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CHAPTER I

INTRODUCTION

Research in fault-tolerant distributed computing aims at making distributed
systems more reliable by handling faults in complex computing environments. Moreover
the increasing dependence on well designed and well-functioning computer systems has
led to an increasing demand for tools for building dependable systems, systems with
quantifiable reliability properties.

Arguably dependability is one of the most crucial design considerations for a
majority of embedded systems. Often in this class of systems the term “the system
crashed” is not just a metaphor, it may have real and physical consequences. Even with
best practices and careful design decisions, the growing scale and complexity of
embedded systems makes it impossible to perform an exhaustive coverage that assuredly
scrubs out each potential failure source. Potential failures could arise from hardware, or
software, or the physical processes with which the embedded system has to interact, or a
combination of any of these. Furthermore, extended operational life-cycle of the
embedded system introduces the fatigue factor also as a possible source of failure. Given
the myriad potential fault sources — some of which may not even be identifiable, and the
inability to prevent those failures from occurring, the only possible mechanism of

introducing dependability in a system is by means of fault tolerance or fault mitigation.



Traditional Fault Tolerance Strategies

Fault Tolerance is the ability of a system to perform its function correctly even in
the presence of internal faults. The benefits of fault tolerance are usually advertised as
improving dependability —the amount of trust that can justifiably be put in a system.
Normally, dependability is defined in statistical terminology, stating the probability that
the system is functional. The metric provides the expected service at a specific point in
time. There is considerable ambiguity in the literature on the meaning of some central
terms like fault and failure. Cristian [1991] [1] remarks that “what one person calls
failure, a second person might call fault, and the third person might call error”. The term
fault is usually used to name a defect at the lowest level of abstraction, e.g., a memory
cell that always returns a value 0 [Jalote 1994]. A fault may cause an error, which is a
category of the system state. An error, in effect, may lead to a failure, meaning that the
system deviates from its correctness specification. In other words, a fault is the root cause
of a failure. Thus, an error is merely the symptom of a fault. A fault may not necessarily
result in an error, or the same fault may result in multiple errors. Similarly, a single error
may lead to multiple failures. These basic concepts are illustrated using Unified
Modeling Language (UML) class diagram in Figure 1.

Traditionally faults were handled by describing the resulting behavior of the
system and grouped into a hierarchic structure of fault classes or fault models [1]. Well
known models are the crash failure models (in which processors simply stop executing at
a specific point in time), fail-stop (in which a processor crashes, but this may be easily
detected by its neighbors), or Byzantine (in which processors may behave in arbitrary

ways).



3 Spacified State frmtimmmap| Behavior Specification

1 1
specified By
| specified By
- 0.
System State System Behavior it S
? 0.* Y
0. ?
" 1“' g“.
Valid State Error Failure
causes >
0.
+defect | 0.°
< can Result in
Fault
g

Figure 1 Classification of Error, Faults and Failure

The fault tolerant research community has been able to produce some useful techniques —
such as warm / cold / hot replication, active or passive replication, check-pointing,
heartbeat, n-way redundancy with or without voting to name a few. At the heart of all the
fault tolerance techniques is some form of masking redundancy. This means that
components that are prone to defects are replicated in such a way that if a component
fails, one or more of the non-failed replicas will continue to provide service with no
appreciable disruption.

Replication Checks: In this case, multiple replicas of a component perform the same
service simultaneously. The outputs of the replicas are compared and any discrepancy is
an indication of an error in one or more components. A particular form of this that is used
in hardware is called triple-modular redundancy (TMR), in which the output of three

independent components is compared, and output of the majority of the components is



actually passed on. In software, this can be achieved by providing multiple independently
developed realizations of the same component. This is called N-version programming.
This method of course works well for small systems where hardware is cheap and
memory is plentiful. In high performance parallel systems, fault tolerance using
conventional redundancy methods can be extremely costly, as system size and

complexity increase.

Problems With The Traditional Approach

The traditional approach has been around for a while and is still in practice.
However, this approach is not suitable for many cost-sensitive or large scale systems. It is
well understood that the software development for real time embedded systems is a
difficult undertaking. In addition to the functional and temporal correctness, reliability is
a key design factor. Certain classes of reliable RT systems, such as a high energy physics
trigger systems employ very large numbers of processors that must operate consistently
over several months. N-mode redundancy is not an option due to scale of the system and
cost constraints. A “reasonable behavior” is expected from these systems when the
hardware or the software components fail. There is not a single answer to how the system
should react when fault occur, rather behavior is dependent on the application or mode of
operation. In the class of systems of interest, namely large-scale real-time embedded
systems, often different levels of failures and thereby reduced level of functionality are
acceptable under certain circumstances. The overarching requirement is that the failures
should not have a cascading effect that some level of functionality of the system should
remain. Within this umbrella of non-cascading failures, the specific response to failures is

often user-defined and situation dependent. This response could range from a simple



notification on an operator interface, to active load shedding (with due logging of system
state), to processor resets/test and hot-spare failovers. Thus, in the domain of very large
parallel systems, designers of embedded systems rarely have the luxury to employ such
hardware-intensive tactics. In such cases, software plays an important role in achieving
fault tolerance, but this can severely complicate implementation. Maintaining the high
quality in software-adaptive, fault tolerant embedded systems is only possible with the
assistance of advanced software tools. These tools can shift the burden of the design
away from human. The tools should take the form of a highly customizable fault-
mitigation framework that includes high level design tools and runtime support

infrastructure.

