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ABSTRACT

This paper presents an efficient simulation scheme for

hybrid systems modeled as hybrid bond graphs (HBGs).

Considerable computational savings are achieved when

mode changes occur during simulation by identifying

persistent causal assignments to bonds, and, conse-

quently, fixed causal structures at HBG junctions when

the simulation model is derived. Persistent causal assign-

ments also reduce the possible computational structures

across all mode changes, and this leads to an overall re-

duction in the complexity of the simulation models. We

demonstrate the benefits of our approach for an electrical

power distribution system that includes a fast switching

inverter system.

INTRODUCTION

Accurate and efficient modeling and simulation ap-

proaches are essential for design, analysis, diagnosis, and

prognosis of complex, embedded systems. To address

these needs, we have developed component-oriented

modeling techniques based on hybrid bond graphs (Man-

ders et al., 2006), and a model-integrated design method-

ology for efficient simulation that facilitates diagnosis

and prognosis experiments (Roychoudhury et al., 2007;

Poll et al., 2007). The building of accurate and efficient

simulation models for hybrid, nonlinear systems is not

trivial, especially since the simulation must deal with the

computational issues that arise from nonlinear behaviors,

as well as, accommodate system reconfigurations that

produce discrete behavior changes. For systems where

the reconfigurations occur at high frequencies, such as

modern electronics-based electrical power systems (Biel

et al., 2004), it is especially important to maintain accu-

racy in the generated behaviors without sacrificing simu-

lation efficiency.

Bond graphs (BGs) are well-suited for modeling elec-

trical power systems. The BG modeling language allows

for multi-domain, topological, lumped-parameter mod-

eling of physical processes by capturing their energy ex-

change mechanisms (Karnopp et al., 2000). The contin-

Figure 1: Semantics of a Switching 1-Junction

uous BG representation has been extended to model hy-

brid systems by several researchers (Buisson et al., 2002;

Magos et al., 2003; van Dijk, 1994; Borutzky, 1995). Our

approach, hybrid bond graphs (HBGs), introduces dis-

crete mode changes into continuous BG models through

idealized switching junctions (Mosterman and Biswas,

1998). A two state (on and off ) finite state machine

implements the junction control specification (CSPEC).

Transitions between states may be functions of system

variables and/or system inputs. When a switching junc-

tion is on, it behaves like a conventional junction. When

off, all bonds incident on a 1-junction (0-junction) are

deactivated by enforcing 0 flows (efforts) on all bonds

incident on that junction (see Fig. 1). The system mode

at any given time is determined by composing the modes

of the individual switching junctions.

In earlier work, we produced an efficient simulation

method for hybrid systems by constructing reconfig-

urable block diagram (BD) models from HBGs (Roy-

choudhury et al., 2007; Daigle et al., 2007). We adopted

the BD formalism for simulating HBGs for three main

reasons: (i) the BD formalism is a widely used compu-

tational scheme, (ii) the input-output formulation of each

block in a BD can be determined using the causality in-

formation present in HBGs, and (iii) BD models preserve

the component structure of the model, which facilitates

introduction of faults into components for simulation-

based diagnosis and prognosis studies. Our BD-based

simulation models include switching elements that en-

able the online reconfiguration of the BD components

to account for different causality assignments in differ-

ent system modes. Every time a mode change occurs,

causalities are incrementally reassigned from the pre-

vious mode, and the effort and flow links are rerouted

by the switching elements to ensure that the computa-

tional model corresponds to the new causality assign-

ment. This approach produces acceptable results when

mode changes are infrequent. For fast switching systems



Figure 2: Block Diagram of a Boost-Buck AC Inverter

with frequent mode changes, e.g., electrical power con-

version and distribution systems, invoking the procedure

for reassigning causality at every mode change may pro-

duce unnecessary computational overhead, which leads

to significant increases in the simulation execution times.

Also, the BD models may include extraneous switch-

ing elements and signal connections, which account for

causality assignments that never occur during the simu-

lation.

This paper extends our earlier work by identifying

bonds whose causal assignments persist across mode

changes in the HBG model, and restrict possible recon-

figurations that can occur in the simulation model when

mode changes occur. Confining the effects of mode

changes to small parts of the simulation model substan-

tially reduces the computational effort required to exe-

cute mode changes during simulation. Further, persis-

tent causality assignments limit the number of switches

needed for each BD component, as well as, the number of

possible signal connections. Therefore, simulation effi-

ciency is increased, which produces significant gains for

fast switching systems. We demonstrate the effectiveness

of our approach by applying it to a power conversion and

distribution testbed developed for diagnosis and progno-

sis studies at NASA Ames (Poll et al., 2007).

