
An Approach to Parallelizing the Simulation of Complicated Modelica Models
Joshua D. Carl, Gautam Biswas, Sandeep Neema, and Ted Bapty
Institute for Software Integrated Systems, Vanderbilt University

Nashville, TN 37235
{carljd1, biswas, sandeep, bapty}@isis.vanderbilt.edu

Keywords: equation-based modeling, directed acyclic graph,
parallel scheduling, efficient simulation models

Abstract
Designing embedded systems has become a complex and ex-
pensive task, and simulation and other analysis tools are tak-
ing on a bigger role in the overall design process. In an ef-
fort to speed up the design process, we present an algorithm
for reducing the simulation time of large, complex models by
creating a parallel schedule from a flattened set of equations
that collectively capture the system behavior. The developed
approach is applied to a multi-core desktop processor to de-
termine the estimated speedup in a set of subsystem models.

ACKNOWLEDGMENTS
This work was partially funded by DARPA contract

HR0011-13-C-0041.

1. INTRODUCTION
The complexity and cost of the design process for systems,

such as vehicles, aircraft, and power plants, makes modeling
and simulation tools a critical component of the modern de-
sign process, and it is clear that their importance will continue
to grow in the future. When applied in an effective manner,
simulation can be used to decrease the overall design time;
verify design specifications and constraints; identify, plan and
leverage emergent behavior across design components and
domains; and ease the addition of requirements and new tech-
nology to the design [13] [15]. By integrating simulation into
the design process we are looking to significantly reduce the
time and cost to design a new product.

Our simulation task requires translating the declarative,
physics-based, model that the designer creates into a simu-
lation model, which, in our work is a partially ordered set of
equations. These ordered equations may be represented as a
directed acyclic graph (DAG), called a task graph, with each
node representing one or more equations. The goal of this pa-
per is to use the task graph to create blocks of equations and
to create parallel and sequential relations among these blocks.
The task of generating an execution schedule for the equation
blocks has been studied in previous work (such as: [12], [8],
[3], and [14]) and we plan to use these algorithms to create
our parallel task schedule, and therefore decrease the simu-
lation time of a complex model. In this paper we will look

U0

i0 R1u1

i1

R3u3

i3

R2

u2

i2

LuL

iL

Figure 1. Circuit example

at one approach to parallelizing the simulation of a complex
system model to determine the amount of speedup we can
expect compared to execution on a single processor.

Recently, there has been a rise in the parallel processing
power available to a system designer. Modern engineering
workstations typically have multi-core processors, and cloud
computing options have become more widespread. We are in-
terested in leveraging this parallel processing power to reduce
the computation time for each simulation run. This will result
in a more efficient design-verify feedback loop for the system
design engineer.

The paper is organized as follows: Section 2. provides
some necessary background to modeling physical systems
and parallel algorithms. Section 3. describes algorithm we
will use to parallelize the simulation. Section 4. provides a
case study of our methods. Section 5. presents our conclu-
sions and future work.

2. BACKGROUND
This section reviews the component-oriented modeling

tools that form the framework for generating the flat equation-
based model of the system. We also review the literature on
parallel scheduling algorithms that have been developed for
scheduling a set of partially ordered equations describing sys-
tem models.

120



1 : u0 = f (t)

2 : u1 = R1∗ i1

3 : u2 = R2∗ i2

4 : u3 = R3∗ i3

5 : uL = L∗diL dt

6 : u0 = u1+u3

7 : ul = u1+u2

8 : u3 = u2

9 : i0 = i1+ il

10 : i1 = i2+ i3

u0

i0

u1

i1

u2

i2

u3

i3

ul

diL dt

Figure 2. Causal equations

2.1. Modeling Tools
We use the Modelica language [1], an equation based pro-

gramming language designed to model physical systems, to
simulate system behavior. It has traditional programming lan-
guage constructs such as functions, parameters, inheritance,
logical control statements (if-else), and loops. Models ex-
change data through connectors, and each connector defines
the terminal variables. Submodels can be added to a larger
model with the interactions happening through the connec-
tors. Since Modelica is equation based, the behavior of the
components and the interactions between components are
acausal. The causality of the system equations is determined
by the model compiler, and not by the model designer. This is
important for component based design, as it means that com-
ponent models do not need to be created for every causal sit-
uation, simplifying the model construction task.

