
A METHOD FOR MODELING AND VERIFICATION OF

REAL-TIME SYSTEMS

By

Jason Matthew Scott

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial ful�llment of the requirements

for the degree of

MASTER OF SCIENCE

in

Electrical Engineering

December 1997

Nashville, Tennessee

Approved: Date:

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Gabor Karsai for his support and guidance

in this research over the past year and a half. Dr. Janos Sztipanovits, Dr. Csaba

Biegl, and Dr. Karsai are responsible for the MultiGraph Architecture from which

this work stems and made this work possible.

I would also like to thank Dr. Ted Bapty and Richard (Bubba) Davis for all of

their help and support. Other members of the Measurement and Computing Systems

Laboratory have also been supportive: Dr. Akos Ledeczi, Dr. Amit Misra, and

Michael Moore. Thanks also to Captain Greg Nordstrom for selecting me for a

summer internship seven years ago which resulted in my involvement with this group.

Thanks to my family which has always provided much encouragement. Thanks

most of all to my wife, Amy. She has given me a great deal of support throughout

the last four years. Without her support this would not have been possible.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . v

I. INTRODUCTION . 1

Problem of Real-Time System Veri�cation 1
Real-Time Scheduling Theory 3
Computational Tree Logic 4

The Approach . 6

II. BACKGROUNDS . 8

Model-Based Programming . 8
Model Editor . 10
MGA Interpreter . 11
MGA Data
ow representation 12
MGA Kernel . 13
MGA Application Domains 13

Systems considered . 14
Finite State Machines . 15

Timed Transition State Machines 16
Ordered Binary Decision Diagrams 17
OBDD Algorithms . 18
Using OBDDs to Represent State Machines 20
Using OBDDs to Represent Timed State Machines 23

III. MODEL ANALYSIS . 26

Model Representation . 26
Modeling Procedure . 27

Building the State Machine Representation 30
FSM System Representation Problems 32

BDD Algorithms Upper-Lower 36
Algorithm Implementation 40

Veri�cation Process . 43

IV. EXAMPLE . 45

Data Acquisition Example . 45
Signal Processing Example . 49

V. CONCLUSIONS . 53

iii

Future Research . 55

Appendix

A. MODEL DEFINITION FILE . 56

REFERENCES . 63

iv

LIST OF FIGURES

Figure Page

1. State graph and corresponding computation tree 5

2. Overview of MGA System Structure 9

3. XVPE Model Editor . 11

4. Timed Transition Graph . 16

5. OBDD for (a _ b) ^ c . 19

6. Intermediate OBDDs used in computing next state 22

7. State encoding vectors . 25

8. Example of MGA Design Flow . 29

9. Example Data
ow graph . 32

10. Problem representing system with FSM 33

11. Corrected State Machine . 35

12. Implementations of a timed transition FSM 41

13. Another representation of Modi�ed FSM 42

14. Keeping track of bad schedules . 44

15. Data
ow diagram for Data Acquisition Example 46

16. Output of analysis tool - Case I . 48

17. Output of analysis tool - Case II . 48

18. Data
ow graph of signal processing example 49

19. Signal processing example in Model Editor 51

20. Signal processing example output . 52

v

CHAPTER I

INTRODUCTION

Some of the most important applications of computers are embedded real-time

systems. These systems are used in such areas as avionics, medical equipment, plant

control, etc. Most software systems attempt to provide correct results in an e�cient

manner. Real-time software systems not only must be numerically correct, but also

have additional speci�cations for the time in which the results must be delivered.

Correct results are useless if, by the time they are delivered, they are too late to

provide the feedback necessary to prevent system damage or failure. Human lives or

valuable equipment may be at risk in the event of a failure. Real-time systems have

well-de�ned, rigid timing constraints; they must process events within a given time

frame [16]. It is critical that real-time systems be correct in both time and value.

A real-time system is considered to function correctly only if it returns the correct

results within the associated time constraints. Processing must be done within the

de�ned constraints or the system will fail.

Problem of Real-Time System Veri�cation

Real-time systems are classi�ed as hard real-time systems or soft real-time sys-

tems. A hard real-time system must meet its time critical deadlines or catastrophic

system failure may occur. A less restrictive type of system is a soft real-time system.

Soft real-time systems should meet their deadlines but a catastrophic failure will not

1

occur if the deadline is missed. An example of a soft real-time system is a video

conferencing system. The system has a �xed time frame in which the images must be

displayed, but if an images is displayed late it may not be noticeable to the person

viewing the system.

Hard real-time systems must meet their deadlines to provide correct operation.

Processing must be completed on time with the correct results. If these processing

constraints are not satis�ed in critical applications the results could be disastrous. In

systems such as data acquisition systems for jet engine testing, failure to meet the

deadlines could mean loss of very expensive test data.

It is clear that a method to verify the correctness of these hard real-time systems

is necessary. As the complexity of the system increases, the number of possible

ways the system can execute grows exponentially in size and can quickly become too

large to test. Presented here is a way to model real-time systems for the purpose of

veri�cation. A method is presented to e�ciently explore the very large state spaces

that occur.

Simulation techniques are often used to verify real-time systems. These simula-

tions do not always expose problem areas because all possible system states may not

be explored. Theorem provers and proof checkers are also used to verify systems

although these methods are very time consuming and labor intensive [4]. These

methods can become very complex for large systems. One approach to addressing

how to determine whether a group of processes, whose individual CPU utilization is

known, will meet their deadlines is real-time scheduling theory.

2

Real-Time Scheduling Theory

Real-time scheduling theory addresses the issues of priority based scheduling of

processes with hard deadlines. Priority driven scheduling algorithms have been widely

used in single processor and multi-processor systems. In this method, each process

is assigned a priority. This priority serves to give preference for execution over other

processes with lesser priority. The highest priority process that is ready to run is

the next process selected for execution. In a static priority algorithm the priority is

assigned to the task only once. A dynamic priority scheme may change the assignment

of priorities with time.

Rate monotonic scheduling (RMS) [5] is a static algorithm that assigns priorities

to a set of independent, periodic real-time tasks based on their periods. Each process

is characterized by a period, Ti and an execution time Ci . Tasks are executed repeat-

edly and each invocation of a task must complete before the beginning of the next

period. The algorithm assigns higher priority to tasks with a shorter period. The

RMS algorithm has been proven to be optimal among all �xed-priority algorithms.

If there exists a �xed priority assignment that can generate a feasible schedule, then

the RMS algorithm can produce a feasible priority assignment. If processor utiliza-

tion remains below a certain level then this priority assignment will assure that the

processes will meet their deadlines. [15]

This scheduling algorithm guarantees only average performance [17]. The sys-

tem can fail to meet deadlines during transient peak overloads where the processor

utilization bounds are exceeded. Also, a non-critical task with a high frequency may

3

postpone a critical task with a low frequency. This case is known as priority inver-

sion. This phenomenon is possible even if the processor utilization remains below a

maximum bound if a resource con
ict occurs. This occurance is a serious problem

because it causes the behavior of the real-time system to seem unpredictable. In

real-world problems, situations occur where the rate monotonic assumptions do not

hold. Although the RMS algorithm produces optimal results, the use of scheduling

algorithms alone cannot guarantee that a system will always meet its deadlines.

Computational Tree Logic

S. Campos describes a formal method for modeling real-time systems [4]. He uses

Symbolic Model Checking as a method to verify these real-time systems. Symbolic

Model Checking is the problem of determining whether a given logic formula f is true

for a supplied state transition graph [6]. This state transition graph is a model of

the behavior of the system. The formula is tested to be true using graph traversal

techniques on this state graph.

This symbolic model checking checking approach was extended to verify the prop-

erties of real-time systems. The model checker receives a speci�cation of the system

in the form of a propositional temporal logic. The system to be veri�ed is modeled

as a state transition graph. The model checking process traverses the state-transition

graph, testing to see if it satis�es the given properties.