MOTIVATING EXAMPLE: AC INVERTER

The Advanced Diagnostics and Prognostics Testbed

(ADAPT) models aircraft and spacecraft power distribu-

tion systems (Poll et al., 2007). It includes battery units

for power storage, inverters for DC to AC power conver-

sion, a power distribution network made up of a num-

ber of circuit breakers and relays, and DC and AC loads.

In this paper, we focus on the AC subsystem, and de-

velop the fast-switching inverter model to motivate our

approach.

The inverter, a two-stage boost-buck DC-AC con-

verter (Biel et al., 2004), consists of a cascade connec-

tion between a boost DC-DC converter with a full-bridge

buck DC-AC converter to achieve a transformerless DC-

AC step-up conversion (see Fig. 2). The boost converter

boosts the input DC voltage to a higher value (190 V, in

our case), and the buck converter stage generates the si-

nusoidal AC voltage. The fast switching in the boost and

buck converters are governed by two sliding mode con-

trollers, one for each stage of the inverter.

The equivalent circuit model of the boost-buck DC-

Figure 3: Circuit Model of a Boost-Buck AC Inverter

Figure 4: Inverter HBG Component Model

AC inverter is shown in Fig. 3, where S1 is a conventional

power switch, and S2 corresponds to a full bridge switch.

The control signals for S1 and S2 are u1 and u2, respec-

tively. The differential equations for the system can be

found in (Biel et al., 2004), and the model parameters are

listed in Table 1. The internal resistance Ron accounts

for the current that the inverter draws from the battery

when it is disconnected from its loads.

The HBG model of the inverter, derived from its cir-

cuit model, is shown in Fig. 4. Switch S1 is represented

by the synchronous switching junctions j1 and j2, i.e.,

they share the same CSPEC function. Switch S2, is rep-

resented by the switching junctions j3 − j6, with j3 and

j5 having the same CSPEC as junctions j4 and j6, re-

spectively. The switching conditions for junctions j3 and

j4 are logical negations of those for junctions j5 and j6.

The sliding mode controllers are also modeled using

HBGs. They generate signals that switch the inverter

junctions at kilohertz rates. Our previous simulation al-

gorithm invokes the Hybrid SCAP causal assignment

procedure (Roychoudhury et al., 2007) at every mode

change to compute the updated model configurations be-

fore the continuous simulation is resumed. However,

Table 1: Inverter Model Parameter Values

Inductances (H) L1 = 0.0022, L2 = 0.075

Capacitances (F) C1 = 0.0069, C2 = 6 × 10−6

Resitances (Ω) Ron = 489.49

Sliding mode α = 0.8 , β = 4.3649
controller 1 parameters δ = 111.375, K = 829.3347

Sliding mode a1 = 15.915,

controller 2 parameters a2 = 0.0048

Reference Voltages (V) v1Ref = 190,

v2Ref = 120
√

2 sin(120π)



Figure 5: Computational Structures for 1- and 2-Port Bond Graph Elements

careful inspection of the inverter HBG model shows that

the causality assignments at the switching junctions re-

main the same when the junctions are on. When the

junctions are off, the causal changes do not propagate

to adjacent junctions (see the next section for details).

Therefore, the external calls to Hybrid SCAP at every

mode change are not necessary, and considerably slows

the simulation. If we can identify the causality assign-

ments that do not change when reconfigurations occur,

the number of calls to Hybrid SCAP can be reduced,

and the model reconfiguration task can be simplified.

This approach is likely to produce more efficient simu-

lation models than our previous approach.

EFFICIENT SIMULATION OF HYBRID BOND

GRAPH MODELS

Efficient simulation models for hybrid systems should

meet two primary requirements: (i) avoid pre-

enumeration of all system modes, especially for systems

with a large number of modes, and (ii) minimize the

amount of computations performed when mode changes

occur. Reassignment of causality produces changes in

the computational model. But, we can minimize the

number of changes during reconfiguration by (i) recog-

nizing causal assignments that persist across all modes,

and (ii) not accounting for configurations that we can pre-

determine will never occur. As a result, we can reduce

the extent of causal propagation changes, and simplify

the simulation models.

