A Publish/Subscribe Middleware for Dependable and
Real-time Resource Monitoring in the Cloud -

Kyoungho An, Subhav Pradhan, Faruk Caglar, Aniruddha Gokhale
Institute for Software Integrated Systems (ISIS)
Department of Electrical Engineering and Computer Science
Vanderbilt University, Nashville, TN 37235, USA

{kyoungho.an, subhav.m.pradhan, faruk.caglar, a.gokhale}@vanderbilt.edu

ABSTRACT

Providing scalable and QoS-enabled (i.e., real-time and re-
liable) monitoring of resources (both virtual and physical)
in the cloud is essential to supporting application QoS prop-
erties in the cloud as well as identifying security threats.
Existing approaches to resource monitoring in the cloud are
based on web interfaces, such as RESTful APIs and SOAP,
which cannot provide real-time information efficiently and
scalably because of a lack of support for fine-grained and
differentiated monitoring capabilities. Moreover, their im-
plementation overhead results in a distinct loss in perfor-
mance, incurs latency jitter, and degrades reliable deliv-
ery of time-sensitive information. To address these chal-
lenges this paper presents a novel lighter weight and scal-
able resource monitoring and dissemination solution based
on the publish/subscribe (pub/sub) paradigm. Our solution
called SQRT-C leverages the OMG Data Distribution Ser-
vice (DDS) real-time pub/sub middleware, and uses effective
software engineering principles to make it usable with mul-
tiple cloud platforms. Preliminary empirical results com-
paring SQRT-C with contemporary web-based resource us-
age monitoring services reveals that SQRT-C is significantly
better than the conventional approaches in terms of latency,
jitter and scalability.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of
Systems—real-time, fault-tolerance, availability

General Terms

Monitoring, Reliability, Performance

*This work was supported in part by NSF awards CA-
REER/CNS 0845789 and SHF /CNS 0915976. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessar-
ily reflect the views of the National Science Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SDMCMM’ 12, December 3—4, 2012, Montreal, Quebec, Canada.
Copyright 2012 ACM 978-1-4503-1615-6/12/12 ...$15.00.

Keywords

Resource Monitoring, Cloud Computing, Pub/Sub Middle-
ware

1. INTRODUCTION

Cloud computing is a distributed computing paradigm
that provides massively scalable resources as services to cus-
tomers who reside outside the cloud [1]. As businesses move
towards leveraging resources from the cloud rather than
procuring and maintaining them in-house, cloud customers
expect the same quality of service (QoS) for their services
from the cloud as they did when the applications were hosted
in-house at the customer’s premises. Even the US Depart-
ment of Defense is moving towards hosting their mission-
critical applications in the cloud [2], which will require the
cloud to assure stringent QoS properties.

In other words, the cloud must be dependable in that it
must support application QoS despite fluctuations in avail-
abilities of cloud resources and their failures, adapt to changes
in application workloads, and assure secure operations. Al-
though solutions for autoscaling, fault tolerance and security
mechanisms are needed to address these challenges, at the
core of all these solutions lies the need for accurate, timely,
dependable, and scalable monitoring of both the physical
and virtualized resources of the cloud. This becomes all
the more important as the Resource-as-a-Cloud (RaaS) [3]
model becomes more prevalent.

Related Work: Contemporary compute clusters and
grids have provided special capabilities to monitor the dis-
tributed systems via frameworks, such as Ganglia [4] and
Nagios [5]. Additionally, [6] provides a comparative study of
Pub/Sub middleware for real-time grid monitoring in terms
of real-time performance and scalability. According to [7],
one of the distinctions between grids and clouds is that cloud
resources are more abstracted and virtualized compared to
grid resources. However, these frameworks are structured
primarily to monitor physical resources only, and not a mix
of virtualized and physical resources. Even though some
of these tools have been enhanced to work in the cloud,
e.g., virtual machine monitoring in Nagios' and customized
scripts used in Ganglia, they still do not focus on the time-
liness and reliability of the dissemination of monitored data
that is essential to support application QoS in the cloud.