The properties of the system are represented as formulas in a temporal logic

known as Computational Tree Logic (CTL). Formulas are built up using CTL to

describe properties of the system that is being modeled. The formulas consist of

4

INIT X

X

X

X

X

INIT

INIT

X

X

X

INIT

X

X

Figure 1: State graph and corresponding computation tree

atomic propositions, boolean connectives, and temporal operators.

The CTL logic can state properties such as \event p will happen sometime in

the future". For use in specifying real-time systems the CTL was augmented with

operators which represent deadlines such as \event p will happen in at most t units

of time".

Temporal logic model checking is a method for verifying the correctness of �nite

state transition systems. Speci�cations of the system to be veri�ed are written as

formulas in temporal logic. The model checker traverses the state transition graph

to verify if the model satis�es the given properties. Because checking the model to

satisfy a given formula is much simpler than proving that a formula is valid for all

possible models, the model checker is much more e�cient than a theorem prover [3].

Computation trees are derived from state transition graph models of the system.

The state transition graph is expanded into an in�nite tree structure. The states are

unrolled such that no states are revisited. The paths in this tree represent all execution

5

possibilities in the system that is being modeled. Figure 1 shows the relationship

between a state diagram and its corresponding computation tree. The root of the

computation tree is the initial state in the transition graph. The CTL formulas refer

to the computation tree that is derived from the system model.

The complexity of this algorithm is linear in the size of the unwound state tran-

sition graph and the length of the formula to be proven. For some systems, however,

a very large state-transition graph may be needed to model the system. When this

type of state explosion occurs the representation may become too large to manage.

To help solve this problem Ordered Binary Decision Diagrams (OBDDs) are used for

the internal representation of the state-transition graph. Using this symbolic method

of representation avoids the enumeration through all states of the graph. This im-

plementation, as we will see in the next chapter, provides a very e�cient method for

manipulation of these expressions.

The Approach

A model-based approach is selected for verifying real-time systems. Using a model-

based approach allows the system to be designed and analyzed before it is actually

constructed. This can allow the designer to perform \what if" situations and analyze

di�erent designs without actually implementing them.

Model-based software design has been successfully used to reduce the complexity

in large software systems. Model-based analysis tools can use these same models.

Additional information is added to the models to give the timing characteristics of

the system.

6

The system model is a data
ow graph. The processes are represented as data-

driven process blocks in the data
ow graph. The model of the system is translated

into a Finite State Machine (FSM) representation. Ordered Binary Decision Diagrams

(OBDDs) are used to represent the FSM. The OBDDs provide an e�cient way of

traversing the large state space that results from this representation of the system

[4]. Algorithms are developed to verify that the system always meets its timing

constraints to provide correct operation.

The next chapter describes a successful model-based programming system. Or-

dered Binary Decision Diagrams, Finite State Machines and a modi�ed version of

the FSM are de�ned also. Chapter III explains the technique for the veri�cation of

real-time systems developed in this research. An algorithm for constructing a FSM

representation of a real-time system and algorithms for searching for the longest and

shortest paths between two states on a FSM are described. Chapter IV presents the

veri�cation and timing analysis of a practical system. Chapter V concludes the paper.

7

CHAPTER II

BACKGROUNDS

Model-Based Programming

Just as models are a fundamental part of other areas of science and engineering,

model-based techniques can be useful in software engineering. Model-based program-

ming can facilitate management of complex software systems and enable easy system

modi�cation and generation. Applications are generated from models which specify

the system. Model-based analysis can be performed while the system is still in the

design stages to gain knowledge of the system's timing characteristics. The Multi-

Graph Architecture (MGA) supports a model-based method for the generation and

analysis of software and systems. The MultiGraph Architecture was developed at

Vanderbilt University and has had success in several application areas [1].

The basic concepts behind the design of MGA involve the use of domain-speci�c

system modeling. By modeling a system in terms familiar to the user, some of the

complexity of the system can be hidden from the user. The software produced will

actually follow model of the system it is generated from unlike other design methods

in which too much freedom is given between the design and implementation stages.

Model-based analysis can be performed while the system is still in the design stages

to gain knowledge of the system's timing and other characteristics. A diagram of the

overall approach provided by MGA is shown in Figure 2.

The speci�cations and constraints of the system to be produced are speci�ed by

8

Execution
Environment

Analysis

Analysis Tool(s)Model Interpreter

Model Database

Model Editor

Specification
MDF

Figure 2: Overview of MGA System Structure

9

a Model De�nition File (MDF). This �le is written in a declarative language for the

purpose of specifying model domain concepts such as: application speci�c objects to

be used in the model, connections that are allowed between objects, non-graphical

parameters that are also used to describe the objects, etc. The MDF �le used in

this application and its description is given in appendix A. Creating a MDF �le the

the �rst step in building a new system. Using the builder program, a Model Editor

executable is automatically custom built from the speci�cation described by the MDF

�le.

Model Editor

The XVPE Model Editor provides a graphical means for specifying the system

model as shown in Figure 3. The Model Editor is automatically generated for each

speci�c modeling paradigm. The objects available for use and their attributes are

speci�ed in the MDF �le. Valid connections that may be made between objects are

also speci�ed in the MDF �le.

Model Editor supports di�erent model aspects. The aspects are useful for repre-

senting di�erent parts of a system. A di�erent set of modeling objects may be used

for each aspect. For example, one aspect could represent a signal
ow model for a

signal processing application and another aspect of the same system could model the

physical hardware it is to be implemented on. References are provided to model in-

teractions between di�erent aspects. The models may be also hierarchical: A model

may be composed of other models.

The entire model entered into the Model Editor is stored in an object oriented

10

Figure 3: XVPE Model Editor

database. Exact implementations of this database vary depending on which platform

the MGA system is implemented.

MGA Interpreter

The purpose of the interpreter is to extract the models from the database for

some useful purpose, usually to build a runtime system or analysis system. The

interpreter synthesizes executable program structure from models retrieved from the

database by building the data
ow graph and setting the parameters of the individual

process blocks. The model interpreter is speci�c to the modeling paradigm used.

11

The interpreter also generates data structures and other output used for tools that

perform various types of analysis on the systems that are to be built.

MGA Data
ow representation

A data
ow network consists of process blocks and connections. A process block

is not available for execution unless it has data available on its inputs. When a

process block is executed its output data
ows along the connections to place data

on the inputs of another process block and cause it to execute. This graph is used to

represent a data-driven system. Data input to the system triggers the execution of

the process(s) blocks that the inputs are connected to. These process blocks, in turn,

cause the execution of other process blocks.

TheMultiGraph Computational Model representation modi�es the standard data
ow

graph. The MGA data
ow graph contains actor nodes, data nodes and connections

between these elements. Actor nodes are the processing elements of the system. The

actor nodes are connected with a data node between them. A data node serves as a

bu�er for the data. This bu�er is of a speci�ed length (speci�ed in the Model Editor).

Each process block (actor node) contains:

� a script | a reentrant algorithm that performs some processing on its inputs.

� I/O Ports | the I/O data streams

� Control discipline | determines under what input conditions an actor should

be executed. An IF ALL discipline will mark an actor ready to execute if data

is available on all of its input ports. IF ANY means the actor should be ready

12

to execute if data is present on any of its input ports.

The data
ow graph structure de�nes data dependencies between the actor nodes.

The execution order is determined at runtime based on these dependencies and the

actor nodes control disciplines.

MGA Kernel

The Multigraph Kernel (MGK) provides the execution layer for MGA. The kernel

uses the output of the model interpreter to build a MGA data
ow network composed

of actor nodes and data nodes. The MGK implements a data-driven system that is

derived directly from a data
ow model.

