts the constraint. 
3. Intenol dumtion: For each task Ti, its scheduling 
interval must be at least as long as its execution time ci. 

4. Inrerval binding: Once a task interval satisfying the 
above constraints is selected in the schedule, its length is 
then determined using the interval binding equations. Since 
interval weights corresponding to each possible length 
have been precomputed (to linearize the objective func- 
tion), the obtained interval length is simply used as an 
index to the appropriate weight value. 

Fig. 4 shows a robust schedule for the task graph in Fig. 
I ,  generated using the ILP method. We assume that each 
task uses exactly one of two available resources. The inter- 
vals corresponding to tasks T, and T7 are shown in bold. 
The dashed lines indicate portions of the original schedul- 
ing ranges pruned to satisfy resource constraints. 

‘I 
‘I 

4 Performance Evaluation 
The foregoing ILP model has been solved using two 

integer solvers based on widely varying solution tech- 
niques. 

The random task graphs used in our experiments are 
obtained as follows. To generate a graph with a specific 
number of tasks, we randomly distribute a number of inde- 
pendent tasks to each graph layer. Next, we randomly link 
the edges between tasks in  different layers. Finally, tasks 
are assigned execution times uniformly distributed between 
[2, 51 secs. A set of resource types ( R , , ] ,  each with a spe- 
cific capacity is also generated. In our experiments, these 
resources are distributed uniformly among tasks such that 
each task is allocated exactly one resource of a certain type. 
The original resource capacity can also he increased 
(decreased) as needed. Finally, the graph deadline D i s  set 
to ( I  + slack). p,,,  where pma denotes the longest path 
length through the graph and slack is a user-specified 
value. 

We solved the model in Fig. 3 using two solvers; 
LP-SOLVE (ahhreviated as LP in Table 2). a freely avail- 
able generic linear programming solver [12], and PBS, a 
specialized 0-1 ILP solver targeting pseudo-boolean opti- 
mization problems [ I ] .  (To use PBS, the integer constraints 
i n  the ILP model were converted to their appropriate 
pseudo-boolean and conjunctive normal forms). 

Table 1 summarizes the performance of the two solvers 
given four resources types, each with a capacity of three. 
The experiments were performed on a 3.2 GHz Pentium 4 
processor with one Gigabyte of RAM. Graph deadlines are 
derived using slack = 1.0. The table shows the first solu- 
tion (value of the objective function i n  the ILP model) 
returned by both solvers as well as the time taken to do so. 
The solvers were then allowed to improve on their initial 
solutions up to a time-out period of five minutes and the 
best solution returned by the solvers after that period is also 
shown. If a problem is shown to be infeasible by the solv- 
ers, it is denoted by “Inf.” in the appropriate cell while a 
solver time-out without returning any solution is denoted 
by ‘-’. For small numbers of scheduling intervals, the solu- 

Table 1: Experimental results summarizing the perfarmance of LP-SOLVE and PBS with four resource types, each 
with a maximum ca,pacity of three, and slack = 1.0 
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Table 2: Effect of shck values on solver performance 

Tasks 
slack = 0.5 shck = 0.8 slack = 1.0 

Scheduling Scheduling Scheduling 
intervals LP PBS intervals LP PBS intervals LP PBS 

I I I I I I 

-25 I 436 I 9.48 I 6.98 I 747 1 12.42 1 10.42 I 892 I 13.02 I 10.66 

-50 1338 15.69 14.27 1961 - 17.63 2628 21.26 18.92 

I I 

-100 I 1384 I Inc. I ~nf. I 2277 1 Inf. I I d .  I 3091 I - 1 21.83 
I I I I 

-150 I 3638 I - I 20.36 I S834 I - 128.49 I 7326 1 - 1 33.03 

Pmedure GREEDY(@ I* a:= Wreshold value *I 
s:=0; 
K := Set of all task intervals in non-decreasing right 

endpoint order; 
for (each interval in K )  hegin 

i :=Current interval; 
C; := Minimumweight subset of K such that 

i f ( w e i g h r ( C i ) S a .  n v i g h r ( i ) ) S : =  ( S \ C ; ) u  (i): 

I* Return the set of selected intervals *;I 

I' Set of currently accepted intervals */ 

( S \  Ci) U { i )  is feasible; 

end: ' 

return S: 

Fig. 5 : The greedy algorithm for interval selection, 
summarized from [5] 

tions returned by LP-SOLVE are superior to PBS at the 
cost of greater time overhead. For larger numbers of inter- 
vals, however, LP-SOLVE is unable to return a solution 
within the time-out period whereas PBS returns the first 
solution very quickly. 

