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Abstract— We present a mobile acoustic beacon based sensor
node localization method. Our technique is passive in that the
sensor nodes themselves do not need to generate an acoustic
signal for ranging. This saves cost, power and provides stealthy
operation. Furthermore, the beacon can generate much more
acoustic energy than a severely resource constrained sensor node,
thereby significantly increasing the range. The acoustic ranging
method uses a linear frequency modulated signal that can be
accurately detected by matched filtering. This provides longer
range and higher accuracy than the current state-of-the-art.
The localization algorithm was especially designed to work in
such acoustically reverberant environment, as urban terrain. The
algorithm presented handles non-Gaussian ranging errors caused
by echoes. Node locations are computed centrally by solving
a global non-linear optimization problem in an iterative and
incremental fashion.

I. INTRODUCTION

Localization is an essential tool for the deployment of low-
cost sensor networks for use in location-aware applications
[12], [13], [25] and ubiquitous networking [4], [26]. In a
typical sensor network application each sensor node monitors
and gathers local information. This local information has much
more significance if it can be tied to the physical location it
belongs to. In location-critical applications, such as shooter-
localization [24], sub-meter accuracy of 3D node locations is
an absolute necessity for the correct operation of the system.

Range-free localization techniques provide rough estimates
of node positions only. Ranging methods fall into two main
classes: acoustic and radio signal strength-based. The latter
requires extensive calibration, yet it still achieves low accu-
racy and limited range. Acoustic ranging has relatively high
accuracy, but short range. The main reasons are the limited
acoustic energy a sensor node can emit and the possibly high
environmental noise. Having a speaker or sounder on every
node adds size and cost also. When stealthy operation is
required, only ultrasound can be used. But ultrasonic ranging
has even more limited range and directionality constraints.

A sensor network deployment scenario with many favorable
characteristics in numerous application areas is the dispersal of
sensor nodes from a low-flying unmanned aerial vehicle (UAV)
platform. After deployment, an acoustic beacon mounted on
the aircraft can send a radio message followed by an acoustic
signal at random intervals. All the nearby sensor nodes can
estimate their distance from the beacon by measuring the
time-of-flight of the sound. As size and power are not as big
constraints on a UAV as on a sensor node, the maximum range

can be significantly increased. Furthermore, the nodes do not
reveal their positions since they are only passive listeners in
this scenario.

The self-localization problem in this case is to find the
sensor node locations given only the distance measurements
between unknown mobile beacon transmission locations and
the sensor nodes. Neither the mobile beacon positions nor the
sensor nodes themselves are located necessarily on a plane.
Therefore, the localization problem needs to be solved in
3D. Furthermore, to our knowledge, no solutions exist in the
literature that handle multipath effects satisfactorily. For urban
deployments both of these problems need to be addressed.

The main contributions of our work are (1) the acoustic
ranging method providing increased range and accuracy, (2)
the localization algorithm based on the novel idea of a mo-
bile acoustic beacon and (3) the ability to handle multipath
effects. The ranging method is based on the time-of-flight
measurement of an acoustic signals emitted by a single beacon
from multiple locations. The acoustic signal used is a linear
frequency modulated (chirp) signal, that can be identified with
high accuracy by matched filtering at the sensors even at low
SNR. Self localization is modeled as a non-linear optimization
problem where node locations are the optimization variable
and distance equations involving node locations are non-linear
objective functions. The localization algorithm is both iterative
and incremental. At each iteration a part of the sensor network
is selected, localized and evaluated. It is incremental because
at each iteration the part of sensor network selected will
grow around the previously localized nodes. This method is a
generalization of iterative localization algorithms where node
location is improved in each iteration.

The rest of the paper is organized as follows. Section II
summarizes related research in self localization. Section III
presents the novel acoustic ranging technique. Section IV
formulates the self localization problem. The main algorithm
is presented in section V while its implementation, results and
conclusions are provided in sections VI and VIL.

II. RELATED RESEARCH

Self localization, due to its importance in sensor network
applications, has been an active research area for the past
few years. An early survey of some localization systems is
presented by Hightower and Boriello in [6]. Many of these
systems adopt a simple connectivity based approach, while
some of them further refine range estimates between node pairs



by measuring the received radio signal strength. However, RSS
based ranging requires extensive calibration and still yields
inaccurate range estimates [7] resulting in coarse localization.