The kernel provides a layer of abstraction for a network built using heteroge-

neous hardware (parallel computers, networked single processors, embedded proces-

sors, etc.)

The MGK has also been re-implemented as a micro-kernel. This Modular Kernel

[7] is smaller is size and more application speci�c. It provides basic kernel compo-

nents: real-time scheduler, communications between adjacent processors, and memory

management. These key components are tightly coupled for e�cient operation. This

kernel can be easily ported to new architectures.

MGA Application Domains

MGA has been successful in many application areas. These applications represent

a variety of engineering disciplines from turbine engine testing to plant control.

13

� The Computer Assisted Dynamic Data Measurement and Analysis System

(CADDMAS), a large parallel processing instrumentation system has been de-

veloped for high speed turbine engine testing at Arnold Engineering and Devel-

opment Center [11].

� Intelligent Process Control System (IPCS), a chemical engineering monitoring

and control system [1].

� Model-Integrated Real-Time Imaging System (MIRTIS), a high-speed image

processing system implemented with a network of parallel processors [12].

Systems considered

The real-time system is assumed to be data driven and is modeled by a data
ow

diagram. Speci�cally, the MGA data
ow graph model is used to represent the system.

Real-time systems that are candidates for veri�cation by this tool are assumed to have

one periodic event such as a process which acquires a new data sample. All other

processes scheduled to run during this period between which the data samples are

taken must �nish before the next sample period begins. The system is schedulable

if and only if all processes are guaranteed to �nish execution before the next sample

period begins.

In this data-driven system, a process is scheduled for execution only if data is

available at its inputs and the speci�ed control discipline (IF ALL, IF ANY) is satis-

�ed. Processes are chosen for execution from this schedule by their assigned priority.

The highest priority process is selected. The systems considered are those with N

14

number of processes each with a statically assigned priority and execution time.

This type of data-driven system model is useful for representing many types of

systems including signal processing applications, monitoring, etc. and is directly

applicable to systems using the MultiGraph Computational Model.

Finite State Machines

Finite State Machines (FSMs) are used to represent dynamic systems where at

each moment the system is considered to be in one of a �nite number of unique states.

Since a system can only be in one state at a time, a state represents what is currently

happening in the system.

The FSM model has discrete inputs and outputs. The state of the system summa-

rizes the information concerning past inputs that is needed to determine the behavior

of the system on later inputs [18]. When a state change occurs the next state is

chosen based on the system's inputs and available transitions.

A state machine can be modeled using Boolean algebra. Each state is assigned

a unique encoding. A state S is represented by the encoding assigning values to the

state variables s1; s2; :::; sn. The next state equation N(s; s0) evaluates to true when

their is a transition in the FSM from the state S to state S 0, where s is in terms of

(s1; :::; sn), and s0 is in terms of (s0
1
; :::; s0n).

The state machine representation used in this application has nondeterministic

transitions. These transitions are simply showing that, under some unde�ned cir-

cumstances, this transition may occur.

15

5

36

6

4

STATE A STATE B

STATE CSTATE D

Figure 4: Timed Transition Graph

Timed Transition State Machines

Standard state machines have a big limitation for modeling real-time systems | all

transitions happen in one unit-length step. If state machines are to be used to model

a real-time system which has events that take various lengths of time to occur then we

would like to incorporate this in a modi�ed state machine type representation. One

way around this would be to use multiple states in series to represent a transition

longer than 1 unit. For example, to represent a 3 unit length transition we could

put 3 states in series with only 1 transition between each of these states. For small

systems this approach works well, but for large transition lengths and/or many non-

unit transitions state explosions problems can occur.

A more e�cient approach would be to create a new set of execution rules for a

modi�ed state machine. A Timed Transition State Machine will have each transition

labeled with a time. This time will represent the time it takes for the transition to

the next state to occur.

16

In this application the transition time will represent the time that is spent in a

state as shown in Figure 4. Note that all of the transitions leaving a state should have

the same time since this time actually represents the execution time of the state.

This approach does add considerably to the complexity of the execution of the

state machine, but its compact representation compensates for this. Also this compact

representation helps to reduce state explosion problems.

Ordered Binary Decision Diagrams

Ordered Binary Decision Diagrams (OBDDs) [2] are a canonical representation

for Boolean functions. They represent the function in the form of a rooted, directed

acyclic graph. Mathematical operations on Boolean formulas can be implemented

as graph algorithms operating on OBDDs. OBDDs work well for representing truth

tables, search trees, and state transition graphs (as we will see). The advantage of

using OBDDs is that the entire state space of a problem never needs to be constructed.

This has allowed problems to be solved that would not be possible to solve using

exhaustive search. OBDDs are used in the application presented in this paper to

represent and analyze �nite state machines which may be very large. OBDDs have

already had success in many types of veri�cation and digital design [2].

The vertices of the graph are organized in levels by index. The internal vertices of

a graph on the same level correspond to a particular variable of the Boolean function.

The edges of the graph are label with 0 or 1. For each variable assignment for a

corresponding path in a OBDD at vertex x the edge labeled 1 is taken is the variable

17

x is to be set to 1; if x is to be set to 0 the 0 edge is taken. All paths of the graph

lead to one of the two terminal vertices labeled by the values 0 and 1. If a path taken

from the root node ends at the 0 terminal node then the assignment does not satisfy

the equation represented by the OBDD. If the 1 terminal node is reached then the

equation is satis�ed by the assignment. The graph forms a canonical representation

of the function | for a given variable ordering, two OBDDs for a given function are

isomorphic. This means equivalence can easily be tested. Figure 5 illustrates the

OBDD for the Boolean formula (a _ b) ^ c using the variable ordering a < b < c.

The ordering of the variables (the ordering of the levels within the graph) can

have a dramatic e�ect on the size of the OBDD. For each possible variable for a given

Boolean expression there exists a unique OBDD [2]. A bad variable ordering can

greatly increase the size of the OBDD and, in turn, increase the time required to

perform operations on that OBDD. Sometimes, more importantly, the OBDD may

be too large to �t in the computer's physical memory. For some choices of variable

ordering the representation of a function can grow exponentially as the number of

variables grow, while for other choices of ordering the size may only be of linear

growth. Finding an optimal variable ordering is a NP-complete problem. However,

by using common sense in choosing the variable ordering these problems can usually

be avoided and a OBDD that grows linearly may be found.

OBDD Algorithms

Many e�cient algorithms for manipulating Boolean functions are available. There

are BDD algorithms for all the basic Boolean operations such as AND, OR, NOR,

18

0

0

1

0

01

1

1

c

a

b

Figure 5: OBDD for (a _ b) ^ c

NOT, and XNOR. Operations performed on two OBDDs, f and g produce a resultant

function h (in the form of an OBDD). The restrict algorithm is used to simply assign

a constant value c to a variable x in function f :

f jx c

This result of this algorithm is a new function that no longer has the variable x, but

has been replaced by the constant c and simpli�ed.

Several other algorithms rely on the restrict function. The composition algorithm

is used to substitute a function (or variable) g for variable x of function f .

f jx g = g � f jx 0 + g � f jx 1

Another operation is the existential quanti�cation algorithm:

9xf = f jx 0 + f jx 1

This algorithm is used where the variable x in the function f is to be set to \don't

care" or essentially removed from the equation.