In other recent works, [8] presents a virtual resource mon-
itoring model while [9] discusses cloud monitoring architec-
ture for private clouds. Although these prior works describe

http://people.redhat.com/ rjones/nagios-virt

cloud monitoring systems and architectures, they do not pro-
vide experimental performance results of the models, such
as overhead and response time. Consequently, we are unable
to determine their relevance to host mission-critical applica-
tions in the Cloud. Latency results using RESTful services
are described in [10], however, they are not able to support
diverse and differentiated service levels for cloud clients.

Paper Contributions: We surmise that the publish/sub-
scribe (pub/sub) [11] paradigm can overcome the limita-
tions with existing monitoring and dissemination mecha-
nisms that use RESTful APIs. Moreover, since dependabil-
ity (i.e., performance and timeliness) in information dissem-
ination is a key need, a specific form of pub/sub supported
by the OMG Data Distribution Service (DDS) [12] for data-
centric pub/sub, is a promising technology to disseminate
resource monitoring data of virtual machines on physical
nodes both scalably and in real-time.

This paper describes our DDS-based solution called Scal-
able and QoS-enabled virtual resource monitoring system for
Real-Time applications in Clouds (SQRT-C). SQRT-C is
compatible with cloud software for ITaaS, such as OpenNeb-
ula, Eucalyptus, and OpenStack—a property it acquires by
exploiting the libvirt library that interacts with a hypervisor
to retrieve information about virtual machines.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the system architecture and implementation
of SQRT-C, Section 3 discusses experimental results evaluat-
ing SQRT-C, and finally Section 4 offers concluding remarks
alluding to future work.

2. DESIGN OF SQRT-C

This section presents SQRT-C, which builds on top of lib-
virt for accessing resources of virtual machines, and OMG
DDS for real-time dissemination of the virtual resource in-
formation. To better understand our solution, we present
an overview of DDS and describe the design considerations
in adopting DDS. Subsequently, we present the architecture
of SQRT-C.

2.1 Overview of OMG DDS

The OMG Data Distribution Service (DDS) specifies a
layered architecture comprising three layers. Two of these
layers are useful in making DDS a promising design choice
for use in the scalable and timely dissemination of resource
usage information in a cloud platform. One of the layers is
called Data Centric Publish/Subscribe (DCPS), which pro-
vides a standard APT for data centric, topic-based, real-time
pub/sub [13]. It provides efficient, scalable, predictable, and
resource-aware data distribution capabilities. The DCPS
layer operates over another layer that provides a DDS inter-
operability wire protocol [14] called Real-Time Publish/Sub-
scribe (RTPS).

One of the key features of DDS when compared to other
pub/sub middleware is its rich support for QoS offered at
the DCPS layer. DDS provides the ability to control the use
of resources such as network bandwidth and memory, and
non-functional properties of the topics, such as persistence,
reliability, timeliness, and others [15].

2.2 Design Considerations in Adopting DDS
for Cloud Platforms

Despite the promise shown by DDS, it is not straightfor-

ward to deploy DDS within a cloud platform and expect the

real-time dissemination of resource usage information to in-
terested entities. Thus, a number of design considerations
in architecting SQRT-C must be accounted for in adopting
DDS as described below:

1. Accessing physical resource usage in a virtual-
ized environment: Cloud customers cannot access
physical machines of a cloud to obtain their resource
usage data; rather only virtual resources in data cen-
ters are granted as a service to the customers. Thus,
customers should be able to retrieve accurate resource
usage at the level of physical resources. Moreover, any
solution to address this must be non-invasive to the
deployed cloud platform so that it can work with a
range of cloud software.

2. Managing DDS entities: A large data center in
a cloud will comprise a large number of physical re-
sources and an even larger number of virtualized re-
sources. Similarly, a large number of applications may
be hosted simultaneously in a data center at any given
time. In turn this entails the presence of a large num-
ber of DDS publishers (data writers) and subscribers
(data readers), and hence a large number of DDS top-
ics and topic instances that must be managed and dis-
seminated.

3. Shielding cloud users from complex DDS QoS
configurations: The desired timeliness and depend-
ability QoS properties for resource usage dissemination
can be controlled by configuring the publishers and
subscribers with the DDS QoS policy settings. How-
ever, it is not trivial for the subscribers to thoroughly
understand the diverse range of DDS QoS policies and
avoid conflicts between them. Ideally, the subscribers
(who are the cloud customers) should not have to deal
with these issues and the presence of DDS should be
completely masked from them.