The GPS-less system by Bulushu [1] employs a grid of
reference nodes with overlapping regions. Unknown nodes
localize themselves to the centroid of their proximate reference
nodes. Localization accuracy is about one third of separation
distance between reference nodes. Doherty [3] formulated self
localization as a geometric constraint feasibility problem based
on node connectivity that was solved using convex optimiza-
tion. Additionally, rectangular bounds on node locations were
used for tighter geometric constraints.

Other techniques that provide much better range estimates
involve time-of-flight measurements, particularly when acous-
tic and RF signals are combined [2], [5], [20], [21], [22].
Acoustic signals, however, require an unobstructed line-of-
sight. In an urban environment echoes present a significant
problem, thus any localization algorithm has to consider multi-
path propagation.

Savvides [22] solves for unknown node position estimates
by setting up a global non-linear optimization problem and
solving it using iterative least-squares. The method requires
the known beacons to surround the unknown nodes, which the
author calls beacon-unknown node convexity. However, this
topology constraint is hard to satisfy in real world deployment
scenarios.

Savarese [20] follows a two phase localization algorithm:
start-up and refinement. The start-up phase utilizes hop-
TERRAIN algorithm which is similar to DV-hop [15]. The
refinement phase is an iterative algorithm that uses the location
estimates from start-up phase. [20] also introduces a crude
notion of confidence value, a metric for the quality of location
estimate.

There are few approaches, that deal with multi-path propa-
gation. One such approach for two dimensions is presented by
Moore [14]. It identifies echoes as geometric impossibilities.
The idea can be extended to three dimensions but under
low connectivity or high measurement noise conditions the
algorithm may be unable to localize a useful number of nodes
[14]. Another case where the geometric constraint based echo
identification may fail is when the distributions of nodes in
the three dimensions are different. In a typical sensor network
the X and Y distribution of nodes is much higher than that
in Z which affects the performance of the algorithm above.

Recently some work has been done in localization using
mobile beacons. Sichitiu [23] uses a mobile beacon that is
aware of its location using GPS. Priyantha [17] describes
mobile-assisted localization where mobile beacon movement
and node localization is interlaced.

The presented localization algorithm models the problem as
global non-linear optimization as in [22], however it goes one
step further to deal with echoes and non-convexity of anchor-
unknown node topology.

III. RANGING

The concept of acoustic ranging is based on measuring the
time-of-flight of the sound signal between the source (beacon)
and the acoustic sensor. The range estimate can be trivially
calculated from the time measurement. However, the speed of
sound is temperature dependent. This problem can be resolved
by a single temperature measurement at the base station. An
appealing characteristic of the proposed ranging algorithm is
that this is the only calibration that is needed. That is the
sensors do not need individual calibration at all.

A. Hardware

The acoustic ranging application targets the MICA2 motes
developed at UC Berkeley [8]. The mote is equipped with
a custom acoustic sensor board, which was developed at
Vanderbilt University for a shooter localization application
[24]. The heart of the sensor board is the low-power fixed
point ADSP-2189 digital signal processor running at 50 MHz.
The availability of the DSP enables the implementation of
sophisticated digital signal processing algorithms.

There are two independent analog input channels on the
board, furnished with low-cost electret microphones and 2-
stage amplifiers with software programmable gain (0-54 dB).
The analog channels are sampled by A/D converters at up to
100 kSPS with 12-bit resolution. The board also has an analog
output channel capable of driving a 250 mW external loud-
speaker. The board is connected to the mote by programmable
interrupt and acknowledgment lines and a standard 12C bus.

In the current implementation the mobile beacon is based
on a MICA2 mote and the same sensor board with an
active loudspeaker attached to its analog output channel. The
maximum output power is 105 dB measured 10 cm away from
the loudspeaker.

B. Ranging algorithm

In order to calculate the range from the time-of-flight of the
acoustic signal, the departure and arrival times of the signal
have to be identified and measured precisely. The beginning
of the transmission can be measured at the beacon, while the
time of arrival is measured at the receiving sensors. The range
calculation is performed on the receivers, thus the beacon has
to send the starting time to the receivers in a radio message.