19

Using OBDDs to Represent State Machines

As seen in the preceding section, a �nite state machine can be described by its

next-state equation. For a FSM whose state is determined by present-state Boolean

variables, S = s0; s1; :::; sn�1 and the next state is described by S 0 = s0
0
; s0

1
; :::s0n�1,

then N(s0; ::; sn�1; s
0

0
; :::; s0n�1), where n = dlog2(max number of states)e describes

the relationship between the current state and next state. These Boolean variables

(s0; s1; ::; sn�1), and (s0
0
; s0

1
; s0n�1) actually represent a sets of states. Given a state set

S and a next state equation N then a next state set S 0 can be found by computing

the intersection of S and N . The intersection of S and N actually gives the OBDD of

S _S 0. What we really want is a function that will return the next state (set) of S in

terms of the variables (s0; s1; ::; sn�1). A function that will implement this is shown

below:

FindNextState(S)

f

Temp1(s0; :::; sn�1; s
0

0
; :::; s0n�1) = S(s0; :::; sn�1)\N(s0; :::; sn�1; s

0

0
; :::; s0n�1)

Temp2 = Temp1js0 0 + Temp1js0 1

+ Temp1js1 0 + Temp1js1 1

Result = s0�Temp2js0

0
 0 + s0�Temp2js0

0
 1

+s1�Temp2js0

1
 0 + s1�Temp2js0

1
 1

return Result;

g

20

First, the intersection of S and N is computed with the result stored in a OBDD

to provide temporary storage, Temp1. This intersection is the union of S and S 0.

Next, because we are interested in getting S 0 into an equation alone, the variables s0

and s1 are both existentially quanti�ed to remove them from the OBDD. This new

equation is stored in Temp2. To return the next state in terms of the present state

variables, s0 and s1, we must use the composition function to substitute the variable

s0 for s
0

0
and s1 for s

0

1
. Now our �nal equation, Result, gives us a state set in terms of

present state variables. In Figure 6 the intermediate OBDDs of an example equation

are shown.

The and operation is performed e�ciently on the two OBDDs. Similarly, if a state

set S 0 is known, along with the next-state equation, then a previous state set S can

be found. This function is similar to the FindNextState() function:

FindPrevState(S)

f

Result = s00�Temp1js0 0 + s0
0
�Temp1js0 1

+s01�Temp1js1 0 + s0
1
�Temp1js1 1

Temp2(s0; :::; sn�1; s
0

0
; :::; s0n�1) = Temp1(s0; :::; sn�1)\N(s0; :::; sn�1; s

0

0
; :::; s0n�1)

Result = Temp2js0

0
 0 + Temp2js0

0
 1

+ Temp2js0

1
 0 + Temp2js0

1
 1

return Result;

g

21

v1 and v2 set to
"don’t care"

move v1’ to v1
move v2’ to v2

v2’

v1’

v2

v1

v2’

v1’

v1

v2

v2

v1’

v2’v2’

v1’

v2

v1 v1

v2

01

1

0

0 1

S intersection N

1 0 1 0

0

1

11

0

1
0

0

0

0

1 0
1 0 1 0

0

0

0

1
0

1

1
1

0

0

1

1

0

1

10

Next-State Function Present State Set

1

1

Figure 6: Intermediate OBDDs used in computing next state

22

This function begins by moving the next state input, S, which is in terms of the

variables s0 and s1, to be in terms of the variables s0
0
and s0

1
. This is done by using

the composition function to substitute s0
0
for s0 and s0

1
for s1. Next the function just

obtained is anded with the next state functions, N . The result is an OBDD that

contains the input to the algorithm, S in terms of the variables s0
0
and s0

1
and its

corresponding previous state in terms of the variables s0 and s1. Lastly, since we are

only interested in returning the previous state alone, the variables s0
0
and s0

1
are both

existentially quanti�ed to remove them from the OBDD. The result is the previous

state of the input. Performing operations on sets of states instead of on individual

states provides an e�cient method to search a large state space.

It is interesting to note that by using a OBDD to represent this characteristic

function we are actually storing relationships between a pairs of states. For a given

state, or set of states, we can very e�ciently �nd the set of their corresponding states.

This technique could be used to store large amounts of associations between objects.

The power of this technique is that to �nd the next states of a state or state set

a full enumeration of the problem space (eq. the truth table, state graph, etc.) never

needs to be constructed [2].

Using OBDDs to Represent Timed State Machines

Timed Transition State Machines are represented by a Boolean equation (and

hence, a OBDD) in a similar method as shown above. A time of execution of each

state is tacked on the the end of each state encoding. The original state encoding

used n bits. The new state encoding will use n + nt bits, where nt = dlog2(max

23

transition time)e as shown in Figure 7. The top �gure is the structure of the bit

encoding for a state machine next state equation with unit length transitions. No

timing information is stored here. The �rst n bits on the left side make up the state

vector that describes our present state. The last n bits on the right side make up the

state vector that describes the next state. This entire 2n bit encoding provides a way

for us to store sets of pairs of states where each pair represents a transition from the

present state to the next state.

The bottom �gure describes the structure of the bit encoding for a timed transition

state machine. For each state vector there is an associated transition time. Actually,

our next-state equation does not have any knowledge of this added timing information.

It only sees a longer state encoding vector. The exact same procedures for using the

next state equation to move from one state to a next or previous state are used here

also. The only di�erence is that when we need to know the execution time associated

with a state we can look at the entire present state encoding vector and read the bits

used for representing the time. These bits are the time stated in binary form. This

provides a convenient method of extracting time information from the new, modi�ed

state encoding. To �nd the transition time of a particular state the last nt bits must

be masked o�.

The next state equation must be adjusted accordingly to use the new state en-

codings, but all transitions will remain the same. It may seem strange that the next

state time is included in each state transition vector. We do not need to know the

time that it takes for the next state to execute. It is included because these times are

simple encoded as part of the state encoding that uniquely identi�es the state. This

24

Present StatePresent State

Time
Next State Next State

Time

S n-1S
0 S’n-1S’0

S n-1
S

0 S’n-1S’
0

Present State Next State

Figure 7: State encoding vectors

new state machine representation operates just as before, storing transitions between

pairs of states, only now the state vectors have be lengthened to include an encoding

of the states execution time into the state vector itself.

25

CHAPTER III

MODEL ANALYSIS

Model Representation

The model used to represent the Real-Time system is consistent with the Multi-

graph Computational Model's execution semantics. The real-time system is modeled

as a collection of processes connected in a data driven fashion. One process is marked

as the periodic process in the system with the period it executes at. Each process

has its own attributes:

� Execution Time | Execution time of process

� Priority | Relative to the other processes

� Data Inputs | Inputs to process

� Data Outputs | Outputs from process (May be conditional or unconditional)

� IF ANY / IF ALL |- Processes execution condition

The model process's information may also contain more information for the actual

implementation of the real system such as the name of the code, or script, that the

process will actually run.

In this type of system the execution of a process happens when data is available on

its inputs. A process may be triggered by data on its inputs in two di�erent ways as

described previously. If it is a IF ANY process then the process is ready for execution

26

if data is present on any of its input ports. If a process is speci�ed as IF ALL then the

process is ready to execute only if data is present on all of its input ports. Di�erent

types of algorithms may need to be triggered di�erently. A two input adder block,

for example, would need data on both inputs before its execution would make any

sense. An alarm process with several inputs may operate by watching each of its

inputs for data that is greater than some threshold value. It will test each input as

data is available. If the alarm process has to wait on all inputs to become available,

and one input does not receive data very often or stops receiving data at all then the

others will not be checked frequently enough.

Modeling Procedure

The modeling procedure begins by entering the model into the XVPE Model

Editor. The data
ow representation is entered using basic building blocks known

as primitives to represent processes. Input and Output ports may be added to the

primitives as needed. Other attributes of the primitives must also be speci�ed. Each

primitive must have a name which describes the type of process it represents or

procedure it will execute. The execution time of the process must also be speci�ed in

the primitive. As previously described, each process may be marked as an IF ANY or

IF ALL type of process. This determines how the process is triggered for execution.