2.2. Transforming Equations to a Task Graph
All Modelica compilers perform roughly the same high-

level tasks to transform a hierarchical declarative model to an
executable model, where the executable model is a partially
ordered graph of computational blocks. As a running exam-
ple, we will reference the circuit in figure 1 (this example
circuit and equations are taken from [7]). First, all hierarchy
is removed from the model so that the model is reduced to
a completely flattened set of equations. Second, a bipartite
graph of equations and variables is created. There are links
between the equations and variables if a variable is used in
an equation. Note that any state variables should be treated
as constants in the graph (no link to an equation) and the
state variable derivative is treated as a variable. Third, per-
form a matching between the equations and variables using
a maximum flow algorithm [11] [9]. This causalizes the sys-
tem and determines which equation solves for each variable.

There is a one-to-one mapping of equations and variables, so
that each equation solves for only one variable. Note that if
the system is not at index 1, then perform index reduction
using Pantelides algorithm [20] (a description is included in
[7]). The bipartite graph for the circuit in figure 1 is shown in
figure 2. The solid red lines are the causal equation/variable
pairs and the blue dashed lines are the equations that use the
variable, but do not solve for it. This system is of index 1,
so there is no need to perform index reduction. Fourth, cre-
ate a directed graph from the bipartite graph by converting
each non-matching edge into a directed edge pointing from
the variable to the equation it which it is used. Then collapse
each equation-variable matching pair into a single node. This
is shown in figure 3. Fifth, run Tarjan’s algorithm [22] to de-
termine the strongly connected components (SCCs). These
represent the systems of equations. Finally, collapse each
group of equations into a single strongly connected compo-
nent node. The graph in figure 3 has a strongly connected
component with 6 variables tied up in the loop; equations 6,
8, 4, 3, 10, and 2. Finally, collapse the strongly connected
component into a single node. The final DAG is in figure 3.

At the termination of the final step, the hierarchical declar-
ative model has been transformed into a directed acyclic
graph. Each node in the graph represents one SCC, and each
SCC represents the computational work of one or more equa-
tions. If the number of equations in the SCC is more than
1, then it means that the SCC represents an algebraic loop.
The hierarchy in the graph represents the order in which the
equations need to be solved, to guarantee that each equation
is using the most current information when calculating the
value of a variable.

This approach does not include the integration algorithm
as a part of the system of equations, which is known as in-
line integration, and has been studied before in [7] and else-
where. Inlining an explicit integration algorithm in a paral-
lel environment will likely produce an extra speedup that is
not seen when the algorithm does not use inlining because it
merges two formerly separate processes: calculating the sys-
tem derivatives, and integrating those derivatives. Inlining an
implicit algorithm may not improve the simulation time di-
rectly, as implicit algorithms add a non-linear algebraic loop
to the system equations [7]. However, inlining an implicit al-
gorithm should not be written off, because inline integration
of an implicit algorithm may allow for direct DAE simula-
tion, which avoids the problem of needing to perform index
reduction during the model compilation process. There are
numerous other advantages to directly simulating the DAE
equations, and [7] is recommended for further reading.

2.3. Parallel computation
As described in the previous section, the end result of a

Modelica model compilation process is a a directed acyclic

121



Figure 3. Directed graph of equations from figure 1

Figure 4. Directed acyclic graph of equations from figure 1

task graph, where each task in the graph represents one or
more equations to be solved. Parallelizing this task graph to
speed up the simulation is our primary interest.

Outside of certain specific situations, creating an optimal
schedule in this scenario has been shown to be NP-complete
[14], but there are a number of heuristic algorithms have
been developed that are known to generate good schedules
that speed up computation. A good schedule is very impor-
tant because it guarantees that the tasks will be completed in
order, that the processor workload is balanced with minimal
amounts of processor idle time, and that there is a speed-up
compared to a single processor environment.

2.3.1. Scheduling Algorithms
Hu [12] presented an optimal algorithm for assigning tasks

to an unlimited number of processors. The drawbacks to his
approach are that each task was assumed to take the same
time, and the graph representing the system had to have an
in-tree structure, where each node could have multiple pre-
decessors but only one successor. The algorithm works by
always trying to schedule the tasks that are the farthest away
from the terminal node.