Employing a sophisticated time synchronization mecha-
nism is essential to accurately measure the time-of-flight.
Our approach employs the message time-stamping primitives
introduced in [11]. The synchronization between the source
and the sensor nodes is implemented as follows.

The source queries its local time to and decides that it will
emit an acoustic signal at time tse,q = to + 0. The source
sends the value ts.,q to all the sensors in a radio message.
Therefore, the value of § is chosen such that it is greater
than the time required by the sensors to process the radio
message and to prepare for receiving. The sensors schedule
their acoustic board for sampling when the beacon starts the
transmission of the acoustic signal.



We assume that the skew of the local clocks is negligible
during the short time of the measurement, but we allow
arbitrary clock offsets. Since neither the source nor the sensors
have knowledge of a global time, the sensors need to convert
tsend included in the message from the local time of the source
to their own local times. This is achieved by timestamping the
radio message at transmission and at reception as well. The
timestamping of the radio message is done in the MAC layer
just before transmission and just after reception respectively.
Since the radio signal is traveling at the speed of light, the
difference between the transmit time instant and the receive
time instant is negligible, hence the transmit timestamp (given
by the local clock of the beacon) and the receive timestamps
(in the local time of the receivers) are assumed to represent
the same global time instance. Thus, a sensor can use the
difference of the transmit timestamp and its receive timestamp
to calculate the offset of its local clock from the local clock
of the beacon. This offset is added to the received tsepq to
convert it to the local time of the receiver.
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Fig. 1. The emitted acoustic signal

The sensor node also has to measure the time of arrival of
the acoustic signal. The accurate detection of the signal is not
trivial in a noisy environment, as it is difficult to emit sharp
rising edges or pulses with general purpose loudspeakers. Ad-
ditionally, the signal has to be emitted with the highest power
available in order to maximize the range of the measurement.
These requirements are analogous to the problems of radar
signals, a well researched area [10], [18]. The problem arises
as the limited bandwidth of the analog output channel restricts
the emission of rising edges with arbitrarily steep slope. The
contradiction is resolved by long duration signals with short
duration correlation functions, so when the received signal
goes through an appropriate matched filter, the output will
be a sharp pulse. The emitted signal is therefore a Gaussian-
windowed linear frequency modulated (chirp) signal shown
in Fig.1, that is commonly used in radar applications. The
windowing is needed due to the limited bandwidth of the
acoustic channel.

A similar solution is presented in [5], where the emitted
signal is a binary phase shift keying (BPSK) spread spectrum
signal. Since our method does not require to distinguish
multiple sources, the use of linear frequency modulated signal
is more natural.

The frequency span of this signal is spread in the whole
acoustic band of the analog channels. The matched filter is
realized as an FIR filter on the DSP. The matched filtering
essentially means the correlation of the expected signature
with the measured data, therefore the length of the FIR

filter is the same as the length of the expected signature. To
avoid a high order FIR filter which would be computationally
expensive, either the length of the chirp signal or the sampling
rate has to be decreased. However, as the length of the chirp
signal can not be arbitrarily short due to the limited bandwidth
of the physical hardware, the sample rate has to be decreased.
Thus, the raw data is decimated to a lower sampling frequency
before the matched filtering.

In order to increase the signal-to-noise ratio (SNR), one
range measurement consists of a series of time-of-arrival mea-
surements. As the delays between the consecutive chirps are
known a-priori, an accurate combined result can be calculated
by averaging these measurements. In the averaged signal the
chirp signature component is preserved as it is added up at the
same phase, but the noise which is assumed to be independent
Gaussian white noise is decreased by \/N where N is the
number of chirps added. Currently we use 8 chirps, thus the
SNR of the averaged signal is 9 dB higher than the SNR of a
single chirp.

Delays between consecutive chirps are varied to avoid a
situation when multiple runs have the same noise pattern at
the same offset, which is a common phenomenon caused by
acoustic multipath effects. Hence the independent nature of
the disturbances is preserved.