Fault Mitigation Design Methodologies

As we mention above, the class of systems of interest for this research is very
large scale real time embedded systems which have a need for a customizable fault
mitigation methodology. There are two minimum requirements of such a system by the
users

1) The system should not fail abruptly

2) Faults should not have a cascading effect.

However, between these two absolutes, there is a diverse range of specifications
for responses to different kinds of faults. For example, if for some reason an algorithm
residing on a processor terminates without finishing the computation due to either
hardware, or software fault, the designer may require the algorithm to be computed in an
n-mode redundancy mode or check-pointed for a restart, or even a notification that is

duly logged may suffice. Thus, a simple notification mechanism combined with an



algorithm restart is sufficient to meet the dependability specifications in this case. On the
other hand, a repeated recurrence of algorithm failure on the same processor might
require a fault response in the form of a processor reset followed by diagnostic session. In
this case some amount of hardware redundancy is required. This diversity of fault
responses demonstrates the need for a highly flexible and customizable fault tolerance
framework. This framework should allow the users of the system, to specify fault
responses, in an abstract (high-level) yet precise form (i.e. fault response
specifications).These specifications could then be used to automatically customize the
fault-tolerance infrastructure to suit their application and system requirements. With this
motivation we have been developing high-level design tools, and a highly flexible fault-
tolerance runtime infrastructure to construct systems — specifically, Fermi Lab’s BTeV

trigger system —that falls into the class of large scale real time embedded system.

Problem Statement

The aim of this thesis is to develop a model based tool set for software based fault
mitigation strategies and to apply these tools within the framework of BTeV. The first
step comprises developing a domain-specific modeling environment for fault-adaptive
applications implemented on large-scale parallel systems. The next step is to integrate the
modeling environment with the existing software infrastructure to create a heterogeneous
environment for the design of embedded application. The integrated environment should
allow the users to specify modular system design with alternative implementations.

The tools should have the capability to interpret the system models and generate
code for various fault mitigation strategies and also it should have the ability to

synthesize low-level programming artifacts from the higher-level abstractions, alleviating



the system developer from the burden of constructing low-level artifacts, ensuring
consistency with the higher-level abstractions.

This thesis presents the tool rationale, implementation strategy, and a case study
of the approach. Chapter II presents a survey of different relevant models of
computations (MOCs) and other real time embedded system design tool. Chapter III
describes the BTeV trigger system and the modeling paradigm for hardware/software.
Chapter IV presents a case study to validate the tools and design philosophies and in
Chapter V a detailed explanation of the fault mitigation language and formalisms and the

conclusions are drawn in Chapter VI.



CHAPTER II

BACKGROUND AND LITERATURE SURVEY

Models of Computations

The specification process is a fundamental aspect of system design. We advocate
using an unambiguous formalism to represent design specification and implementation
choices. These formalism are often called the Model of Computation (MOC). There are
several models of computation that have been specified and used in embedded systems. A
MOC is composed of a description mechanism (syntax) and rules for computation of the
behavior given the syntax (semantics). Models of computation can serve different
domains or aspects of a specific system. For example, some MOC’s are suitable for
describing complicated data transfer functions and completely unsuitable for complex
control, while others are designed with complex control in mind. A MOC is typically
realized (implemented in practice) by a particular language and its semantics. Multiple
Models of Computation can be used in any particular system, each describing different
aspects of the computation. Here, we survey several MOC’s that are appropriate for

applications like the BTeV Trigger.

Finite State Machines
State Machine based specification methodologies are an efficient and popular way
to describe and analyze event-driven systems. System behavior is represented by a
directed graph, consisting of a finite set of conditions, called states and paths between the

states, called transitions. Finite State Machine (FSM) is a well-established



representation. It can be defined as a model of computation consisting of a set of states, a
start state, an input alphabet, and a transition function, which maps input symbols and
current states to a next state. This representation is useful in describing applications that
are tightly coupled with the environment. It is also suited for control-dominated and
reactive applications. With basic FSM’s however, concurrency is not easily captured.
Representing concurrent states results in the exponential growth in the number of states
with linear increase in degree of concurrency. This problem is also known as the state
space explosion problem. Furthermore, small changes to the requirements may result in
large changes to the corresponding FSM. In order to overcome various weaknesses of the
classical FSM a number of extensions such as hierarchy and concurrency have been
developed. A few such variants are discussed [2].
A classic state machine is basically a quintuple of the form:
FSMM: = (0, 2. A, 6, q0) (1)
where
e Qs a finite set of states
e > isa set of input events
e A is a set of output events
e 0:Q x >— Q x A is the state transition function
e o €Q is the initial state
An example of simple state machine is:
M= ({A, B}, {a, b}, {& u, v}, dm, A) (2)

om={(A, a) =)(A &), (A ,b) =(B ,u),(B .a) (A ),(B .b) —=(B &)} 3)