Converting Bond Graphs to Block Diagrams

In our work, we assume that energy storage elements

(i.e., C and I) are in integral causality. Fig. 5 shows the

BD structure for 1- and 2-port BG elements (Karnopp

et al., 2000). The Sf , Se, and 1-port C and I elements,

and the n-port I and C fields, each have a unique BD rep-

resentation because their incident bonds have only one

possible causal assignment. The BDs for the n-port I

and C fields are simple functional and structural exten-

sions to the 1-port I and C elements, respectively, and

hence not shown in Fig. 5. The R, TF and GY elements

allow two causal assignments each, and each assignment

produces a different BD model.

Mapping a junction structure to its BD model is facil-

itated by the commonly used notion of the determining

bond, which captures the causal structure for the junc-

tion.

Definition 1 (Determining Bond) The determining

bond of a 0- (1-) junction is the bond that establishes

the effort (flow) value of all other bonds incident on the

junction.

Fig. 6 shows the BD expansion for a 1- junction. For

a 1-junction, all other bonds’ flow values are equal to the

determining bond’s flow value, and the effort value of

the determining bond is the algebraic sum of the effort

values of the other bonds connected to this 1- junction.

A junction with m incident bonds that does not switch

can have m possible BD configurations.

There is a well-defined procedure for converting a

causal BG structure to a BD model (Karnopp et al.,

2000). First, each bond is replaced by two signals, i.e.,

the effort and flow variables for the bond. Next, each

bond graph element is replaced by the computational

structure corresponding to the assigned causality, and

the signals connections are established to complete the

model.

Converting Hybrid Bond Graphs to Block Diagrams

As is shown in Fig. 6, the reassignment of causality due

to mode changes can alter a junction’s determining bond,

and, therefore, its underlying computational BD model.

However, instead of rebuilding the entire BD model ev-

ery time mode changes occur, we include switching ele-

ments in the BD components to reconfigure the compu-

tational model during simulation. For example, a switch-

ing junction with m incident bonds can switch between

m + 1 possible computational configurations, m cor-

responding to each incident bond being a determining

bond, and one corresponding to the junction being off,

in which each outgoing signal is set to zero. Therefore,

the physical connections between blocks are fixed, but

the interpretation of the signal on the connection (effort

or flow) changes depending on the causal assignment to

the bonds.

In some cases, however, the causal assignment for a

bond is invariant across all possible modes of system

behavior, i.e., the causal assignment is persistent. For

example, a C-element will always impose effort on a

1-junction through the connecting bond. In this case,

the BD for the 1-junction does not need to include any



Figure 6: Block Diagram Expansion of a 1-Junction

switching mechanism to accommodate the possibility of

this bond being its determining bond. If all bonds of a

junction have persistent causal assignments, then its de-

termining bond is fixed for all modes of the system in

which it is on. In this case, the BD for the 0-junction

does not need to include any switching mechanisms be-

cause it can assume a fixed structure when the junction

is on. In previous work, we have termed a nonswitching

junction with this property to have fixed causality (Roy-

choudhury et al., 2007). Switching junctions, by defini-

tion, change causality when they turn off, but this change

may not affect adjacent junctions. Therefore, we extend

our previous definition of fixed causality to also include

switching junctions.

Definition 2 (Fixed Causality) A junction that does not

switch is in fixed causality if, for all modes of system op-

eration, its determining bond does not change. A switch-

ing junction is in fixed causality if, for all modes in which

the junction is on, its determining bond does not change,

and for all modes where it is off, the inactivation of its in-

cident bonds does not affect the determining bond of any

of its adjacent junctions.

Persistent causality of bonds, and fixed causality of

junctions can be identified efficiently using a SCAP-like

algorithm before we construct the BD model for sim-

ulation from the HBG. In this algorithm, the causal-

ity assignment is first performed at junctions connected

to sources and energy storage elements, because the

bonds connecting them to these junctions have persistent

causality. A 0-(1-) junction is in fixed causality if it is

connected to a Se (Sf ) or a C (I) element. Otherwise,

a junction is in fixed causality if (i) its determining bond

connects it to a fixed causality junction (either directly,

or through a TF or a GY element), or (ii) all incident

bonds other than its determining bond are connected to

fixed causality junctions. Once a junction is determined

to be in fixed causality, we propagate this information

to its adjacent junctions to check if they too are in fixed

causality, or any of their bonds are in persistent causality.

Some additional analysis is required to determine

whether a switching junction is in fixed causality. When

the junction is on, all its bonds must have persistent

causality. When the junction turns off the determin-

ing bond for its adjacent junctions should not change,

i.e., none of its incident bonds can be a determining

bond for its adjacent junctions. A special case occurs if

two switching junctions are adjacent and share the same

CSPEC. The knowledge that they switch together can

help determine if causal changes will propagate when

they switch. When we visit a junction for the first time,

all its adjacent junctions may not have been checked for

fixed causality yet. Hence, the causality may need to be

propagated from all adjacent junctions before it can be

determined that the junction is in fixed causality. The

computational complexity of our approach to identify

persistent causality of bonds and fixed causality of junc-

tions, is polynomial in the size of the HBG, as it is similar

to the SCAP algorithm.