2.3 Architecting SQRT-C

Figure 1 illustrates the SQRT-C architecture. We have
borrowed terminology, such as Cluster Node and Front-end
Node, from the OpenNebula [16] open source cloud plat-
form to represent the physical computing entities inside the
cloud. SQRT-C uses the DDS-based pub/sub technology to
disseminate resource usage information for virtual resources
from the source (i.e., publishers) to the sinks (i.e., the sub-
scribers) while also supporting the QoS requirements on the
dissemination of the monitored information.

2.3.1 SQRT-C Building Blocks

The building blocks of the SQRT-C architecture comprises
Publisher!, Subscriber, Monitoring Manager, and clients re-
siding in different locations. We refer to clients as the cloud
users who will be hosting their QoS-sensitive applications in
the cloud and hence will be interested in obtaining timely
resource usage information at the specified QoS levels and
intervals of time. Each client consists of command line inter-
face APIs to subscribe to the monitoring data from Cluster
Nodes.

"'We use capitalized Publisher and Subscriber to refer to the
publisher and subscriber entities in SQRT-C. All other uses
will use smallcase.

TCPIP — |
Multicast - - --I> !
1. Request DB Connection === =B :
Monitoring Service ~ rrroimtrommsesssseseseens
¢ Update
itori VM Location Info
Monitoring 1 | 2 Z2T2 20 Front-end Node
Manager
2. leeate 4. Receive
Publisher Topic
Cluster Node Cluster Node
> Monitored ibi <

Figure 1: SQRT-C System Architecture

Each Cluster Node has a Publisher, which disseminates
resource information of virtual machine instances to a Sub-
scriber. A Subscriber is deployed in a client machine (usu-
ally a virtual machine) which does auto-scaling and/or pro-
vides fault-tolerance for its applications hosted in the cloud.
To isolate computation overhead on monitored virtual ma-
chines, a Publisher is hosted in a physical Cluster Node and
not a deployed virtual machine.

The Monitoring Manager, which is located in the Front-
end Node or on an individual physical node (if a database
connection is established remotely), serves as an orchestrator
to manage DDS connections between Publishers and Sub-
scribers, receiving requests from clients and sending com-
mands to Cluster Nodes.

The remainder of this section describes the need for these
building blocks and how they address the design considera-
tions from Section 2.2.

2.3.2 Design Consideration 1: Accessing and dis-
seminating resource information using DDS

Figure 2 depicts the DDS-based communication architec-
ture in SQRT-C to disseminate resource usage information
in a timely and scalable manner. Publishers and Subscribers
of SQRT-C share common topics, QoS policies, and data
structures to accomplish service quality for real-time appli-
cations. The contracted variables are agreed upon and con-
trolled to make applications work properly. The Monitoring
Manager plays the role of a mediator between DDS publish-
ers deployed in Cluster Nodes and DDS subscribers supplied
hosted along with client applications.

Each Cluster Node where Publishers are deployed pub-
lishes resource information of selected virtual machines to
a Subscriber. The Publisher creates a topic with requested
QoS policies by clients and makes a data writer for publish-
ing resource information data of a given virtual machine in-
stance. In order to get resource information of active virtual
machines, a Cluster Node first connects to a hypervisor and
looks up a virtual machine by an assigned virtual machine
ID. If a virtual machine is found, the publisher repeatedly
gets the resource information of the virtual machine and
disseminates a message containing the resource usage data.
The repeating frequency can be defined by users as the la-
tency parameter.

A Subscriber is placed in the same client that manages
the infrastructure of the hosted real-time application. It

Cluster Node

Resource
Data

[libvirt

VM VM
Hypervisor

1
i
Subscribing VM !
1
i
!

Subscriber

Running
Application

Figure 2: SQRT-C Middleware Communication

receives resource information of currently running virtual
machines to determine whether to increase or decrease re-
sources for its applications. Recall that the QoS of hosted
applications should be met to assure correctness of the ap-
plication, and resource entitlement decision should also be
completed within expected deadline to meet service levels of
applications. SQRT-C helps meet these objectives by pro-
viding QoS-enabled and fine-grained resource information of
application infrastructure via Subscribers.