The decimation filtering runs online on the DSP, and the
decimated signal is stored in a RAM buffer. The consecutive
measurements are added together in the same buffer. After all
the chirps are received, the matched filtering and the peak-
detection algorithm is performed offline. The peak-detection
algorithm is simply a maximum finder above a threshold level,
as the output of the matched filter has distinctive peaks at
chirps. The time of arrival of the chirp signal can easily be
identified based on the location of the peak.

C. Results

The above algorithm was tested on a grassy field with a
single beacon and multiple receivers. In Fig. 2 the ranging
results are presented, and in Fig. 3 the standard deviation
of the measurements is shown, after outlier rejection. Outlier
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Fig. 3. Standard deviation of ranging
rejection is done by a simple median filter, where the values
greatly differing from the median of the measurements are
rejected. Note that since it is statistical filtering, multiple
measurements are needed for each beacon position to perform
the rejection algorithm.

The effective range of the presented implementation is 30
meters, as the number of outliers and the standard deviation
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of the measurements are getting significantly high above
this value. Below 30 meters the standard deviation grows
approximately linearly with

STD = kyd + ks (1)

where k1 = 0.011 and k9 = 0.024 and d denotes the actual
distance.

The effective range of the measurements are more than two
times larger than in previous acoustic ranging experiments
[19], [9], where the reliable range was 10 m on asphalt
and 15 m on grass, respectively. The standard deviation is
also significantly improved. In [19], the output power of the
sounder was limited (88 dB at 10 cm from source) and the no
custom DSP board was used. In [9] the power of the beacon is
approximately the same as in the presented solution (105 dB
at 10 cm from source), however our use of the DSP board
and the linear frequency modulated signal provides better
performance.

These experimental results are very promising and justify
the presented approach. Moreover, the current limits on range
and precision are primarily caused by issues with the current
implementation. First, the power of the emitted acoustic signal
is still constrained by the gain on the output channel of the
board. Second, the analog input channels of the DSP board
also limit the range, as they were designed for a shooter
detection application [24], where even the maximum gain is
relatively low.

IV. SELF LOCALIZATION

Formally, a generalized self localization problem can be
defined as follows. Given node IDs and their ranges from
each other conjecture the relative physical location of each
node in the network. A few anchor nodes can be provided to
transform relative positions to absolute locations. There are
many challenges to be addressed in this problem. First let us
define some terminology.

DISTANCE MATRIX D is a matrix such that d;; is
the range measurement between node ¢ and node
j. Distance is negative for node pairs for which
range measurement is not known. Number of positive
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Ranging measurement results (a) without outlier rejection, (b) with outlier rejection

entries in row ¢ represents the number of neighbors
of node 7.
NECESSARY CONDITION FOR LOCALIZATION in 3-
dimensions states that a node should have distance
measurements with at least four non-coplanar neigh-
bor nodes.

In a typical urban environment many sensor nodes might
not have line-of-sight with mobile beacon positions, but they
can receive the acoustic signal via multipath. These multipath
ranges or echoes, when used for localization, produce false
or infeasible results. The amount of echoes present in range
measurements heavily depends on the environment and the
maximum range of the applied ranging method. In typical ur-
ban environments, low network connectivity and non-uniform
node distribution in the Z-direction further deteriorate the
localization accuracy, that is even more critical at boundary
nodes.

A. Self Localization As Distance Optimization

The self localization problem in its most basic form can be
modeled as a distance optimization problem. Here the inde-
pendent optimization variables are node locations and the non-
linear objective functions are the differences between distances
computed from node locations and range measurements for all
node pairs for which range measurements exist (Equation 2).
It can be observed that the distance optimization is actually
a function-fitting problem where distances are the non-linear
functions of node locations. Least square optimization is
known to work best for function-fitting problems [16]. The
mathematical formulation of distance optimization problem is
presented below.

Find x*, a global minimizer for

N N,di;>0

F(x) = ;2_; z::l (dij - dij>2 2

2 2 2 .

where di; = {(zi — ;)" + (yi — ;)" + (20— 25) }/2 s

the computed distance between nodes ¢ and j, and d;; is
. T .

the measured distance. X = [Z1y121...TpYn2s] is the

optimization variable where [z;y;2z;] is the 3D coordinate

of node i. The non-linear objective function F(x) is the



square sum of distance errors for all pairs (¢,7) for which
range measurements exist (d;; > 0). The components of the
optimization variable x are subjected to the boundary value
constraints.

