
Model-Integrated Environment for Adaptive Computing

J. Scott, T. Bapty, S. Neema, and J. Sztipanovits
Vanderbilt University / Institute for Software Integrated Systems

Department of Electrical and Computer Engineering,
Box 1826 Station B, Nashville, TN 37235

Abstract

Many high-performance, embedded applications must
function in rapidly changing environments. Power/size
constraints limit hardware size, while performance
requirements demand algorithm-specific architectures.
Reconfigurable computing devices allow the architecture to
change in response to the changing environment.

A model-integrated approach is used for the synthesis of
these systems. The target systems are built on a
heterogeneous computing platform: including configurable
hardware, ASIC and general-purpose processors and DSPs.
The model interpretation process will generate
hardware/software architecture specifications and a run-time
Configuration Manger allowing dynamic adaptation to
changing environments while the synthesized system is on-
line. The synthesis process will optimize hardware/software
architectures for user-definable cost functions such as weight,
power, algorithmic accuracy and flexibility.

I. INTRODUCTION

This research is motivated by the requirements for design
and implementation of adaptive missile automatic target
recognition (ATR) systems. ATR systems have extremely
large computational requirements. Image sizes are large with
a high frame rate (30 frames/sec). Processing of this input
data must meet hard real-time requirements. In order to
achieve these requirements many components of this
processing must be implemented in hardware; other
components may be implemented in software.

ATR systems must be physically small, less than 1 cubic
foot. Weight is also a major consideration. These factors
require that component utilization be maximized as much as
possible for selected hardware. ATR systems also require
special attention to power consumption. During some
processing modes components not needed to meet processing
requirements at that time can be put into a low-power mode
or shut down.

In the design process of many complex systems it is not
obvious which implementation choices will yield a good
balance between power usage, hardware size, and system
performance. Also, design cycles for these systems tend to be
long. By the time a design is completed the hardware
platform that the system was designed for may become
obsolete. An adaptive system is needed to support a hardware
platform that may be evolved to include current state-of-the-
art technology without complete redesign.

In a single mission, an ATR system traverses a large
number of operation modes (target acquisition, target
tracking, aim point selection, etc.). Each mode can have very
different processing requirements
(latency/throughput/accuracy), resources, and operational
constraints. Different modes may have a different
computational structure. Reconfigurable computing offers a
method for maximizing the utility of the computational
platform by adapting architectures to the changing needs of
the system. This provides reuse of components over time.

The system hardware configuration our toolset supports
may be constructed of both CPU processors and hardware
processing elements. The processors may be DSPs (Digital
Signal Processors) or conventional RISC/CISC processors
that execute software processes. The hardware processing
elements may be fixed-function devices such as an ASIC FFT
implementation or a programmable logic device such as a
FPGA (Field Programmable Gate Array). FPGAs have the
ability to implement arbitrary hardware functions. FPGAs can
also be reprogrammed quickly to completely change the
function(s) implemented. Currently FPGAs are evolving
quickly to have faster (re)configuration times and larger
capacity. These properties make FPGAs a good choice for
high-performance processing applications where flexibility is
needed [1]. Multiple processing functions may be allocated to
FPGAs and can change as the design evolves or the
processing functions may be completely changed on the fly
during system operation as processing requirements change.

The design of reconfigurable computing systems
represents a significant challenge to the engineering process.
System complexity skyrockets, since we are no longer
designing a single system on a fixed architecture. We must
now consider the design to be an integration of subsystems,
each subsystem representing a phase of the system, with
subsystems spread out over time. Additional complexities
arise from the need for all subsystems to share the same
physical implementation.

The Institute for Software Integrated Systems is
developing an approach for managing the complexity in
designing reconfigurable systems. Experience with Model-
Integrated Computing (MIC) has shown itself to be successful
in comparable situations. The MIC approach involves the
following steps:

• Use Multi-aspect, Domain-specific Modeling
Environments to capture requirements, design methods,
and resources in a format that is customized to the
problem and its formalisms.

• Develop System Synthesis tools for converting the
models into executable artifacts.

• Develop a Runtime Execution Environment for
supporting the execution of the generated system.

II. MODELING CONCEPTS

A multi-aspect, domain-specific modeling paradigm was
chosen to capture all information necessary to model and
synthesize a system [2]. This information includes system
computation requirements, computation algorithm(s), and
available system resources. The modeling paradigm has three
main aspects: a structural aspect, a behavioral aspect, and a
resource aspect. Each of these aspects is defined in a
graphical language customized for the domain of adaptive
computing systems.