Coffman and Graham [8] presented an optimal algorithm
for scheduling nodes on an arbitrary tree, but only on a sys-
tem with 2 processors, and, again, with tasks that are all the
same length. The nodes are scheduled based on their distance
from the terminal node, and if there is ever a tie between two
nodes, then the algorithm will pick the node where its set of
successors is a superset of the other node. If the sets of suc-
cessors are disjoint, then a node can be chosen arbitrarily.

Adam, Chandy, and Dickson [3] presented a comparison of
various list scheduling algorithms that supported task graphs
of any arbitrary size and shape (as long as they were directed
and acyclic), and where the tasks in the graph may have any
computation time. A list scheduling algorithm creates a list
of the tasks sorted by priority. As tasks become available to
run, the task with the highest priority is based on the priority
list. In their experiments the highest level first with estimated
times (HLFET) algorithm, where the tasks with the highest
level are given scheduling priority, consistently produced the
best results. Their highest level algorithm was implemented
as the critical path (CP) algorithm in other papers [14], and is
defined as the longest path from the current node to the ter-
minal node taking into account the task processing time and
the task communication time. This represents a lower bound
on the length of time to solve the system. In [3] the CP algo-
rithm created a schedule that was within 4.4% of the optimal
schedule in 265 out of 266 test cases. Kasahara and Narita
[14] presented a refinement to the HLFET algorithm by in-
cluding a tie breaker condition so that if there every was a tie
between two tasks the task with the most immediate succes-
sors is scheduled first (CP/MISF).

122



Of these algorithms the CP and CP/MISF are the most rele-
vant to our purposes. They produce good schedules, and they
do not have the restrictions of Hu’s algorithm and Coffman
and Graham’s algorithm.

2.3.2. Modelica Parallelization
OpenModelica (OM) [2] is an open source Modelica com-

piler. The team behind OM have done a fair amount of re-
search for parallelizing Modelica models by dividing the pro-
cessing across multiple networked PCs. Some early work was
presented in [4]. They proposed breaking each of the model
equations down into the individual arithmetic operations and
treating each operation as a task in the task graph. Then the
different tasks are merged or duplicated to produce a task
graph that is easily parallelizable. However, the integration
algorithm was not parallelized, so once all of the equations
were solved for a time step, the solved variables were sent
back to the main CPU running the solver to perform the in-
tegration [16]. They also presented some later work with the
same equation parallelization scheme, but also included a par-
allel solver [16]. In [17] they presented an algorithm to sort
the tasks assigned to the various processors to minimize com-
munication delays.

They have also explored using a GPU to perform the simu-
lation [19] and have investigated using transmission line mod-
eling [18] [21] to add physically accurate delays to the sys-
tem. These delays allow the system to be broken into inde-
pendent component at the delay points.

More recently, Casella [6], proposed an algorithm specif-
ically for creating a parallel schedule for a Modelica model.
The algorithm starts by grouping the tasks that have no pre-
decessors into a set S1. These tasks are removed from the
task graph, and the new nodes that have no predecessors are
grouped into a set S2. The process continues until all of the
nodes in the graph are assigned to one of the sets of Si. The
sets are scheduled in order, with the tasks in each set sched-
uled in a random order. The simulation must wait until all of
the tasks in each set are complete before beginning to process
the next set. This slows down the overall processing as some
tasks from a later set will likely be able to start before all of
the tasks from the current set finish.

In [10] Elmqvist, Mattsson and Olsson presented a refine-
ment of Casella approach to creating a parallel schedule. The
authors used heuristic rules to divide the system of equations
into several layers. Within each layer a number of sections are
created that may be executed in parallel. Tasks are assigned
to a section that must be executed in sequence. They achieved
speed up factors of 2.1 to 3.4 on a variety of systems, where
the speedup factor is defined as the serial execution time di-
vided by the parallel execution time.

Walther, et. al. [23] also presented an approach to paral-
lelizing a Modelica model based on the dependency graph of

U0

i0 R1u1

i1

CuC

iC

R2

u2

i2

LuL

iL

Figure 5. Second circuit example

the system. Their scheduling approach required them to es-
timate the communication and execution times for the tasks.
The communication costs were based on measured commu-
nications between processors, and then applied to the system
based on how much data needed to be transported between
tasks. The execution times for each task were measured by
running the model serially. The measured task times were
then applied to the dependency graph for scheduling. In order
to help reduce the communication costs between the tasks,
they merge tasks in certain situations. In their results the best
cases were almost 5 times faster than serial processing.