Outputs of a process may be speci�ed to be: Unconditional or Conditional. An

Unconditional output port is used to represent an output of a process that always

outputs data on this port every time it executed. The Conditional output port may

or may not output data every time the process runs based on the data or other

27

parameters not speci�ed in the model. For example, a process may or may not output

an alarm condition based on the magnitude of its input data. Both cases (data is

output or data is not output) must be taken into consideration when analyzing the

system. One node in the system must be identi�ed as the periodic node and its period

must be speci�ed.

The system models may be hierarchical. Compound objects are higher level mod-

eling objects that may be composed of either primitives, other compounds, or both.

The models entered into the editor are stored in a model database. After the model

is stored into the database, the model interpreter program may be run to load the

model from the database to perform some useful operation with this model infor-

mation. Interpreters are written speci�cally to interface with the modeling database

they are to be used with. Each model database is speci�c to the modeling paradigm

used. The modeling paradigm the de�nition of model components and their allowed

interaction as de�ned by the MDF. In this application the interpreter's job is to ex-

tract the data
ow graph and information associated about each processing element

from the database.

The interpreter loads the model from the database and constructs its own internal

structure of the model. This internal structure is a network of objects, with each

object corresponding to a object in the database. With the model entirely loaded

from the database the interpreter can perform operations on this structure.

The model interpreter used in this application constructs a data
ow graph from

the model. If the model is a hierarchical structure then the interpreter
attens this

28

Model Entry

Model Analysis

Implementation
Model Interpretation/

Run-Time
System

Figure 8: Example of MGA Design Flow

structure to produce a data
ow graph consisting of only processing elements (prim-

itives) and data
ow connections. This data
ow graph structure, along with the in-

formation associated with each processing element, is given to the real-time analysis

tool. An overview of the modeling procedure is shown in Figure 8.

The following sections describe the process of converting the data
ow graph into

an equivalent �nite state machine representation. Once the system can be described

as a FSM, algorithms can be used to explore this state diagram to gain timing infor-

mation about the system.

29

Building the State Machine Representation

The data
ow representation from the model is transformed into a �nite state

machine representation of the system. This equivalent FSM representation of the

system is constructed from the data
ow description of the system by \simulating"

the execution of the system. The goal of this simulation is to explore all possible

ways the system may be executed and build a FSM graph to store this information.

It will be shown how this exhaustive search is performed e�ciently on the FSM.

To begin this simulation the node that is marked as being the periodic process

is executed (in the simulation). The data that this process produces triggers other

processes to be put into the process queue. The process with the highest priority that

meets its execution constraints (IF ALL/IF ANY requirements) is removed from the

queue and executed. This continues until the process queue is empty and no other

processes are to be run.

Branching in the execution occurs when the conditional outputs are encountered

and when two processes of the same priority are ready to run at the same time. At

these points a new execution path is created. These new paths are serviced in a

depth-�rst recursive manner.

From this simulation of the data
ow system execution a state machine is built. As

each process is executed a transition is added to the next state equation of the FSM.

This transition from process A to process B in the FSM tells us that it is possible

that process B will execute after process A.

An integer number is associated with every transition that is added to the FSM.

This number represents the execution time of the process of which the transition

30

is transitioning from. This augmented FSM graph provides a way to represent all

possible ways a system may execute.

Processes are allowed to have the same priority. In this case the execution is

simulated such that a case occurs where process A runs �rst then process B and

another case where process B runs �rst (in terms of the state diagram it is split at

this point into two branches). If a process has a conditional output then the execution

must simulate both cases. One case where the output produces data that triggers the

execution of the next process and the case that no output is produced (therefore this

process does not cause any other processes to start). This will also cause a branching

of the state diagram.

Since our goal is veri�cation of systems it is crucial that all possible ways a systems

may execute be taken into consideration when building the FSM. We are not looking

for a graph that represents the normal or average operation of a system, but rather

a graph that includes all possibilities for execution including the unlikely cases that

may normally go unnoticed.

It is clear that for systems that have processes that may or may not start other

processes based on their input data a very large number of possible execution se-

quences can be produced. This rapidly increasing search space can quickly become

too large to analyze. Using a OBDD representation of the state machine provides the

means to e�ciently search this state space. The size of the OBDD representation is

kept to a manageable size as the state machine grows exponentially larger. There is

no need to actually create the state machine structure. A next-state equation is used

to completely represent the state machine. The transitions are incrementally added

31

C

F

E

D

BA
?

?

?

?

Figure 9: Example Data
ow graph

the this next-state equation. Since this next-state equation is simply a boolean equa-

tion it can be represented as an OBDD. This helps avoid state-explosion problems

since the OBDD is usually a much more compact representation.

FSM System Representation Problems

As explained in the previous section, the data
ow representation of the system

is converted to a �nite state machine representation. In some cases the �nite state

machine representation is not as simple as it would seem. Many times extra states

may have to be added as we will see. Consider the following example in Figure 9.

We have a data
ow graph which has six processes. The priority of the processes is in

order A, B, C, D, E, F, where A has the highest priority and F has the lowest. The

question marks on the connections indicate that the output is a conditional output.

Process B has three output ports. Two of these ports are conditional; they may or

may not output data. Processes C and D also have their single output port to be

conditional. The other processes all have unconditional outputs which always output

data each time the process is executed.

An attempt to draw a state machine representation is shown in Figure 10. Six

32

B

C

D

F

E

A

Invalid transition if states
C or D have not been visited

Figure 10: Problem representing system with FSM

33

states are drawn for the six processes and transitions are added. For example, process

A always causes process B to execute. Process B always causes process E to execute

and may cause process C and/or D to execute also. Transitions are added to represent

this. Process F may only execute if processes C or D have executed. However, our

graph has a path from A to B to E to F. The problem is that the transition from E

to F is clearly invalid since it is shown to be able to occur without processes C or D

�ring. The transition was not placed there incorrectly.

Our current state machine with six states has no way to represent this piece of

information. How can this be resolved? Either the FSM de�nition could be modi�ed

to include a new type of transition or extra states could be added. We do not want

to change the way the FSM operates. This would cause the FSM to become more

di�cult to traverse. The latter option was chosen. As shown in Figure 11, the

process E state was split into two states. This state machine represents correctly

that an execution sequence A - B - E - F may not occur. This problem is a result of

allowing conditional outputs on the processes. This gives a behavior of the process

that is not inherently modeled by a FSM. As a result, in some cases states may need

to be split into multiple states to model the operation of the system correctly.

When the state machine representation is constructed from the data
ow graph

these situations must be taken care of. When the data
ow graph is simulated if a

branching occurs the program recursively starts a new object to handle these new

execution directions. Each of these execution sequences executes until it has no more

processes in its queue. To solve this problem described above, each execution sequence

does not add his transitions to the FSM until it is �nished. When the transitions are

34

A

2E E1

B

C

D

F

Figure 11: Corrected State Machine

35

added to the FSM care is taken not to put in invalid transitions. If necessary, new

states are added to produce a correct FSM.

We now have a state machine representation of our real-time system. This state

machine contains all possible ways the system may execute according to the informa-

tion given in our model. This FSM is represented by a single boolean function, its

next state equation. This equation is represented symbolically by an OBDD. Using

the functions developed to �nd the next state of a given state or the previous state

of a given state we have a way to move around within our state diagram. These

functions work equally well on state sets as well as individual states. These functions

provide a basis for the following algorithms that are used to determine the timing

characteristics of a system.

BDD Algorithms Upper-Lower

Two algorithms were developed for �nding the longest and shortest time between

state sets. The state machine's next-state equation representing the state space is

passed to these functions in the form of an OBDD. [3] Two state sets, an initial state

set and an ending state set, are passed to the function each in the form of an OBDD.

These functions return an integer specifying the longest or shortest time between

these two state sets.

The Lower bound algorithm steps through the state diagram using the next state

equation. It uses the FindNextState function to step forward from a current state

set to its next state set. This algorithm starts with an initial state set and keeps a

current state set. At each step it looks for an intersection of the current state set

36

and the ending state set. A non-null intersection set means we have reached a ending

state. The time that has elapsed since the beginning state is returned.