The process works as follows: A client receives a topic
from the Monitoring Manager after requesting the monitor-
ing service with virtual machine ID that the client is inter-
ested in and specified service levels. A Subscriber creates
the received topic and a data reader for receiving resource
data of requested virtual machines from a Publisher. The
data can be worked with user-defined implementation for
managing cloud resources for specific services. The role of
the Monitoring Manager is explained next.

2.3.3 Design Consideration 2: Managing DDS En-
tities through the Monitoring Manager

DDS entities in the cloud are managed by the Monitoring
Manager, which serves three purposes. First, it helps in
orchestrating the deployment of DDS data-writers and data-
readers of the DDS pub/sub mechanism. Second, it ensures
that the contract between publishers and subscribers is void
of any conflicting QoS policies configured within the DDS
mechanisms. Third, since different applications hosted in
the cloud may have different requirements on the amount of
resource information to be monitored and the time intervals
at which it must be monitored, the creation of the right DDS
topics and their association with the right data-writers and
data-readers is automated by the Monitoring Manager.

The Monitoring Manager manifests under two roles: a
server and a client. The Monitoring Manager Server role
supervises monitoring services containing status of pub/sub
communication between virtual machines, pub/sub topic man-
agement, and database connection with OpenNebula. Mon-
itoring Manager has three operations to manage topics (cre-
ate, terminate, and show). Once the Monitoring Manager
Server gets a request from clients for specific monitoring in-

formation and QoS level, it determines where the requested
virtual instances are deployed in the cloud and accordingly
instantiate a Publisher entity the physical node that hosts
the virtual machine.

The Monitoring Manager Client role is required to man-
age monitoring services that are required to start, terminate,
and display the requested services on client side. When a
monitoring service is started, a topic is given to the user
via the Monitoring Manager Client, and then the user needs
to execute a Subscriber to receive monitoring data with the
assigned topic as an argument. If the client wants to stop
subscribing to the monitoring data, the service can be ter-
minated by executing the terminating command provided
by the Monitoring Manager Client.

2.3.4 Design Consideration 3: Shielding Cloud Users
from DDS Configurations

SQRT-C provides a standard web-based API for applica-
tions to define their resource monitoring requirements thereby
shielding them from DDS configurations and deploying DDS
publishers and subscribers. To begin using a monitoring ser-
vice, a client makes a request with information such as in-
terested virtual machine IDs, time delay, and desired QoS as
arguments to the Monitoring Manager. Once the Monitoring
Manager receives request from a client, the following steps
are transparently processed. First the Monitoring Manager
interacts with the Front-end Node to obtain information
about locations where the virtual machines of interest are
physically deployed. Once the request is accepted, a topic
is created by the Monitoring Manager. Furthermore, the
Monitoring Manager will remotely execute data dissemina-
tion by automatically executing Publishers in Cluster Nodes
of interest with above created topic and arguments passed by
the client. Finally, a Subscriber is also started on the client
with same topic enabling it to receive messages published
by various Publishers.

3. EXPERIMENTAL RESULTS

This section reports on the experimental results compar-
ing SQRT-C with the contemporary web-based (RESTful)
resource monitoring approach (used primarily for virtual re-
source monitoring). The experiments we conducted aim to
prove our hypotheses that SQRT-C outperforms the REST-
ful monitoring approach in terms of (a) latency, (b) scala-
bility, and (c) jitter.? In this paper, we compared the per-
formance with only a RESTful service as it is a conventional
communication service used in current cloud platforms, but
comparing with other communication middleware technolo-
gies such as RMI, and SOAP would be needed to strengthen
our hypothesis in the future.

3.1 Testbed

Our cloud infrastructure for the experiments comprises a
cluster of 56 blades, 7 rack servers, and Gigabit switches.
The servers are operated using OpenNebula to provide hy-
brid cloud services. Each blade used in our tests contained
the following hardware configuration: dual 2.8 GHz Xeon
CPUs, 1GB of RAM, 40GB of HDD, and 4 Gigabit Eth-
ernet cards. The following is the hardware specification of
a rack server used as a clustered node: 12-core 2.1 GHz

2Due to space constraints we did not include additional re-
sults.

Opteron CPUs, 32GB of RAM, 8TB of HDD, and 4 Gigabit
Ethernet cards.