Tmin S T S Tmax

Ymin S Yi S Ymazx (3)

Zmin S Zi S Zmazx

V. SELF LOCALIZATION ALGORITHM

An obvious and straightforward algorithm would be to solve
for all unknown node locations simultaneously (Algorithm 1).

Algorithm 1 Self localization algorithm

I: Consider 3D coordinates of all unknown
nodes in optimization variable.

2: Construct and solve non-linear
least-square optimization problem with
objective function in eqn. (2).

This approach has some serious disadvantages. Convergence
of the optimization problem strongly depends upon the initial
guess given to the solver. A close-to-optimum initial guess
would converge to global optimum relatively fast, while a
bad initial guess for the same problem might lead to a local
optimum. Initial estimates for node locations can be computed
by using an extension of the bounding box technique described
in [22]. But due to the large size of the sensor network and
relatively few randomly distributed anchor nodes, it is possible
that we do not have good initial estimates for the whole
network, but only for the part close to the anchors.

An iterative incremental approach wherein a part of the
network near anchor nodes is localized first and then the node
locations are propagated further seems suitable. The idea is
to iteratively select and localize a part of the network (a sub-
system) for which a good initial estimate is available. At each
iteration the part of the network selected for localization will
grow, consisting of nodes that are already localized and few
unknown neighboring nodes that have better estimates in the
current iteration. In each iteration ranges that are believed
to be echoes are identified and removed from computation.
The algorithm is presented below (Algorithm 2). Symbol x
represents the 3D location vector of nodes, xSt and xs°!
denote estimated and localized node location vectors respec-
tively. IV denotes the set of nodes in the network and 7 denotes
the confidence value for the localization (an estimate of the
accuracy of the current location described in section V-C).

There are two levels of looping in the algorithm. The outer
loop starts with an estimate, x®t for the whole network.
The first run of the outer loop starts with a random (or
user given) estimate. Each run afterwards starts with the final
estimate of the previous run. The inner loop corresponds to the
incremental selection and localization of a sub-system N, that
we will call an iteration. At each iteration, the selected sub-
system will increase in size, more nodes will be localized with

Algorithm 2 Incremental iterative self localization algorithm
I: x5t — 0, x%°1—0
2: for run =1 to run,,g; do
3: Configure parameters, read distance
matrix D, set sub-system N — )

4 repeat

5: Nold “— N

6 Estimate bounding-box B; Vie N

7 Choose a8t — € B; Vi € N — Nyq
based on neighbor polling

8: Select N C N such that Jc'fSt
satisfies goodness Vi€ N

9: Optimize x for sub-system N

10: x°st  x

11: for all i € N do

12: Compute mn;

13: Nsol — @

14: if 7, acceptable then

15: x5Ol — x;

16: Ngor < Ngop U {Z}

17: end if

18: end for

19:  until Ngol — ]\701[1 =0

20: end for

21: Output x5°!

higher accuracy until there are no more nodes to be localized
or no more nodes can be localized (i.e. the necessary condition
for localization does not hold). Later sections describe each
step of the algorithm in detail.

A. Sub-System Selection

Each node is represented by a bounded-box with lower and
upper bounds (X3, X,p). The node coordinates can take any
value in the closed interval [x;, X,5]. Since anchor nodes are
known with high accuracy, their bounding-box is very small.
Initially, the bounding-boxes for all unknown nodes can be
set to the size of the field and can be updated using range
measurements (fij between node ¢ and its neighbors j.

Xipi = mjin{(le,j - dij)a Xip,i b 4)
Xub,i = Hljin{(xub,j + Czij)a Xub,i } 5

The order in which bounding-box update should be done is
also important. Considering the sensor network as a graph it
turns out that a variant of the topological sort (Algorithm 3)
will provide the required node ordering.