Upper bound algorithm works in a similar fashion. It steps through the state

diagram beginning with an initial state set and maintains a current state set at each

step. This algorithm traverses the state space noting when an intersection of the

current state set and the ending state set occurs. The maximum time from the initial

state set until the ending state set is returned as the longest path between the two

given state sets. These algorithms are shown below.

37

int lower(BDD initial, BDD final, BDD N)

{

int i=0;

BDD R, Rp;

R = initial;

Rp = FindNextState(R,N) + R;

while ((Rp != R) and ((R and final) == 0))

{

i++;

R = Rp;

Rp = FindNextState(Rp,N) + Rp;

}

if((R and final) != null) // if R and final intersect

return i;

else

return INF;

}

38

int upper(BDD initial, BDD final, BDD N)

{

int i=0;

BDD R, Rp, Final;

Final = final;

R = TRUE;

Rp = !Final;

while ((Rp != R) and ((Rp and initial) != 0))

{

i++;

R = Rp;

Rp = FindPrevState(Rp,N) and !Final;

}

if (R == Rp)

return INF;

else

return i;

}

39

Algorithm Implementation

The upper and lower bound algorithms described above are for unit-length transi-

tion FSMs. In this application we want each state to take a speci�ed length of time to

execute to represent the time it takes for a process to execute. As discussed earlier, we

could simply add states to our state machine to show the non-unit length transitions.

This is done by adding n number of states in series to show that a transition takes n

units of time to take place as shown in Figure 12. For systems with long transition

times this is not feasible. It is desirable to use a FSM with times associated with each

state. This method provides a compact representation but, as we will see, it does add

complexity to the execution of the FSM.

Although the modi�ed state diagram is a compact representation of the real-time

system, it is not a straightforward task to traverse its state space in a breadth �rst

search manner as we want. Two ways were examined to execute the modi�ed state

diagram.

One way is to create another state machine to represent the modi�ed state ma-

chine. This state machine would be easier to execute than the modi�ed one and thus,

easier to apply the upper and lower bound algorithms to explore the state space. This

is shown in Figure 13. This state machine basically steps through the FSM in time

(relative to the initial state) and creates this new, expanded state machine. This

state machine is essentially state transitions to sets of states.

This new state machine does, however, require more state bits to encode the

new transition lengths. The advantage of this method is that the upper and lower

bound functions remain relatively simple. The OBDD operations on this state graph

40

A

B

C

D
2

3

2

4

3

A

A

B

B

B

C

C

D

D

D

D

Figure 12: Implementations of a timed transition FSM

41

END

A

13 13

3 3

B C

DB

C

1 1

D

D

3
1

2

A B

CD

13

413

3

2

Figure 13: Another representation of Modi�ed FSM

become somewhat slower because of the increased number of variables to represent

the increased number of state bits. This will be partially o�set by the fact that

the veri�cation algorithms can remain essentially the same as they are for the unit-

transition algorithms.

Another method is to execute the modi�ed state machine in the analysis algo-

rithms themselves. This allows us to use our modi�ed state machine representation

directly. It does, however, add much more complexity to the analysis algorithms. The

same idea as above applies to this approach. The state space is stepped through in

a breadth �rst search manner in order of length of time from the initial state. Each

time transition is broken into smaller steps to implement the traversal. This method

has the advantage of begin easier to return bad schedules (the execution paths that

42

are past the deadline).

Veri�cation Process

Our Real-Time system is now modeled as a Timed Transition Finite State Machine

in the form of an OBDD. Using the above algorithms, we can �nd the longest and

shortest time that a system may begin or �nish executing within the frame cycle

relative to the initial state.

The upper bound algorithm is used to �nd the longest path (time) between the

initial state and every other process in the system. The maximum is found of these

times. This is the maximum time it will take for all processes to �nish execution. If

this time is greater than the deadline given for all processes to �nish execution then

there is at least one case where the system may not meet its deadline.

If requested, schedules that run past the deadline can be returned. This provides

the designer with the exact sequence of execution of processes that will cause the

system to fail.

This recording of individual execution paths does require extra storage in memory,

however. A path for each separate execution possibility must be stored. It is stored as

a linked list of small BDD items as shown in Figure 14. At each step in the traversal of

the state diagram the path is recorded. New objects are created containing a OBDD

representing a single state and a pointer to the previous object in the sequence.

If the longest path between the two states is greater than the maximum allowed

given then the schedules of those paths exceeding the maximum are returned. The

paths that we are concerned with �nding bad schedules for are usually paths that

43

prevState BDD

prevState BDD

prevState BDDprevState BDD

B

A

C

ED

Figure 14: Keeping track of bad schedules

begin with the state that starts the frame period, the initial (or periodic) state.

This method of system veri�cation builds on the the method of searching the state

transition diagram using OBDDs as described by Campos [3]. In this work the model

must be speci�ed as a state-transition graph.

This method uses a model-based veri�cation approach. Unlike the work of Cam-

pos, in this approach the model of the real-time system is entered graphically. This

graphical representation of the models is transformed into the �nite state machine

model. This conversion process is fully automated. A large part of the problem is

modeling the system as a �nite state machine and avoiding state explosion problems

as this state machine is begin built. In many systems the mapping is very complex

depending on the type of scheduling algorithms used, the constrains placed on the

execution of the processes, etc. Since OBDDs are used to represent the state machine

it may be built up incrementally. This approach is demonstrated in the example in

the following section.

44

CHAPTER IV

EXAMPLE

Data Acquisition Example

The following example is of a data acquisition system to monitor plant condi-

tions of a jet engine test. This system has one periodic process which is the acquire

process. This process executes every 13ms. It reads data from the various external

sensors on the engine and plant. The data collected by the acquire process is sent to

the preprocess process which triggers its execution. The preprocess process provides

some �ltering of erroneous data. The preprocess process, based on its results, de-

cides whether or not to start the error detection processes (pressure or temperature).

The preprocess process may start any combination of these. If any of the detection

processes decide that a problem may exist they can signal a warning. Each of these

detection processes make this decision individually, based on the data given to them,

whether or not to start the warning process. If the warning process is executed

it always triggers the yellow process which announces this warning condition. The

warning process can, based on the data, start an alarm process. This alarm process

will always start a red process which announces the alarm condition exists.

The preprocess process also always sends its results to the display and store pro-

cesses. The display process is used to display data on some type of output. The store

process is used to store the data on some type of permanent media for later use. The

data
ow diagram is shown in Figure 15.

45

STORE

DISPLAY

TEMPERATURE

PRESSURE

WARNING ALARM

YELLOW RED

ACQUIRE PREPROCESS ?

?
?

?
?

Figure 15: Data
ow diagram for Data Acquisition Example

All processes execute for 1ms except the display and store processes. These two

processes execute for 2ms. The priority order from highest to lowest is as follows:

acquire, preprocess, temperature, pressure display, store, warning, alarm, yellow, and

red.

The acquire process is executed every 13ms which starts the cycle. The require-

ment for schedulability is for all processes to �nish execution before the next execution

of acquire begins. The upper and lower bound algorithms can be used to �nd the the

shortest and longest times between the periodic acquire process and each of the other

processes in the system. If the longest time for each process to �nish execution is less

than the data acquisition period then no process can overlap into the next period and

the system is schedulable.

In this example the longest possible time for a process to �nish execution was red

which could �nish as long as 12ms after the period began. The output of the analysis

program is shown in Figure 16. The output shows the longest and shortest time

it may take to execute between two processes. These times are shown between the

periodic process, acquire, and each of the other processes in the system. By looking

at this chart we can get a good idea of how the system will perform. The output

46

shows that the system is schedulable in all cases. It has at least 1ms to spare in the

worst case and normally much less that that since it is rare that both sensors will

signal an alarm at the same time.