Table 2 summarizes the effect of increasing slack values 
on solver performance. Clearly, increasing the slack value 
generates larger numbers of possible scheduling intervals 
for each task i n  the graph while providing better schedule 
robustness. Again, LP-SOLVE is superior to PBS for small 
problems, while for larger ones, PBS finds feasible solu- 
tions when LP-SOLVE does not. 

The PBS solver is substantially faster than the more 
generic 1.P solver since it has been optimized to specifi- 
cally handle 0-1 ILP models such as ours. Experimental 
results presented in [ I  1 also support this conclusion. 

5 Approximate Method 
We discuss and evaluate an approximate or greedy tech- 

nique for interval selection when the number of intervals is 
very large number. We use the algorithm proposed in [SI 
and summarized io Fig. 5 

The algorithm GREEDY accepts a parameter a which 
can assume values within [0, I ] .  The set S of selected inter- 
vals is initialized and the scheduling intervals of all tasks 
are sorted in order of non-decreasing endpoint. When the 
algorithm processes an interval i, it identifies a minimum- 
weight se t  C i c S  of those selected intervals having 

resource conflicts with i (including any interval in S 
belonging to the same task as i). The set Ci is called the 
cheapest conflict set fori ,  and the interval i could be added 
to S if those in Ci are dropped from S .  Interval i is selected 
if iue ighr (Ci )Sa .  wr ighr( i ) ,  i.e., the total weight of the 
selected intervals increases by at least (1 - a ) .  w e i g h r ( i )  if 
i is selected and intervals belonging to Ci are dropped. 
Determining the conflict set Ci is equivalent to a graph col- 
oring problem and Ci can be efficiently computed i n  O(n) 
time where 11 is the number of intervals. Therefore, the 
overall complexity of the greedy algorithm in Fig. 5 is 

We have evaluated the pcrformance of the greedy algo- 
rithm on random task graphs and the results are shown in 
Table 3. We use slack = 1.0 to derive graph deadlines and 
assume four resource types, each with a capacity of three. 
The GREEDY algorithm is repeatedly invoked with a 
assuming values between [O, 11 i n  increments of 0.1. The 
table shows the sum of selected interval weights, the per- 
centage of tasks successfully scheduled, and the time taken 
for the entire run. Note that GREEDY is unable to fully 
schedule the entire tasks set given the above setup. 

O(,*) .  

6 Discussion 
This paper has addressed the problem of generating 

robust task schedules under explicit deadline constraints 
and proposed an UP-based solution. We formulated an ILP 
model whose solution maximizes the temporal flexibility 

Table 3: Experimental results summarizing the 
performance of the greedy algorithm 
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of the overall task schedule. This model was solved wing 
two integer solvers LP-SOLVE and PBS that use widely 
varying solution techniques. Our experiments show !:hat 
while LP-SOLVE provides superior solutions for small 
problems, PBS is able to quickly find feasible solutions for 
larger problems that LP-SOLVE cannot solve. An efficient 
and approximate algorithm to generate robust schedules 
was also presented and evaluated for large task graphs. 

Greedy algorithms for interval selection appear reason- 
able for very large task graphs, such as those found in some 
real-world scheduling problems; for example, aircraft 
maintenance [ I  I ] .  However, these algorithms may be  
unable to schedule entire task sets (as indicated by our 
experiments). Task priorities, if taken into account during 
interval selection, can improve solution quality by schedul- 
ing higher priority tasks over others. Slack distribution 
strategies taking into account task priorities, execution- 
time uncertainties associated with individual tasks, :and 
failure rates of critical resources used by the tasks as well 
as their repair-time distribution can also he investigai.ed. 
These issues are a focus of ongoing and future work. 
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