For node i that already has an estimate x$5* and confidence
value 7);, the bounds are reset as follows. Confidence values
for node location estimates are computed in the sub-system
evaluation section and described later.

xip,i = maz{ (x§> — ), Xui} (6)
Xub,i = min{ (x$%* +1;), Xup,i } (7)



Algorithm 3 Topological sort

I: Set known neighbor index, kK=o0 for
anchors and k=0 for all other
vertices
while Graph not empty do
Find a vertex u with highest k[u]
Output u
Delete all edges e = (u,v) of u,
increment k[v] by 1
: Delete u from graph
7: end while

For all other nodes a location estimate is picked from the
bounding-box. The most obvious way would be to pick the
center of the box, but a heuristic method involving bounding-
box partitioning is used instead. The bounding-box of a node,
if larger than some critical size, is partitioned into smaller
boxes and neighbors are polled for the partition in which the
node is most likely to be present. The center of the winning
partition is assumed to be the estimated location for that node.
A polling index C,, is computed for each partition p, which is
essentially a weighted sum of distance errors for all neighbors
7 of node 1.

_ _west|| _ 3.
Cp = Z ‘pr x5 || — di

JjENeigh(i)

-1y (8

where x,, is the center point of partition p. The center point
of the partition with minimum polling index is chosen as the
estimated location for that node.

A part of the network is selected based the following
notion of goodness of estimated node locations. An estimated
location for node ¢ is considered good if the node has at least
three neighbors and its bounding-box satisfies two properties.
First, its volume V; is smaller than some critical volume V
and second, its aspect ratio «; is greater than some critical
Oadaptive- ASpect ratio oy is a measure of cubeness of the
bounding-box. «; is expressed in terms of bounding-box
volume V;, space diagonal d; and surface area A;,

_6v3-V;

N A ®

Notice that for a node with a small bounding-box an
estimate is acceptable even if it has a smaller aspect ratio.
For this reason the critical aspect ratio is made adaptive,
quadratically depending on the bounding-box volume.

B. Sub-System Localization

The distance optimization problem for the selected sub-
system is solved in multiple stages. At each stage the solution
is moved closer to the optimum. First, let us define an operator
min and two optimization problem formulations.

Operator min:

DEFINITION 1. Let f; be a list of N function
evaluations (or numbers), then min,, f; is the list of

[pN]-many smallest function evaluations (or num-
bers) where [ ] is ceiling operator and 0 < p < 1.
DEFINITION 2. Let Zf\’ fi be a series sum of N
function evaluations (or numbers), then va min,, f;
is the series sum of [pN]|-many smallest function
evaluations where [ ] is ceiling operator and 0 <
p<1

1) Pruned Distance Optimization Problem.: As mentioned
in section IV we have non-Gaussian error as echoes in range
measurements. In least-square optimization terminology, these
echo ranges are outliers that tend to shift the least-square
model from the actual model. It is desirable not to consider
these outliers in optimization. The outlier rejection in section
III-C is statistical and requires multiple ranging measurements.
The outlier rejection in this section identifies and removes
consistent echoes.

Find x*, a global minimizer for

N N,d;;j>0

F(x) = %Z > min (dij _CiiJ')z

i=1 j=1

(10)

where d;; and d;; are the range measurement and distance
computed from localized nodes ¢ and j rer,svpectively and
optimization variable X = [T1Y121 - . - TnYn2n)

If the optimizer x is close to global optimizer x* then all
function evaluations but those corresponding to echoes will be
close to zero. We can say that near the global optimizer large
function evaluations correspond to echoes. Least-square opti-
mization works best if the errors have Gaussian distribution.
When we discard the top few function evaluations using the
man operator, we are discarding the most significant outliers in
the distribution and hence obtaining an approximate Gaussian
distribution.

2) Distance Penalty Optimization Problem.: The optimiza-
tion solver used in this work are for unconstrained opti-
mization. The bounded-value constraints on the optimization
variables are incorporated by modeling them as penalty func-
tions in the objective function. Penalty functions incorporate
a penalty value if variables go out of bound.

The most intuitive form of a penalty function is a rectan-
gular penalty wherein a constant high penalty is incorporated
if the variable goes out of bounds. For optimization purposes
rectangular penalty does not provide motivation (descent di-
rection) for the variable to fall within bounds. Another forms
of penalty functions are linear or quadratic growing linearly
or quadratically with the offset from the bounds. Logarithmic
penalty functions are most suitable for bounded-value con-
straints because of their sudden descent near boundary values.