We are targeting a modern engineering workstation with a
multiple core processor as our simulation environment. This
will allow us to have a shared memory across all proces-
sors, and to treat communication times as constant or neg-
ligible. This parallel architecture means there is little to be
gained from breaking equations into pieces and restructur-
ing the graph to reduce the communication costs between the
tasks. Casella’s approach is similar to ours, but we are fo-
cused on applying a traditional scheduling algorithm to a task
graph derived from a Modelica model.

3. APPROACH
In this section we will define task graph creation algorithm,

describe our task computation cost estimation process, and
present a simple example.

3.1. Algorithm and Example
We are now ready to present an algorithm to populate the

task graph with the necessary information to build a sched-
ule. In parallel to describing the algorithm we will look at the
two simple electrical circuits (both examples are taken from
[7]). The task graph for the first circuit is shown in figure 4
and was derived in the previous section. The second circuit
is shown in figure 5. The task graph for the second circuit is
in figure 6. Both examples have 10 equations, except that R3

123



Figure 6. Directed acyclic graph of equations from figure 5

in the first example has been exchanged for a capacitor in the
second example. This means that the circuit in figure 1 has an
algebraic loop, while the circuit in figure 5 does not. This will
have a significant impact on the estimated computation times
of each node in the graph.

This algorithm estimates the computation times and calcu-
lates the critical path value of each node. First, create a copy
of the graph, initialize the critical path value in all nodes to 0,
and create a global empty task priority list. Second, identify
all of the leaf nodes in the copy, nodes without any succes-
sors, in each DAG. In figure 4 the leaf nodes are blocks 4 and
5, and in figure 6 the leaf nodes are blocks 7, 9 and 10. Third,
estimate the computation time for each leaf node, and add the
estimated time to that node’s CP in the original graph and add
the node information and CP to the appropriate place in the
task priority list. In figure 4 blocks 4 and 5 have an estimated
computation time of 2. The leaf nodes in figure 6 also have an
estimated computation time of 2. Fourth, take the calculated
CP and compare it to the CP of each of the node’s parents. If
the child’s CP is larger than the parent’s CP, store the child’s
CP as the parent’s CP in the original graph. Fifth, remove the
leaf nodes and their connections from the copy graph. Finally,
repeat the algorithm from step 2 until all of the nodes have an
estimated CP, and there are no more nodes in the copy graph.
By the end of the algorithm we have a directed acyclic graph,
where each node in the graph has an estimation of its critical
path value and a knowledge of its predecessor and successor
nodes. The scheduling algorithm is now free to begin schedul-
ing the tasks on the available processing nodes based on the

critical path value of the tasks in the task priority list.
The block representing an algebraic loop, block 2, has an

estimated time of 66, and is almost 10 times longer than
the other 4 tasks combined (combined estimated computation
time of 7). This means that block 2 will dominate any parallel
scheduling algorithm. In a two processor system, block 1 and
block 2 will be scheduled sequentially on one processor. The
other processor must wait idle for 67 time units until block
2 is complete. When block 2 is finished, blocks 3 and 5 may
be scheduled in parallel, and block 4 may be scheduled on
either processor when block 3 is complete. This gives a total
schedule time of 71. Due to the simplicity of the graph and
the discrepancy of estimated computation times due to the al-
gebraic loop, parallelization only reduces the simulation by 2
time units compared to the single processor time (single pro-
cessor time of 73).

The second example has no algebraic loops, and all of the
tasks have estimated processing times of 1 or 2. This eases the
task of creating a schedule with few gaps. On 2 processors,
this graph produces a schedule of length 9, which is a 50%
improvement over a single processor schedule, which has a
schedule of length 18. The 2 processors parallel schedule is
an ideal schedule since there are no idle time periods.

3.2. Task Computation Cost Estimation
The scheduling algorithms we used require an estimation

of the task processing time. We use a relatively simple scheme
of estimating the task computation time. Each simple arith-
metic operation (addition, subtraction, multiplication, divi-
sion, and logical comparisons) is assigned a value of 1. If
this is a simple equation (not a system of equations) then the
total number of arithmetic operations is the computation cost.
For systems of equations, the estimating the computation time
is more complex because systems of equations take longer
to solve than simple equations. Linear systems of equations
can be solved relatively efficiently, but require computational
overhead above a simple set of equations. Non-linear systems
of equations may require a number of iterations through the
system of equations, and will therefore take longer to solve
than a linear system of equations. Our task estimation reflects
this increased time by multiplying the total number of arith-
metic operations in the system of equations by the number
of equations if it is a linear system of equations, and by the
square of the number of equations if it is a non-linear system
of equations.