A. Structural Aspect

The structural modeling aspect is used to describe the
processing algorithm structure. This structure may be defined
hierarchically and may also include multiple algorithm
architecture alternatives for a given task. The use of these two
concepts together provides a powerful method for modeling
the possible design space. This design description may
describe a potentially huge number of design
implementations. Modeling the different ways in which a
processing task may be realized gives the design environment
the freedom to search for and select an implementation that
meets the specified requirements and fits within the resources
available.

The algorithm is modeled as a dataflow structure with the
following objects: compounds, primitives, and templates. The
relationship between these objects is shown in Figure 1. A
primitive is a basic element representing the lowest level of
processing that is modeled. A primitive is a processing object
that is to be implemented as either a hardware function or a
software function. A compound is an object that may contain
primitives, other compounds, and/or templates. Compounds
provide the hierarchy in the structural description that is
necessary for managing the complexity of large designs.

A template object is used to describe the concept of a
choice between multiple design architectures. A template can
be used to model different algorithm alternatives or different
implementation alternatives. For example, many types of
signal processing tasks can be accomplished in the spatial or
the spectral domain. Both approaches may achieve the same
basic results but with vastly different algorithm designs. In
the spatial domain a filtering function may be achieved by
performing a time domain convolution. In the frequency
domain the function may be achieved by performing a FFT,
followed by a multiplication, then an inverse FFT. It is useful
to model multiple implementation alternatives, that is,
different ways a processing function may be implemented.
For example, a convolution can be computed in software
running on a DSP, software running on N DSPs, hardware

function in a FPGA, or a dedicated ASIC solution.

Compound

Compound

Software

Hardware

Compound

Primitive Template

Primitive

Primitive

Template

Compound Primitive

Primitive

Compound

Compound

Primitive

Primitive

PrimitiveCompound

Object Hierarchy Example Model

Figure 1: Object hierarchy definition of Structural Aspect along
with an example instantiation

The use of these types of algorithm alternatives allows our
model of the system to capture design possibilities. Each of
these alternative methods has different performance attributes
and different hardware requirements. Which alternative will
be a good choice depends not only on the hardware that is
available but also if the hardware is to be time-shared what
hardware is required of the other processing algorithms that
are operating in different modes. Although the type of
hardware (FPGA, DSP, etc.) that basic processing primitives
can be implemented on is part of their definition, the
hardware resources that are available may not be known or
may change at this point.

B. Behavioral Aspect

The behavioral aspect defines the modes in which the
system may operate and the manner in which these mode
changes can occur. Each mode is defined by the processing
algorithm that is to be operational in that mode. The possible
transitions from one mode to another are specified in the
behavioral aspect by a state transition graph as shown in
figure 2.

Mode B

Mode C

Figure 2: Behavioral Aspect

The event expression that can trigger a mode change is
defined by the transition rules. A transition rule is a Boolean
equation composed of event variables. When this expression
is satisfied the transition from one mode to another is enabled
and system reconfiguration is to take place.

C. Resource Aspect

The resource aspect defines the hardware platform
available for the system to be implemented. The hardware
platform is modeled in terms of hardware components and
the connections among them. The relationships among the
resource model components are shown in figure 3. The
hardware system is a network of components that are either
processor type elements such as DSPs or standard RISC/CISC
processors, programmable logic components such as FPGAs,
or dedicated hardware ASIC components for specific
functions such as FFT computation. Items known as cores
and ports are used to describe processing elements. A
processing element must contain a core. The core object
captures the necessary performance attributes of the
processing element such as clock speed, contain a. A core
represents the processing element A port represents a
physical communication channel that a processing element
has available. Connections between processing elements are
created by connections between ports.

Processor

Network

Ports

ASIC

Core PortsCore

FPGA

Ports

Object
Hierarchy

Example
Model

Network

Processor

Processor

Processor

FPGA FPGA

ASIC

Figure 3: Resource Model

These three aspects of our modeling paradigm are
integrated into a single design environment, known as GME
(Graphical Model Editor).