Find x*, a global minimizer for

N
F(x) = %Z{/ﬁ-ln(l —|—AZCOH7¢)}2 (11)

i=1

where k is penalty constant and Axz.g; is the offset from



feasible boundary,

if Tmin é T4 S Tmax
if z; > Tpas

|xi - lmzn‘
Axoff,i = 0

|$i - xmaa:l

12)

and optimization variable X = [£1y121 . .. TnYnzn]"

3) Composition Of Least-Square Optimization Problems.:
Two or more least-square optimization problems can be
composed as follows. Consider two least-square optimization
problems P; and P» on optimization variable x and objec-
tive functions 31 f;(x) and Z;w g;j(x), then the combined
least-square optimization problem P on variable x have the
objection function

N M
Fp(x) = Zﬁ:(x) +Zgj(x> (13)

Now we describe the stages of optimization. We solve
problem V-B.1 or the combination of problems V-B.1 and V-
B.2 at each stage. The solution from the previous stage is used
as a starting point for the current stage. At the end of each
stage some range measurements that are believed to have non-
Gaussian errors (echoes) are identified and removed from the
distance matrix.

o STAGE I. At this stage echo ranges are identified and dis-
carded based on the evaluation of the objective function
in Equation 10 at the current optimizer x°t.

o STAGE II. At this stage the optimization problem V-B.1
is optimized in a fixed number of iterations. The solver
is stopped even if the optimizer has not converged. Lets
visualize this stage as a 3D earth terrain optimization
problem where = and y directions are optimization vari-
ables and altitude from sea-level, i.e. z, is the optimiza-
tion function. The global optimization in this problem
is looking for the deepest trench on earth. Optimizing
for fixed number of iterations can be visualized as going
downwards a local trench but not going all the way down
because that may take unbounded time.

o STAGE III. At the previous stage we did not consider
bounded-value constraints on the optimization variable.
The variable might go out of the feasible region as guided
by the objective function. In this stage the combination of
the optimization problems V-B.1 and V-B.2 are optimized
in a fixed number of iterations. The objective function in
Equation 11 ensures that the variable will fall within the
feasible region. The reason for having stage II separate
from stage III is that sometimes the path to the global
optimizer goes through a region that might not be part of
the feasible region.

o STAGE IV. This final stage is similar to stage III except
parameter p in Equation 10 is set to 1.0, i.e. no pruning
of the distance matrix is done. It is expected that by the
end of stage III we would have discarded most significant
echo measurements.

C. Sub-System Evaluation

The quality of computed locations produced by the solver is
evaluated using a measure called confidence value. Confidence
value is an indicator of uncertainty in node location around the
current location estimate.

The algorithm to compute the confidence value is following.
Compute the ranges between node locations and the deviation
of these computed ranges from measured ranges. Now for each
node ¢ we have a deviation vector A; whose elements are
the deviations of computed ranges from measured ranges for
all its neighbors. A large value in A; indicate that either (1)
the node location is incorrect or (2) the corresponding range
measurement is incorrect. If the node location is incorrect
then most of the elements of A; should be large. If only a
few range measurements are incorrect then the mean and the
variance of A; should be small except for those incorrect range
measurements. Practically, all node locations are categorized
based on mean y; and standard deviation o; in A;. Confidence
value n); is equal to |u;| + 0.

1) If both p; and o; are close to zero then the node location

is correct.

2) If p; is close to zero but o; is large then either the
range deviations are spread around zero or few large
deviations caused o; to be large. We say that the node
location may be affected by echo. In this case we strike
out a few large deviations and re-categorize the location
based on a recomputed mean and standard deviation.

3) If |u;| is large but o; is small then all elements of A;
are large i.e. the node location is definitely incorrect.

4) If both |u;| and o; are large then again location might
be affected by echo and we follow the same procedure
as in case 2 above.

5) If |p;] and o; are neither large nor small then location
correctness is undecided. We follow the same procedure
here as in cases 2 and 4.

Node locations categorized as incorrect or potentially echo-
affected are considered not localized.

VI. IMPLEMENTATION AND RESULTS

We have implemented the proposed localization algorithm
in MATLAB and ran it on simulated sensor network topologies
and ranging data. The Levenberg-Marquardt solver was used
for optimization.