OpenSUSE 11.4 Linux was installed as host operating sys-
tems for front-end and clustered nodes. Xen 3.0 was in-
stalled to provide virtual machines, and our system adopted
para-virtualization supporting Ubuntu 11 and CentOS 6 as
guest operating systems. OpenNebula 3.0 was used for cloud
services. In our OpenNebula system, shared file systems us-
ing NFS (Network File System) for distributing virtual ma-
chine images are adopted, and virtual network bridges in
each computing node for virtual networking were selected.
OpenSplice DDS 5.2 is used for the DDS implementation.
For the REST implementation, web.py, a web framework
for Python, and mimerender, a Python module for RESTful
services, are used.

The size of individual published and subscribed message
is approximately 160 bytes. Each message contains resource
information such as CPU utilization, CPU time, memory
utilization and network utilization (number of bytes received
and dropped). Content of each message are described in
Table 1.

Table 1: Content of each message

Attribute Description
instancelD unique instance ID of a virtual machine
cpuUtil utilization of CPU
cpuTime the CPU time used in nanoseconds
maxMem the maximum memory in KBytes allowed
memory the memory in KBytes used by a VM
numVirtCpu the number of virtual CPUs for a VM

net_rx_bytes
net_rx_drops
net_rx_packets
net_rx_errors
net_tx_bytes
net_tx_drops
net_tx_packets
net_tx_errors

number of bytes received per sec
number of dropped packets per sec
number of received packets per sec
number of received errors reported
number of bytes transmitted per sec
number of dropped packets per sec
number of transmitted packets per sec
number of transmitted errors reported

block_errors number of block errors reported
block_rd_bytes number of bytes read per sec
block_rd_req number of requests read per sec
block_wr_bytes number of bytes written per sec
block_wr_req number of requests written per sec

3.2 Average Message Latency Comparison

In this section we report on the latency comparisons be-
tween SQRT-C and RESTful services. Since SQRT-C uses a
pub/sub model of communication, which is inherently asyn-
chronous and one way, computing average message latency
is tricky. We choose an approach where it is calculated by
increasing the number of publishers for a single subscriber.
This is because in a pub/sub model of communication, pub-
lishers and subscribers are decoupled from each other, and
thus increasing the number of subscribers does not affect
the latency as a publisher does not care about how many
subscribers are interested in what it is publishing. How-
ever, the number of messages received by a subscriber can
be increased by increasing the number of publishers for that
subscriber. Therefore, increasing publishers for a single sub-
scriber will cause increase in latency for messages received
by the subscriber. We therefore create a scenario where a
single subscriber is subscribing for resource information from

up to 50 different virtual instances.

In Figure 3, we demonstrate the scalability by showing
average message latency (note the logarithmic scale) as a
function of increasing number of virtual instances (i.e., in-
creasing the number of SQRT-C Publishers) that a SQRT-C
Subscriber is subscribing to. From the figure we see that av-
erage message latency increases in almost a linear fashion
when the number of Publishers is increased. Initially, when
a client is subscribing to 5 virtual instances, the latency is
slightly more than 1.6 milliseconds. The latency keeps in-
creasing slightly as we increase the number of Publishers,
and for 50 Publishers, the average latency is around 3.3 mil-
liseconds

o //

._.
o
8
8

x

=4—SQRT-C

= RESTful

Latency in milliseconds
(Logarithmic scale)
=
1)

IS

i
15}

e ———

5 10 15 20 25 30 35 40 45 50
Number of Clients

Figure 3: Average Message Latency Comparison of
SQRT-C and RESTful by Number of VMs

Unlike SQRT-C, RESTful services use a client-server model
of communication which is “pull’-based. In case of SQRT-C,
the clients or subscribers, and servers or publishers are com-
pletely unaware of each other. However, in case of RESTful
service, clients and servers have to be aware of each other
since clients request for information from the server on a
per-requirement basis. Therefore, to calculate average mes-
sage latency for RESTful service, we increased the number
of clients (subscribers) for a single server (publisher) and
measured the round-trip latency

Figure 3 also shows the average message latency as a func-
tion of increasing number of clients (subscriber) for RESTful
approach. From this figure it is clear that latency increases
with increase in number of clients. This is because we have a
single server which is serving requests from all of the clients.
If we compare this result with the results for SQRT-C av-
erage message latency, we can see that both of them show
linear increase, however, the latencies observed for REST-
ful services are orders of magnitude larger than those for
SQRT-C. For example, the average latency for RESTful ser-
vice starts from just less than 1,000 milliseconds (compared
to the order of just a few milliseconds in the SQRT-C case)
for 5 clients and increases significantly to around 9,200 mil-
liseconds for 50 clients. These results provide an idea of the
significant scalability advantage of SQRT-C over RESTful
approach.