4. CASE STUDY
To study the relative speed up gained by processing the

model equations in parallel, we will look at two case studies.

124



Figure 7. RO Subsystem Schematic
Statistic Value

Equations 28
Variables 28
Blocks 26

Non-linear blocks 0
Table 1. Key statistics for the RO system.

4.1. Reverse Osmosis System
The RO system is part of the Advanced Water Recovery

System (AWRS), which is a subsystem of the NASA Ad-
vanced Life Support System (ALS) [5]. The ALS was de-
signed as a way to support life for extended duration space
missions by reclaiming waste water. The RO subsystem uses
a membrane to remove inorganic matter and particles from
water (figure 7). The RO system has three different modes of
operation that are controlled with a three-way valve, where
each position of the valve specifies a different mode of oper-
ation. During the first two modes of operation, identified as
M1 and M2, clean water leaves the system through the mem-
brane, but dirty water, brine, is recirculated in a feedback loop
to be filtered again. As a result of the feedback, the concentra-
tion of impurities in the water increases with time until all of
the water must be purged from the system, during mode P, to
be processed by a different subsystem. To keep our modeling
task simple, we will only deal with Mode 1 of the RO system.

The RO system has 28 variables and equations, and 6 state
variables. The equations of the model were derived from the
bond graph presented in [5]. Information on the model size is
in table 1.

It is easy to see from table 2 that parallelizing the process-
ing of the equations decreased the length of the simulation
compared to the single processor case. The schedule length
was calculated by summing all of the time steps in the sched-
ule for a single processor (in a parallel schedule each of the
processors have the same length schedule), including both
busy and idle periods. The percent processor idle was cal-
culated for each processor by summing the idle time steps on
each processor, and then dividing that sum by the full sched-
ule length. It is intended to measure how efficiently the sched-
ule uses the available processors. The speedup ratio compared
to a single processor schedule was calculated by the equation

Figure 8. Frequency of task costs for the RO system

tsingle/tparallel , where tparallel is the length of the parallel pro-
cessor schedule, and tsingle is the length of the single processor
schedule. The Casella algorithm is as described in [6], and CP
is the critical path algorithm.

The best results were for the CP algorithm with 4 and 8
processors (both produced the same length schedule); these
cases gave a 2.5 speed ratio up compared to the single pro-
cessor case. However, the 4 processor case had 2 processors
with and idle time for more than 50% of the schedule, and the
8 processor case had 4 processors that were idle 95% of the
schedule. This is not a good use of resources. The 3 processor
case seems to provide an ideal compromise between schedule
improvement and ensuring high resource utilization. It pro-
vided a schedule that was almost as fast as the 4 and 8 pro-
cessor case (only 1 time step difference) and there were dra-
matically fewer gaps in the schedule. The 2 processor case for
the CP algorithm provided an ideal schedule as there are no
gaps in the schedule and a 50% reduction in schedule length.
The Casella algorithm did not produce as short of a schedule
as the CP method. It took the Casella algorithm 4 processors
to get a 50% improvement. That was accomplished with only
2 processors by the CP algorithm. Finally, to show the differ-
ence in estimated task computation time figure 8 shows how
frequently a computation time was assigned. This shows that
there is a wide range of task sizes of the simulation model,
and that any parallel simulation structure needs to take these
differences into account.

4.2. Vehicle Drivetrain
The vehicle drive train example was created by Modelon

AB as a part of DARPA’s AVM project. Its purpose is to pro-
vide a simple model of a vehicle’s drive train. It has an engine,
power take off torque converter, cross drive transmission (two
“output” shafts), and drive shafts for the left and right sides
of the vehicle. It is a fairly typical example of a model an
engineer would create to template a vehicle drive line. The
drive line equations were processed from an OpenModelica
generated XML file.