Suppose someone suggests that the warning and yellow processes should have a

higher priority to provide a faster warning response time. The relative priorities are

changed to give the warning and yellow processes a higher priority as follows: acquire,

preprocess, warning, yellow, temperature, pressure, display, store, alarm, and red. The

upper and lower bounds algorithms were again used to compute the maximum and

minimum times for each process to complete execution. The results of the analysis

are shown in Figure 17.

By looking at the output we can clearly see that the system is not schedulable in

all cases. The worst case sequence now takes 14ms. The schedule that extended past

the deadline is as follows: acquire, preprocess, temperature, warning, yellow, pressure,

warning, yellow, display, store, alarm, and red. The cause is now obvious. Raising

the warning process's priority causes it to execute once for every time it is requested

by each detection process. In the original process assignment if one or both processes

requested a warning it was only executed once since processes are not allowed to be

in the scheduler's queue multiple times.

47

Figure 16: Output of analysis tool - Case I

Figure 17: Output of analysis tool - Case II

48

ACQUIRE EU WIN FFT

ALARMALARM DET
??

WARNING DET

Figure 18: Data
ow graph of signal processing example

Signal Processing Example

The following example shows a signal processing system. The system has a peri-

odic process acquire which gets an input sample block of data. There is a EU process

that performs engineering unit conversion on all input data to scale it to proper

values. The win process applies a window function to the data before it goes into

the FFT routine. The next process is the �t routine. This routine performs a Fast

Fourier Transform on the data set. The output of this process is data that is now in

the frequency domain. The output of the �t process goes into the warning/detection

process. This process looks for abnormal spectral information that could signal a

problem. The output of this process is modeled as a conditional output. This means

the process may or may not output data. The output of this process (if there is

output) feeds into the alarm/detection process. Its other input gets EU converted

sample data from the EU process. This process is a IF ALL process. Data must be

present on both these inputs before it can be available for execution. The output

of the process is also a conditional output. It feeds into the alarm process. This

process's job is to actually signal an alarm if needed (if data is given to it). The

data
ow graph of this model is shown in Figure 18.

The example was entered into the model editor as shown in Figure 19. Each

49

process was given a execution time and assigned a priority. The priority order

from highest to lowest is as follows: acquire, EU, win, FFT, warning/detection,

alarm/detection, and alarm.

The processes acquire, EU, and win each execute for 1ms. The FFT process exe-

cutes for 5ms. The warning/detection, alarm/detection, and alarm processes execute

for 2ms. The priority order from highest to lowest is as follows: acquire, preprocess,

temperature, pressure display, store, warning, alarm, yellow, and red. The acquire

process executes periodically at every 15ms.

The interpreter/analysis tool was executed with this model as its input. The

output was as shown in Figure 20. The output shows the same largest and smallest

distances between the period process and every other process.

This is somewhat unexpected, but correct. The conditional outputs in this case

only cause the execution sequence to end earlier. If the warning/detection process

does not output data then, for this example, no more processes are scheduled to be run

and the current period's processing is �nished. The same is true if the alarm/detection

process does not output data. If this processes input discipline was IF ANY then this

would not be the case since the EU process's data output would schedule both the

WIN process and the alarm/detection process.

50

Figure 19: Signal processing example in Model Editor

51

Figure 20: Signal processing example output

52

CHAPTER V

CONCLUSIONS

It is necessary to verify real-time systems in critical applications. Many times

people do not throughly test real-time systems. A rare series of events may occur at

the worst possible time to produce system failure. It is generally not possible to fully

test an actual system through enumeration of all execution possibilities. The number

is simply too large.

Scheduling algorithms are available that provide an optimal scheduling solution

but cannot guarantee schedulability in all cases. Model-based analysis can provide a

way to explore the state space of a system. For many systems this is a di�cult task

since state space of the system grows exponentially as the complexity increases. A

way of examining this space e�ciently is needed.

This application demonstrates the advantages of using OBDDs for representing

a problem domain in terms of a �nite state machine. The full enumeration of the

problem space never needs to be constructed thereby avoiding the state explosion

problem.

A model-based analysis method using OBDDs is well suited to this task. From the

system data
ow model a �nite state machine representation is derived. Algorithms

that can determine schedulability based on the FSM have been developed. The ability

of the algorithms to analyze a large state space e�ciently is made possible by using

OBDDs. They provide an good representation of the �nite state machine which can

53

be explored on a state set basis. Finding a next state set or previous state set from

a current state set given a next state equation is a straightforward task using the

OBDDs.

This tool not only determines schedulability of a system, but can return the bad

schedules which cause a system to miss its deadline. This information can help the

systems designer be aware of potential problems even before the system is imple-

mented.

Model-based analysis can give the system designer information about the system's

timing characteristics while the system is still in the design stages. The designer can

also perform the analysis on di�erent \what if" situations by simply changing the

model.

Much experience was gained using OBDDs. The OBDDs were implemented using

a C++ OBDD package developed at Vanderbilt. Using this OBDD implementation

provided testing and feedback for the package. Building this application gave insight

into how e�cient OBDDs are and how large of a state space that can be traversed.

The example shown previously uses a state encoding of 30 bits and executed with

short computation times on the order of a few minutes. (The OBDD actually used has

60 variables to represent the characteristic next state equation of the state machine).

This gives a possible state space of up to 230 states that can be represented e�ciently

since the search times have been found to be largely dependent on the number of

variables used in the OBDD.

54

Future Research

Future directions include extending this method to verify real-time parallel pro-

cessing systems where the data
ow between processors must be modeled. This type

of analysis would be valuable in Multigraph applications in which the actor nodes are

spread across both distributed or shared memory multiprocessors.

The method could also be extended to systems with multiple cyclic processes on a

single processor. This would enable modeling of systems with more than one periodic

process such as a data acquisition systems which sample data at more than sample

rate.

Also, a more detailed analysis could be performed if a upper and lower bound

were assigned to each processes execution time instead of a single time. The process

would be de�ned to execute for this nondeterministic amount of time.

55

Appendix A

MODEL DEFINITION FILE

attribute Datatype : menu "Select datatype"

{ "Buffer" Buffer_type;

"Int" Int_type ;

"Float" Float_type ;

"Double" Double_type ;

};

attribute Description : page "Model description:" (2 64) "";

paradigm SignalFlow {

classes

atom Signal {

attr Datatype;

};

model Processing {

SignalFlowAspect {

attrs {

attr Description;

}

56

parts {

InputSignals : InputSignal link ;

OutputSignals : OutputSignal link ;

}

}

}

atoms

InputSignal "isig.icon" is_a (Signal);

OutputSignal "osig.icon" is_a (Signal) {

Outtype : menu "Data Output when executed"

{ "Always" Always_out;

"Conditional" Cond_out;

};

};

LocalSignal "lsig.icon" is_a (Signal) {

QLength : field int "Queue length:" "10";

};

models

Primitive is_a (Processing) primitive {

SignalFlowAspect "Signal flow" {

icon rect {

left : InputSignals;

right: OutputSignals;

57

top: InputParameters;

};

font 3;

color foreground;

attrs {

Script : page "Script name/Timer delay:" (1 64) "";

Time : field int "Time:" "1";

Priority : field int "Priority:" "10";

Period : field int "Period:" "0";

Kind : menu "Select primitive kind"

{ "Algorithm" AlgorithmicPrim ;

"Periodic" PeriodicPrim;

};

Discipline : menu "Select control discipline"

{ "IfAll" If_All ;

"IfAny" If_Any ;

};

}

}

}

Compound is_a (Processing) compound {

SignalFlowAspect "Signal flow" {

icon rect {

58

left : InputSignals;

right: OutputSignals;

};

font 3;

color foreground;

attrs {}

conns {

DataflowConn { 1 solid line arrow } :

{ InputSignals -> PrimitiveParts InputSignals }

{ InputSignals -> CompoundParts InputSignals }

{ LocalSignals -> PrimitiveParts InputSignals }

{ LocalSignals -> CompoundParts InputSignals }

{ PrimitiveParts OutputSignals -> LocalSignals }

{ CompoundParts OutputSignals -> LocalSignals }

{ PrimitiveParts OutputSignals -> OutputSignals }

{ CompoundParts OutputSignals -> OutputSignals };

}

parts {

LocalSignals : LocalSignal;

PrimitiveParts: Primitive hierarchy;

CompoundParts : Compound hierarchy;

}

}

59

}

}

The Model De�nition File (MDF) �le speci�es the modeling environment. The

Model Editor is custom built according to the speci�cations in the MDF. The MDF

is written in is own declarative language to describe the modeling environment. The

MDF �le shown here was used to build the Model Editor used in this application to

enter the models for analysis.