3.3 Jitter Comparison Between SQRT-C and
RESTful Service

To support real-time applications we require our system
to provide predictable behavior in terms of message latency.
This requires our system to experience minimal jitter since
increase in jitter results in unpredictable system. Our hy-

pothesis was that SQRT-C produces significantly less jitter
compared to RESTful approach since SQRT-C uses a QoS-
enabled pub/sub model of communication. Using different
QoS policies, we can make sure that SQRT-C produces very
little jitter.

For the purposes of this experiment, we compare message
round-trip time of RESTful services and message latency of
SQRT-C. The reason behind this is the fact that round trip
time cannot be measured in a trivial way for SQRT-C since it
uses pub/sub communication model. The decoupled nature
of publishers and subscribers in a pub/sub model makes it
difficult and to some degree illogical to calculate round trip
time for SQRT-C.

Figure 4 demonstrates message response times measured
for each message transfer for a total of 500 messages. From
Figure 4 we can clearly see that RESTful services produce
significant jitter and hence is very unpredictable in

delivering bounded latencies. The message response time
is never stable and is always fluctuating between 300 mil-
liseconds and 420 milliseconds.

440

4201

400

@
&
S

@
S
S

Message Response Time (ms)
8
2

7 i 11
» Mﬂ i N‘qw M W) MWM ['ﬂ'wﬂ M" .'M,“J ﬂ.wh W[Mw !

I . I o . I I I
50 100 150 250 300 350 400 450 500
Message Sequence

@
]
S

HMJ

@
S
=]

»
3
S

Figure 4: Message Round-trip Time and Jitter of
RESTful Service

If we use proper QoS policies for SQRT-C (by configuring
the underlying DDS transport), we will be able achieve very
stable message latencies. Figure 5 demonstrates message la-
tency over number of messages exchanged. From Figure 5,
we can clearly see that using Best Effort reliability results in
extremely stable message latency. When using Best Effort
reliability, the message latency is always around 2 millisec-
onds. The reliability setting introduces some jitter and also
increases the latencies due to the reliability logic in DDS
incurring the bulk of the performance overhead. Given the
stable networks in a data center, Best Effort reliability con-
figuration option is acceptable.

4. CONCLUDING REMARKS AND FUTURE
WORK

This paper presented a scalable cloud resource monitor-
ing system called SQRT-C that leverages DDS and supports
QoS. It is observed through experimental results that DDS
in the cloud as a monitoring service is more appropriate for
hosting real-time applications that need fine-grained auto-
scaling decisions than widely used technologies like RESTful
services. It is challenging to use DDS for a cloud monitor-

—BEST EFFORT|
—RELIABLE

|

| o |
200 250 300 350 400 450 500
Message Sequence

35,0001

Ui

10,000

Message Latency (us)
8
g
g

&
8
8

L L ,
50 100 150

Figure 5: Message Latency of Different Reliability
QoS

ing service because in the cloud it is preferred that resource
information be obtained as a service rather than directly by
accessing physical machines or virtual machines by clients.
Also, proper configurations of DDS services according to
service levels are not trivial to be defined by clients. The
Monitoring Manager in SQRT-C is hence indispensable as a
public access point and an orchestrator to furnish services
appropriately and automate most of the activities. The use
of libvirt library makes it seamless for SQRT-C to be de-
ployed in cloud platforms without any invasive changes to
the cloud software.