III. RUNTIME EXECUTION ENVIRONMENT

The runtime environment must support implementation
platforms with the following attributes:

• Heterogeneous: Optimizing the architecture for
performance, size, and power requires that the best

implementation techniques be used. Implementations
will require software (implemented on RISC and DSP
processors), configurable hardware on FPGAs, and a mix
of ASIC components.

• Performance: the runtime environment must minimize
overhead, since overhead results in extra hardware
requirements.

• Real-Time: The target systems have significant real-time
constraints.

• Reconfiguration: The execution environment must allow
hardware and software resources to be reallocated
dynamically. During reconfiguration, the application
data must remain consistent and real-time constraints
must be satisfied.

In addition, the runtime environment must be designed
with an interface suitable for synthesis from a MIC-Generator
approach. The properties of the runtime environment must
be tuned to simplify the generator. This demands a simple,
uniform interface with a well-defined, consistent set of
semantics that apply throughout the system.

The execution environment has been derived from tools
developed over the past several years. These tools are used to
construct large-scale, parallel, real-time signal processing
systems. The runtime environment enabled development of
CADDMAS systems, which are used by the USAF for turbine
engine testing and NASA for SSME monitoring and analysis.

Common Execution Semantics

SW Process StreamStream HW Process FIFO

Worker
function

Comm

Software Hardware
FIFO

Comm

Asynchronous
Communication
Buffer

Queue in
kernel

Hardware
FIFO

Virtual Hardware KernelKernel

Memory
Manager Scheduler Comm

Library Schedule & Comm Mapping FPGA Config RAM

Hardware Device Drivers

Figure 4: Execution Environment Semantics

The semantics of the execution environment implement a
large-grain dataflow architecture. Processes and Processors
are equivalent, representing functions on data.
Processes/processors are connected via logical streams/signals
that must buffer, communicate, and match data formats.
Figure 4 illustrates the common execution semantics that
exist between hardware and software platforms and the
different implementations required to enforce these
semantics.

The execution environment spans software and

reconfigurable hardware. The software environment consists
of a simple, portable real-time kernel with a run-time-
configurable process schedules, communication schedule, and
memory management. Communications interfaces are
supported within the kernel, making cross-processor
connections invisible. Memory management is integrated
with the scheduler and communication subsystems, enabling
(but not solving) the problems associated with dynamic
reconfiguration. The software kernel uses the communication
infrastructure broadcast commands from the Reconfiguration
Manager to receive configuration information.

The hardware execution environment is semantically
similar, but the implementation is much different. The
Virtual Hardware Kernel exists as a concept only. The MIC
Generator synthesizes the processors, the signal buffering,
and the necessary off-chip interfaces and data converters.
These interfaces generated at the hardware/software
boundaries provide a practical means to produce a
synthesizable system and facilitate the HW/SW codesign
process [3].

IV. SYSTEM SYNTHESIS

The multi-aspect model of the system describes a possibly
enormous number of design solutions. The set design
solutions must be evaluated to find a set of designs (mode
configurations) that best satisfy a number of design criteria.
This is a very difficult task because there are inherently a
large number of conflicting design criteria in reconfigurable
systems. Each mode has performance requirements that
demand a certain level of performance from the hardware for
a given algorithm. Some hardware components are more
suitable for certain tasks than others. DSPs provide a general-
purpose solution and reasonable performance for many
complex algorithms while ASICs can provide a high-
performance solution at the cost of adding a dedicated fixed-
function IC. The processing needs of the multiple modes of
the system must be met for a single shared hardware
platform. The synthesis process will select feasible
hardware/software architectures for user-definable cost
functions such as weight, power, algorithmic accuracy and
flexibility.

The structural aspect that captures the hierarchical data-
flow with alternatives can represent an exponentially large
design space in a compact form. An algorithm structure may
have an extremely large number of possible implementations

but a very small solution space as visualized in figure 5.

Figure 5: Design Space Visualization

Searching the design space to a set of configurations to
satisfy the design criteria is accomplished in multiple stages,
each with increased resolution. A symbolic constraint
satisfaction method is introduced to provide an initial pruning
of the design space. This method operates on the binary
design and performance constraints specified for the systems.
This method of pruning is implemented using a symbolic
method known as ordered binary decision diagrams (OBDD).
A symbolic representation is built along with a constraint set.
System design alternatives that do not satisfy this constraint
set may be quickly eliminated. Through the use of the OBDD
representation these design possibilities do not have to be
examined individually allowing for an extremely large design
space to be quickly narrowed.