If a junction has incident bonds with persistent causal-

ity, or if the junction is in fixed causality, the compu-

tational model of the junction block can be reduced by

eliminating switching elements and signal connections

which account for causality assignments that will never

occur during simulation. This is illustrated for a 3-port

switching 1-junction in Fig. 6. If the junction is not in

fixed causality, its implementation can, in general, switch

between four possible configurations as mode changes

occur. However, if the junction is in fixed causality, the

BD representation for this junction has only one valid

on configuration, in addition to the off configuration. If

the junction is not in fixed causality, for example, if its

bond 1 connected to a Se, its BD representation need not

include a configuration with bond 1 as its determining

bond. Switched junctions in fixed causality help min-

imize causality reassignment computations when mode

changes occur. Therefore, when this 1-junction switches,

we know exactly what the causality assignment at this

junction is without having to call any external causality

reassignment procedure.

When switching junctions not in fixed causality

change modes, we have to make external calls to a

causality reassignment procedure. In previous work, we

have developed the Hybrid SCAP algorithm that reas-

signed causality incrementally, starting from the junction

directly affected by the switching, and then propagating

the changes only to those junctions whose causal assign-

ments were affected by changes in the adjacent junc-

tions (Daigle et al., 2007; Roychoudhury et al., 2007).

In this work, we use the knowledge of junctions in fixed

causality, and bonds with persistent causality, to reduce

the search and propagation for the Hybrid SCAP algo-

rithm. Causal changes are not propagated along bonds

with persistent causality, or to junction in fixed causality.



Figure 7: ADAPT Subsystem for Case Study

Consider the inverter HBG model (Fig. 4), where all

nonswitching junctions are in fixed causality. The in-

cident energy storage elements specify a unique deter-

mining bond for these junctions. All switching junc-

tions are also fixed. Consider switching junctions j1 and

j2. Since they always change modes simultaneously (be-

cause they share the same CSPEC), when on, j1 always

imposes flow on its adjacent junction j2 which is also

on. When they are off, the causality assignment of other

active junctions are not affected. The case is similar for

pairs j3 and j4, and j5 and j6. Since all junctions are in

fixed causality, the mode switchings in the inverter do not

require reassignment of causality, because the changes

never propagate. Therefore, Hybrid SCAP is not in-

voked, and minimal changes have to be made to the com-

putational model when mode changes occur, thus consid-

erably speeding up the inverter simulation, as we illus-

trate later.

Simulating the Block Diagrams

Once a reconfigurable BD is generated for a new mode,

using the extensions described above for a system model,

the execution engine executes the BD in a continuous

manner until the next mode change occurs. If the mode

change is attributed to the switching of junctions that are

not in fixed causality, the simulation is paused, the mod-

ified Hybrid SCAP algorithm is invoked to reassign

causality, and the BD is reconfigured accordingly before

the continuous simulation resumes. On the other hand,

if a mode change is attributed to a switching junction

with fixed causality, the BD reconfiguration is performed

without invoking Hybrid SCAP.

CASE STUDY

We demonstrate our modeling and simulation framework

using the ADAPT system at NASA Ames (Poll et al.,

2007). In this paper, we focus on a subsystem of ADAPT

shown in Fig. 7, i.e., a battery driving an inverter that is

connected to two loads through two relays. One of these

loads is a light bulb, while the other load is a large fan.

We build the system model using a component-based

modeling approach (Manders et al., 2006; Poll et al.,

2007). We use the HBG model of the inverter shown

in Fig. 4 for our experiments. The HBG model of the

lead-acid battery is based on an electrical equivalent cir-

cuit model, which captures the nonlinear battery behav-

ior (Daigle et al., 2007). We omit a detailed description

of the battery model due to space constraints. The re-

Figure 8: AC Fan Hybrid Bond Graph

Table 2: AC Fan Model Parameter Values

Inductances (in H) Lss = 0.275, LSS = 0.274,

L′

rr = 0.272, L′

RR = 0.271,

Lms = 0.1772, LmS = 0.2467

Inertia (in kg m2) J = 6.5 × 10−4

Resistances (in Ω) Rs = 163.02 , RS = 168.14,

R′

r = 145.12, R′

R = 145.12,

RstartRun = 26,

Friction (in kg m2/s) B = 4.734 × 10−4

Capacitances (in µF) CstartRun = 21.1

Other Parameters NS/Ns = 1.18, p = 2

sistive light bulb load consists of a single power port, a

1-junction, and a R element. The R element parameter

value is a constant 234.6966 Ω.