125



Algorithm Processors
Schedule
Length Percent Processor Idle Speedup Ratio

Single 1 96 0 -
Casella 2 62 0.06, 0.39 1.55
Casella 3 51 0.06, 0.55, 0.51 1.88
Casella 4 49 0.14, 0.55, 0.61, 0.73 1.96
Casella 8 46 0.17, 0.74, 0.63, 0.78, 0.89, 0.78, 0.96, 0.96 2.09

CP 2 48 0, 0 2
CP 3 40 0.03, 0.25, 0.33 2.4
CP 4 39 0, 0.44, 0.51, 0.59 2.46
CP 8 39 0, 0.54, 0.54, 0.67, 0.95, 0.95, 0.95, 0.95 2.46

Table 2. Speed-up results for RO system.

Algorithm Processors
Schedule
Length Percent Processor Idle Speedup Ratio

Single 1 243547 0 -
Casella 2 227202 0.06, 0.87 1.07
Casella 3 226687 0.09 ,0.90, 0.94 1.07
Casella 4 226481 0.08, 0.96, 0.93, 0.96 1.08
Casella 8 226072 0.40, 0.96, 0.99, 0.69, 0.99, 0.97, 0.92, 0.99 1.08

CP 2 136596 0, 0.22 1.78
CP 3 136583 0, 0.54, 0.67 1.78
CP 4 136577 0, 0.84, 0.54, 0.84 1.78
CP 8 136577 0, 0.93, 0.55, 0.95, 0.91, 0.95, 0.99, 0.95 1.78

Table 4. Speed-up results for vehicle driveline.

Statistic Value
Equations 816
Variables 816
Blocks 624

Non-linear blocks 126
Table 3. Key statistics for the vehicle driveline.

The vehicle drive line example provided some interesting
estimated results. The results are calculated the same way as
in table 2, and are shown in table 4. For the CP algorithm,
increasing the number of processors beyond 2 did not signif-
icantly decrease the time it would take to process the equa-
tions, and the amount of time each processor is idle increases
dramatically for each processor added. The most idle time is
for the 8 processor system where 6 of the 8 processors were
idle for more than 90% of the schedule. This is unexpected,
but it shows that there is not much inherent parallelism in
the system equations. The Casella algorithm did not perform
very well as each processor configuration had a speedup ra-
tio of just above 1. This is again likely due to the lack of
parallelism in the model and to the algorithm not taking into
account differences in task execution.

5. CONCLUSION AND FUTURE WORK
From the above case study it is easy to see that paralleliz-

ing the calculation of the system equations can yield a sig-
nificant speed up in the total time to solve the equations. The

speed up shown here will not be fully reflected in a real sys-
tem because this analysis does not parallelize the integration
algorithm. However, even without parallelizing the integra-
tion algorithm these methods will produce results in the form
of lower simulation times.

For future work we plan to improve our cost estimation al-
gorithm, create a parallel simulation environment, and create
an on-line scheduling algorithm that will allow us to dynami-
cally change the estimated task execution time, and therefore
the critical path, during simulation into a measured task exe-
cution time. These changes will allow us to more accurately
determine the benefits parallelization will have. We are also
interested in fully supporting inline integration in our simula-
tion environment. All of these techniques will reduce the time
it takes to perform a simulation, which will greatly benefit an
engineer that is designing and simulating a complex system.

REFERENCES
[1] Modelica. https://www.modelica.org/.
[2] Openmodelica. http://www.openmodelica.org.
[3] T. L. Adam, K. M. Chandy, and J. R. Dickson. A com-

parison of list schedules for parallel processing systems.
Commun. ACM, 17(12):685–690, Dec. 1974.

[4] P. Aronsson. Automatic Parallelization of Equation-
Based Simulation Programs. PhD thesis, Linköping
University, PELAB, The Institute of Technology, 2006.

126



[5] J. D. Carl, Z. Lattmann, and G. Biswas. Modeling
and simulation semantics for building large-scale multi-
domain embedded systems. In 27th European Confer-
ence on Modelling and Simulation, Norway, May 2013.

[6] F. Casella. A strategy for parallel simulation of declara-
tive object-oriented models of generalized physical net-
works. In H. Nilsson, editor, Proceedings of the 5th
International Workshop on Equation-Based Object-Ori-
ented Modeling Languages and Tools. Linköping Uni-
versity Electronic Press, April 2013.

[7] F. E. Cellier and E. Kofman. Continuous system simu-
lation. Springer, 2006.

[8] J. Coffman, E.G. and R. Graham. Optimal scheduling
for two-processor systems. Acta Informatica, 1(3):200–
213, 1972.