The MDF �le begins with attribute de�nitions. These attributes are de�ned at

the beginning for use later on in describing options that can be added to other objects.

The attributes that are prede�ned in this �le are a menu to select the data type of a

object and a text entry �eld.

This model uses the signal
ow paradigm. The paradigm consists of 3 main

sections: class de�nitions, atom de�nitions, and model de�nitions. For this signal

ow type modeling environment 2 class elements are de�ned: a Signal element and a

Processing element. Later on in the de�nition �le other objects will be derived from

these classes.

Three atoms are de�ned for use in this environment: InputSignals, OutputSignals,

and LocalSignals. Each of these atoms are derived from the Signal atom de�ned

earlier. Each also have a bitmap �le for assigning a icon to them to de�ne how they

will look in the model editor. In this application the icons are small boxes with arrows

pointing in the proper direction.

The OutputSignal icon has a menu attached to it so that the user can select

60

individual outputs to be conditional or unconditional. In the editor the user must

click on the OutputSignal icon to bring up this menu.

This signal
ow paradigm is de�ned to use 2 kinds of models: primitive models

and compound models. The primitive model has several attributes speci�ed:

� Script Name - Name of process the primitive represents

� Time - Length of time it takes the process to execute

� Priority - Priority of process

� Period - Period at which process executes. This is only used when the kind

(below) is \Periodic".

� Kind - Algorithmic or Periodic: Distinguishes the period node. Only one should

be selected for a system. All other processes should be algorithmic.

� Discipline - IF ALL / IF ANY: Speci�es whether a process's must have data

present on all his input ports before it can be available for execution or if data

only has to be available on any of its input ports to be able to run.

The compound models de�ned here do not have any attributes. These models

contain other models, compounds or primitives, and their connections. Valid objects

that may be placed in a compound are listed under \parts". For this model they

are: LocalSignals, Primitives, and Compounds. Valid connections that may be made

between these objects are speci�ed in the MDF under \conns".

61

The MDF �le provides a precise method of specifying the modeling environment.

It is not just used as a speci�cation but is actually what is used to custom build the

modeling environment.

62

REFERENCES

[1] Abbott, B., Bapty, T., Biegl, C., Karsai, G., Sztipanovits, J.: \Model-Based
Approach for Software Synthesis," IEEE Software, pp. 42-53, May 1993.

[2] Bryant, R.: \Symbolic Boolean Manipulation with Ordered Binary Decision
Diagrams", School of Computer Science, Carnegie Mellon University, July 1992,
CMU-CS-92-160

[3] Campos, S., Clarke, E., Marrero W., Minea M.: \Timing Analysis of Indus-
trial Real-Time Systems", pages 97-107, Workshop on Industrial-Strength For-
mal Speci�cation Techniques, Boca Raton, Florida, April 1995.

[4] Campos, S., Clarke, E.: \Real-Time Symbolic Model Checking for Discrete Time
Models", School of Computer Science, Carnegie Mellon University, May 1994,
CMU-CS-94-146

[5] Liu, C., Layland, J.: \Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment", Journal of the ACM, 20(1), January 1973.

[6] Campos, S., Clarke, E., Marrero, W., Minea, M.: \Computing Quantitative
Characteristics of Finite-State Real-Time Systems",School of Computer Science,
Carnegie Mellon University, May 1994, CMU-CS-94-147

[7] Bapty, T., Abbott, B.: \Portable Kernel for High-Level Synthesis of Com-
plex DSP-Systems," Proceedings of the International Conference on Signal
Processing Applications and Technology, Boston MA, 1995.

[8] Sztipanovits, J., Karsai, G., Biegl, C., Bapty, T., Ledeczi, A., Misra, A.:
\MULTIGRAPH: An Architecture for Model-Integrated Computing," Proceed-
ings of the International Conference on Engineering of Computer Systems, Ft.
Lauderdale, Fla., October 1995.

[9] Karsai,G.: \A Con�gurable Visual Programming Environment: A Tool for
Domain-Speci�c Programming," IEEE Computer, pp. 36-44., March 1995.

[10] Stankovic, J., Spuri, M., Di Natale, M., Buttazzo, G.: \Implications of Classical
Scheduling Results for Real-Time Systems," IEEE Computer, pp. 16-25., June
1995.

[11] Bapty, T., Abbott, B.: \Parallel Signal Processing for Turbine Engine Testing,"
Final Report for USAF-UES SRP, Contract no. F49620-88-C-0053, July 22, 1991.

[12] Moore, M., Karsai, G., Sztipanovits, J.: \Model-based programming for parallel
image processing," Proc. of the 1st IEEE International Conference on Image
Processing, 1994.

63

[13] Abbott, B., Bapty, T., Biegl, C., Karsai, G., Sztipanovits, J.: \Model-Based
Approach for Software Synthesis," IEEE Software, pp. 42-53, May, 1993.

[14] Ledeczi, A., Bapty, T., Karsai, G., Sztipanovits, J.: \Modeling Paradigm for
Parallel Signal Processing," The Australian Computer Journal, vol. 27, No. 3,
pp. 92-102, August, 1995.

[15] Levi, S., Agrawala, A.: Real Time System Design, New York: McGraw Hill, Inc.,
1990, pp. 169-172.

[16] Gomaa, H.: Software Design Methods for Concurrent and Real-Time Systems,
Reading, Massachusetts: Addison-Wesley Publishing Company, 1993, pp. 5-6,
123-132.

[17] Parks, T., Lee, E.: \Non-Preemptive Real-Time Scheduling of Data
ow Sys-
tems," Presented at IEEE International Conference on Acoustics, Speech, and
Signal Processing, May 1995.

[18] Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and
Computation, Reading, Massachusetts: Addison-Wesley Publishing Company,
1979, pp. 13-15.

64

ELECTRICAL ENGINEERING

A METHOD FOR MODELING AND VERIFICATION OF REAL-TIME

SYSTEMS

JASON MATTHEW SCOTT

Thesis under the direction of Professor Gabor Karsai

Veri�cation of real-time systems is essential. Presented here is a method for modeling

real-time systems and computing the model's timing characteristics automatically.

A model-based approach allows the system to be designed and analyzed before it is

actually constructed.

The real-time systems that are considered in this method are systems that can

modeled as a data-driven system. The model of the system is a data
ow graph. The

system has one periodic process. From the data
ow model an equivalent �nite state

machine representation of the system is produced by this package. To provide e�cient

traversal of this large state space an Ordered Binary Decision Diagram (OBDD) is

used to represent the state machine using symbolic methods. Algorithms have been

developed to �nd the largest and smallest distances (times) between any two state

sets. From these algorithms schedulability of the real-time system can be determined.

If the system is found to have a case where it may miss its deadline then the sequence

of events that may lead up to this event can be given to the user.

Approved Date
Advisor