The AC fan is modeled as a single phase, fixed ca-

pacitor induction motor (Thaler and Wilcox, 1966). We

represent the system using the standard d − q model, de-

scribed in (Krause, 1986). We do not present the fan

model equations due to space constraints. The model pa-

rameters are presented in Table 2. The HBG model of

the fan, shown in Fig. 8, is adapted from that described

in (Karnopp, 2003). Note that the AC fan has two I-fields

with parameters,

I1 =

[

Lss Lms

Lms L′

rr

]

, and I2 =

[

LSS Lms

Lms L′

RR

]

.

Experimental Results

For the experimental results, we automatically derived a

Matlabr Simulinkr model of the subsystem shown in

Fig. 7, from the HBG model of the system using the im-

plementation described in (Roychoudhury et al., 2007)

along with the extensions presented in this paper. All

experiments were performed on a 2.4 GHz Intelr Pen-

tium CoreTM2 Duo CPU desktop, with 2 GB RAM. The

model was simulated using a fixed-step simulation with

a sample period of 7.5 µs.

Fig. 9 shows the results of the simulation. We plot the

voltages and currents at the output of the battery and the

inverter, as well as the rotational speed of the AC fan.

The simulation model was run for 20 seconds of simu-

lation time. In the first configuration, the light bulb is

connected to the inverter from 2 − 5 seconds, followed
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Figure 9: Simulation Results
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by a second configuration where the AC fan is turned on

between 7 − 15 seconds. An abrupt fault is injected in

the light bulb resistance at 3 seconds to demonstrate the

usefulness of the simulation approach for diagnosis ap-

plications. As we can see, the sliding mode controllers

are robust to load changes, and generates true 120 V rms

voltage for both the loads. However, the light bulb fault

affects the inverter current, and, therefore, the battery

current and voltage. The AC fan current shows a phase

difference of 0.1346 rad. As can be seen in Fig. 10, when

the AC fan is switched on, its speed of rotation increases

until it reaches a steady state of about 78.5 rad/s. On

turning off, the speed falls to zero.

Table 3 presents the result of an experiment to il-

lustrate the efficiency gained by simplifying a recon-

Table 3: Duration (in s) for Simulating Model for 1s

SCAP called Hybrid SCAP No causality

at every called at every reassignment

mode change mode change procedure called

6054.3 6025.2 58.3

figurable BD model by identifying bonds with persis-

tent causal assignments and junctions in fixed causality,

and avoiding the need for causal reassignment for these

modes. For this experiment, we assume that the AC fan is

the only load and is on for the duration of the experiment.

Each column in Table 3 reports the real time taken to sim-

ulate 1 second of simulation time for different HBG sim-

ulation runs. In all runs, all junctions of the HBG model

are in fixed causality. In the first run, we call SCAP every

time an inverter mode change occurs. Next, we repeat the

previous run, using Hybrid SCAP. Finally, in the third

run, we simulate the HBG without requiring any exter-

nal calls to Hybrid SCAP, since all switching junctions

are fixed. As can be seen from Table 3, our enhanced

simulation approach, implemented in the third run, is

103.85 times faster than the first run, and 103.35 times

faster than the second run. Our simulation approach also

resulted in considerable improvements in the efficiency

of simulation of a number of other configurations, espe-

cially for large systems like the VIRTUAL ADAPT simu-

lation testbed (Poll et al., 2007). Further increase in sim-

ulation efficiency can be obtained by running our simula-

tion models in the Rapid Accelerator mode of Simulink.



CONCLUSIONS

In this paper, we have presented an improved framework

for simulating hybrid systems. The crux of these im-

provements is the identification of persistent causality of

bonds, which not only avoids unnecessary invocations of

the external Hybrid SCAP algorithm, thereby gaining

increase in simulation efficiency, but also improves the

efficiency of the Hybrid SCAP algorithm, as well as,

enables the simplification of the simulation models by re-

moving parts that correspond to configurations that never

occur during the simulation. In the future, we will extend

our modeling approach and computational model gener-

ation schemes to handle situations of derivative causality,

and systematically evaluate how our approach performs

when applied to other real-world large hybrid systems.
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