[9] J. Edmonds and R. M. Karp. Theoretical improvements
in algorithmic efficiency for network flow problems. J.
ACM, 19(2):248–264, Apr. 1972.

[10] H. Elmqvist, S. E. Mattsson, and H. Olsson. Parallel
model execution on many cores. In Proceedings of the
10th International Modelica Conference, Lund, Swe-
den, March 2014. Modelica.org.

[11] D. R. Ford and D. R. Fulkerson. Flows in Networks.
Princeton University Press, Princeton, NJ, USA, 2010.

[12] T. C. Hu. Parallel sequencing and assembly line prob-
lems. Operations Research, 9(6):pp. 841–848, 1961.

[13] G. Karsai and J. Sztipanovits. Model-integrated devel-
opment of cyber-physical systems. In U. Brinkschulte,
T. Givargis, and S. Russo, editors, Software Technolo-
gies for Embedded and Ubiquitous Systems, volume
5287 of Lecture Notes in Computer Science, pages 46–
54. Springer Berlin Heidelberg, 2008.

[14] H. Kasahara and S. Narita. Practical multiproces-
sor scheduling algorithms for efficient parallel process-
ing. Computers, IEEE Transactions on, C-33(11):1023–
1029, 1984.

[15] Z. Lattmann, A. Pop, and et. al. Verification and design
exploration through meta tool integration with open-
modelica. In Proceedings of the 10th International
Modelica Conference, Lund, Sweden, March 2014.
Modelica.org.

[16] H. Lundvall and P. Fritzson. Automatic parallelization
of object oriented models across method and system. In
In Proceedings of the 6th Eurosim Congress, 2007.

[17] H. Lundvall, K. Stavåker, P. Fritzson, and C. Kessler.
Automatic parallelization of simulation code for
equation-based models with software pipelining and
measurements on three platforms. SIGARCH Comput.
Archit. News, 36(5):46–55, June 2009.

[18] K. Nyström and P. Fritzson. Parallel simulation with
transmission lines in modelica. In Proceedings of
the 5th International Modelica Conference (Model-

ica’2006), 2006.
[19] P. Ostlund, K. Stavaker, and P. Fritzson. Paral-

lel simulation of equation-based models on cuda-
enabled gpus. In Proceedings of the 9th Workshop
on Parallel/High-Performance Object-Oriented Scien-
tific Computing, POOSC ’10, pages 5:1–5:6, New York,
NY, USA, 2010. ACM.

[20] C. Pantelides. The consistent initialization of
differential-algebraic systems. SIAM Journal on Scien-
tific and Statistical Computing, 9(2):213–231, 1988.

[21] M. Sjölund, M. Gebremedhin, and P. Fritzson. Paral-
lelizing equation-based models for simulation on multi-
core platforms by utilizing model structure. In A. Darte,
editor, Proceedings of the 17th Workshop on Compilers
for Parallel Computing, July 2013.

[22] R. Tarjan. Depth-first search and linear graph algo-
rithms. SIAM Journal on Computing, 1(2):146–160,
1972.

[23] M. Walther, V. Waurich, and C. S. D.-I. I. Gubsch. Equa-
tion based parallelization of modelica models. In Pro-
ceedings of the 10th International Modelica Confer-
ence, Lund, Sweden, March 2014. Modelica.org.

AUTHOR BIOGRAPHIES
JOSHUA D. CARL is currently a graduate student at Van-
derbilt University and is a member of the Institute for Soft-
ware Integrated Systems (ISIS). His research interests in-
clude cross domain modeling and simulation of embed-
ded and cyber physical systems. His email address is:
carljd1@isis.vanderbilt.edu.
GAUTAM BISWAS is a Professor in the EECS Department
and a Senior Research Scientist at ISIS at Vanderbilt Uni-
versity. His primary research interests are modeling and sim-
ulation of complex systems and applying these models for
diagnosis and fault adaptive control. His email address is:
biswas@isis.vanderbilt.edu.
SANDEEP NEEMA is a Research Associate Professor of
Electrical Engineering at ISIS at Vanderbilt University. His
primary research interests are embedded systems, design-
space exploration, and model integrated computing. His
email address is: neemask@isis.vanderbilt.edu.
TED BAPTY is a Research Associate Professor of Electri-
cal Engineering at ISIS at Vanderbilt University. His email
address is: bapty@isis.vanderbilt.edu.

127