A topology of 50 sensor node locations was generated
randomly in a 100 x 100 x 20 m field with at least half of
the nodes on ground level. 80 sound sources were generated
on random paths such that the separation between successive
sound sources was bounded (0 —8 m). Also, the Z variation of
the sources was limited to 2 m to simulate a mobile beacon,
which is moving on the ground in the sensor field. Ranging
data was generated with 30 m maximum range. Gaussian
noise with zero mean and range dependent standard deviation
(Equation 1 in section III) was added to the ranging data.
This matches the results from our ranging experiments. Echoes
were also introduced to ranging data based on our previous
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Fig. 4. Comparison of computed node locations to their true values in (a) XY and (b) X Z plane for ranging data w/ echoes. ¢ +’ s without a ‘o’ indicate

unlocalized nodes.

ranging measurements in urban environments. Approximately
1000 range estimates were gathered using the 80 beacon
positions. 10% of these had added non Gaussian error (echo).
Five sensor nodes were assumed to be known anchor locations.
Two different ranging data sets, one with echoes and another
one without echoes, were generated for the topology.

In the presence of ground truth, the performance of the
algorithm can be evaluated by the localization error which
is the difference between computed locations and the ground
truth. Localization error for node ¢ is,

‘712),1‘ = (2 — )"+ (i — §)* + (2 — %)°

(14)
where x;, y; and z; are the computed coordinates of node 1,
and Z;, y; and Z; are the true location coordinates of the same
node.

Figure 4 compares the computed node locations to their true
values in XY and X Z views for ranging data with echoes.
Solid lines show the paths of the mobile beacon. Solid arrows
in Figure 4(a) indicate the sensor nodes that has the highest
localization errors. Notice that all such motes are very far from
their nearest sound source.

Figures 5(a) and 5(b) show the histograms of localization
error with and without simulated echoes. Table I summarizes
the localization results.

Ranges w/o | Ranges w/
echoes echoes
Unlocalized sensors | 7 9
Mean error [m] 0.8962 1.0664
Max error [m] 4.3252 4.5119
TABLE I

LOCALIZATION RESULTS

Notice that the distribution of localization error is very steep
in case (a) while its more flat in case (b). More nodes were
localized with better accuracy when we did not have echoes
in ranging data as expected.

From Figure 5 we can see that the computed locations of
sound sources are more accurate than that for sensor nodes.

This high accuracy can be attributed to the topological fact
that sensor nodes are uniformly distributed around the sound
sources. For node localization application we are actually not
concerned about the computed beacon locations. However, it
is an important observation that if we distribute the sound
sources uniformly around sensor nodes, then we can get higher
localization accuracy for the sensors.

VII. CONCLUSIONS

The presented sensor node localization technique has several
contributions. The method is passive since only the mobile
beacon needs to emit acoustic signals. This saves energy, size
and cost on the sensor nodes and provides stealthy operation.
Furthermore, the mobile beacon can emit much higher-energy
sound than the sensor nodes thereby increasing the effective
range. To the best of our knowledge our acoustic ranging
method has the longest range even when normalized by the
emitted sound energy. This is due to the signal processing
algorithms implemented on the sensor board.

The iterative and incremental non-linear optimization tech-
nique provides an effective way to deal with acoustic multipath
effects and works well for 3D localization. There is little work
in the wireless sensor network literature that addresses these
problems.

We put special emphasis on making our experi-
ments/simulation as realistic as possible. Our setup strongly
resemble a feasible real world deployment. Node density was
relatively low. The technique needed to deal with both echoes
and 3D locations. There were a relatively low number of
beacon positions. Beacon positions varied very little in the
Z dimension. We had only a few anchor nodes. Therefore, we
believe that the results are realistic.

Approximately half of the nodes were localized with sub-
meter accuracy. That is very good when compared to the
current state-of-the-art, but unfortunately still not good enough
for such location-critical applications as shooter localization.
However, many other application domains have much less
strict requirements. Finally, to put the results into perspective,



Hl Sensor nodes
ool [ Beacons

801 b

701 b

% of total nodes

1 15 2 25 3 35 4 4.5 5
Localization error (m)

(a)

Fig. 5.

(non-differential) GPS-based localization would have much
less accuracy than these results.
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