Future Work: Our future work will comprise the follow-
ing dimensions of work in this area.

e We did not experiment with different QoS settings of
DDS in our preliminary work. Our future evaluations will
therefore determine the impact of different DDS QoS set-
tings on the dissemination of information in the cloud.

e Our present work was conducted on the OpenNebula
platform only. Although we observed that no invasive changes
were needed to integrate DDS, we need to test our approach
in a variety of cloud platforms to ascertain this fact.

e A fault-tolerant orchestrator is needed in the cloud in
the case of recovering failed virtual machines. SQRT-C will
be operated with the fault-tolerant orchestrator and will be
more precisely analyzed in practical settings with real appli-
cations hosted in the cloud.

e Our experiments did not consider finding the sweet spot
when having too many Publishers in a Cluster Node may
start impacting overall performance of the applications run-
ning in the virtual machines. But this depends on how many
virtual machines are hosted in a Cluster Node. Thus, our fu-
ture work will explore finding the optimal number of virtual
machines and Publishers that can be hosted in any Cluster
Node such that performance continues to be at acceptable
levels while physical resources are utilized maximally.

The source code for SQRT-C is available for download at
www.dre.vanderbilt.edu/ kyoungho/SQRT-C.

5. REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz,

A. Konwinski, G. Lee, D. Patterson, A. Rabkin,
I. Stoica, and M. Zaharia, “A View of Cloud

Computing,” Communications of the ACM, vol. 53,
no. 4, pp. 50-58, 2010.

[2] T. M. Takai, “Cloud Computing Strategy,”
Department of Defense Office of the Chief Information
Officer, Tech. Rep., Jul. 2012. [Online|. Available:
http://www.defense.gov/news/
DoDCloudComputingStrategy.pdf

[3] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster,
and D. Tsafrir, “The Resource-as-a-Service (RaaS)
Cloud,” in USENIX Conference on Hot Topics in
Cloud Computing (HotCloud). USENIX, 2012.

[4] M. Massie, B. Chun, and D. Culler, “The ganglia
distributed monitoring system: design,
implementation, and experience,” Parallel Computing,
vol. 30, no. 7, pp. 817-840, 2004.

[5] W. Barth, Nagios: System and network monitoring.
No Starch Pr, 2008.

[6] C. Huang, P. Hobson, G. Taylor, and P. Kyberd, “A
study of publish/subscribe systems for real-time grid
monitoring,” in Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE International.
IEEE, 2007, pp. 1-8.

[7] 1. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud
computing and grid computing 360-degree compared,”
in Grid Computing Environments Workshop, 2008.
GCE’08. Teee, 2008, pp. 1-10.

[8] F. Han, J. Peng, W. Zhang, Q. Li, J. Li, Q. Jiang, and
Q. Yuan, “Virtual resource monitoring in cloud
computing,” Journal of Shanghai University (English
Edition), vol. 15, no. 5, pp. 381-385, 2011.

[9] S. De Chaves, R. Uriarte, and C. Westphall, “Toward
an architecture for monitoring private clouds,”
Communications Magazine, IEEE, vol. 49, no. 12, pp.
130-137, 2011.

[10] D. Guinard, V. Trifa, and E. Wilde, “A resource
oriented architecture for the web of things,” in
Internet of Things (I0T), 2010. 1EEE, 2010, pp. 1-8.

[11] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec, “The Many Faces of Publish/Subscribe,”
ACM Computer Survey, vol. 35, pp. 114-131, June
2003. [Online]. Available:
http://doi.acm.org/10.1145/857076.857078

[12] Data Distribution Service for Real-time Systems
Specification, 1.2 ed., Object Management Group, Jan.
2007.

[13] A. Corsaro, “10 reasons for choosing opensplice dds,”
2009. [Online]. Available:
http://www.slideshare.net/Angelo.Corsaro/
10-reasons-for-choosing-opensplice-dds

[14] D. Schmidt and H. van’t Hag, “Addressing the
challenges of mission-critical information management
in next-generation net-centric pub/sub systems with
opensplice dds,” in Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International
Symposium on. 1EEE, 2008, pp. 1-8.

[15] A. Corsaro, L. Querzoni, S. Scipioni, S. Piergiovanni,
and A. Virgillito, “Quality of service in
publish/subscribe middleware,” Global Data
Management, pp. 1-19, 2006.

[16] J. Fontén, T. Vdzquez, L. Gonzalez, R. Montero, and
I. Llorente, “Opennebula: The open source virtual
machine manager for cluster computing,” in Open
Source Grid and Cluster Software Conference, 2008.