The design search will continue to narrow down
possibilities through high-level simulation of the system.
Components will have associated performance models that
can be used to compute performance data of the system
configuration being evaluated such as communication
utilization, processor utilization, etc. Finally when the
searching process has narrowed the design space down to
only a few candidate configurations it may be necessary to
fully synthesize these configurations for the target platform
and evaluate their performance through actual run-time
measurements.

At this point, the synthesis procedure can generate the
actual runtime artifacts. From the behavioral models, a set of
tables is produced for the Configuration Manager. This
defines the behavior of the system, in terms of a state
machine. These tables are executed directly by the
configuration manager.

For each configurable component, a set of design files is
generated. One file is built for each component for each
mode. The design is specified in structural VHDL, using
computational components from the design library and
interface components from the runtime system library. These
VHDL files are then compiled using vendor-supplied/COTS
VHDL compilers and part-specific Place-and-Route tools.
The result is a “bitfile”, ready for direct device programming.

For the general-purpose/DSP components, a set of real-
time schedule specifications and communication maps are
generated. These are then processed into a set of object
modules and tables for direct download into the parallel array
of processors. One set of tables is built for each processor for
each mode, and one common executable module is generated
for each processor.

The result of the synthesis and post processing is a
complete executable system, ready for deployment. Current
synthesis capabilities do little optimization (Optimization is
an ongoing research topic).

Solution Space

CONCLUSIONS

Certain high-performance, highly-constrained
applications need to be adaptable to their requirements and
environment. Needed is a method for rapid, automated system
synthesis that can provide maximal use of available hardware
over time through system reconfiguration. FPGAs are an
enabling technology for a computing platform that is able to
adapt to changes in the processing algorithm. FPGAs may be
used as general purpose computing devices whose flexibility
and speed fall somewhere between that of a custom ASIC and
that of a standard CPU.

The use of a domain-specific, multi-aspect modeling
paradigm is key to capturing all relevant information about
the system in an integrated environment. With this
information design choices can be automated to select from
the possible configurations a system configuration that meets
specified design requirements and is also optimized for other
specified metrics such as power use, weight, and algorithmic
accuracy. Extremely large design spaces can result from the
freedom given in defining the algorithm structure
alternatives. Methods are being investigated to manage these
large state spaces symbolically using Ordered Binary
Decision Diagrams (OBDDs). Symbolic manipulation can
provide a way to prune the design space without examining
each design alternative individually.

Dynamic reconfiguration provides a better utilization of
hardware over the different operational modes of the system.
Automatic target recognition can benefit greatly from
dynamic reconfiguration because of nature the ATR
application; each phase has a different computational
structure. The ability to reconfigure the processing structure
to fit the current processing structure can minimize redundant
hardware.

The current modeling environment is being evaluated.
Applications are being modeled to ensure all relevant
information is captured in the models. A set of intrinsic

components is being constructed for the hardware
communication interfaces. Dynamic reconfiguration
approaches are being tested and refined. Applications are
being built to evaluate and refine components and
approaches.

Many issues need to be explored with respect to dynamic
reconfiguration. Suppose processing algorithm A is operating
and reconfiguration occurs to switch over to algorithm B,
what does an output common to both of these algorithms
produce? Is a discontinuity at the point of reconfiguration
observed? If these outputs are used to provide information to a
control system this may be unacceptable. A possible solution
could be to define (model) a transition phase between the
mode changes to provide a more continuous transition
between modes. The issue becomes more complicated if the
system is allowed to be partially reconfigured.

The systems currently being explored are real-time
embedded systems. Reconfiguration must be real-time in
nature to meet deadlines.

ACKNOWLEDGMENTS

This project is a DARPA Adaptive Computing Systems
funded effort, involving close cooperation with US
ARMY/AMICOM.

REFERENCES

[1] J. Villasenor, W. H. Mangione-Smith, "Configurable
Computing," Scientific American, pp.66-71, June 1997.

[2] J. Sztipanovits, G. Karsai, T. Bapty: “Self-Adaptive
Software for Signal Processing,” CACM, Vol. 41, No. 5.,
pp. 66-73, May, 1998.

[3] P. Mertens, "System Architecture Design Using
Structured Methods," Codesign Computer-Aided
Software/Hardware Engineering, Chapter 12, pp.299-
323, IEEE Press, Piscataway, NJ, 1995.