10



There are chiefly two options for the representation of a state transition function
0. The graphical depiction on the basis of a state transition diagram as shown in Figure 2
is the preferred way, because the behavior is readily apparent from the diagram. All
modern state machine supporting software tools provide a graphical design environment
for FSMs. Alternatively, a state transition table (table in Figure 2) can be used to

represent the transition function of a particular state machine.

Figure 2 State Transition diagram and State Transition Table

Mealy and Moore Automata are just two of the different ways in which state
machines can be interpreted. The major difference in the two methods is in the execution
time of the output events. Both architectures split a state transition function into a pure
transition function and an additional output function. Therefore, a Mealy as well as a
Moore automaton is defined as a sextuple:

FSMM:=(0,%, A 8,1\ qo 4

where

e Qs a finite set of states
e ) isaset of input events

e A isaset of output events

11



0: O x Y— Q is the state transition function

u: O—A is the Moore output function

4. Q x Y —A is the Mealy output function
e (o € Qis the initial state

In case of a Mealy automaton, output events are associated with transitions and
depend on the current state and current input event. Based on these semantic, the Mealy
approach assumes that output actions take no time to execute, because a system is not in a
well defined state while outputs are performed. The Moore architecture avoids the so
called zero time assumption. Here, output events are associated with states. The system
state is always well defined during action execution. Both automata are mathematically
equivalent and one always can be transformed into the other. As a rule, a Mealy state
machine interpretation requires fewer states, because a Moore automaton must use
different states to represent conditions in which different actions are performed

Codesign Finite State Machine (CFSM) is another model based on the FSM. It is
intended to describe embedded applications with low algorithmic complexity. Both
hardware and software can be depicted using this model of computation. It can be used to
partition and implement applications. The basic communication primitive is an event.
The behavior of the system is defined as a sequence of events. The events are broadcast
and have zero propagation time. This model of computation is used as an intermediate
representation that high-level languages can map to [2][3].

Statecharts by Harel [4] is another extension of FSMs that provides three major
facilities, namely: hierarchy, concurrency and communication. Statecharts are high-level

Finite State Machines having AND and OR states. The AND states primarily achieve

12



concurrency while the OR states are for representing hierarchy. Communication is based
on events that are broadcast instantaneously. This representation is well suited for large

and complex reactive systems.

Discrete-Event Systems

Systems having discrete states and driven by events over a period of time are
referred to as Discrete-Event Systems [5]. A discrete event system (DES) is a dynamic,
asynchronous system, where the state transitions are initiated by events that occur at
discrete instants of time. Typical examples of DES are: flexible manufacturing systems,
telecommunication networks, traffic control systems, multiprocessor operating systems
and logistic systems. These systems are asynchronous in nature and react to discrete
events over time. An event is considered instantaneous, that is, the transition and action
due to the event occur with no execution time. Although DES lead to a nonlinear
description in linear algebra, there exists a subclass of DES for which this model
becomes “linear” when we formulate it in the max-plus algebra.

Signals form the primary method of communication between tasks. They consist
of a set of events over time. The events are time stamped and are sorted and processed in
chronological order. Discrete-Event Systems are backed with formal mathematical
description [6] that allows modelers to do formal verification and build deterministic
systems. Though these systems are good for real time applications the primary
disadvantage is the computational cost of sorting the events globally to maintain the

chronology.

13



Petri Nets
Petri-Nets [7] methods are graphical notations with a solid mathematical
foundation. They can be used in a number of different ways to represent computer based
systems, especially those concerning concurrency, distribution and non-determinism. The
concept was invented by Carl Adam Petri in 1962 and has been proposed for a wide
range of applications including performance evaluation, communication protocols, and

multiprocessor design. A Petri-Net is described as a 5-tuple,

PN={P, T, F, W, Mo} where: ®))
P={pl,p2,p3,.....pm} is a finite set of places
T={tl,t2,t3, ....... ,tm } is a finite set of transitions

Fisasubset of (Px T) U (T x P) is a set of arcs giving flow relations

W:F —>{1,2,3,...} is the weight function

Mo: P —»{0,1,2,....} is the initial marking

The places hold tokens and a transition can occur if the number of tokens required
for the transition is present in the place. A transition removes a specific number of tokens
from its source and adds tokens to the destination. A snapshot of places with the number
of tokens describes the state of the system.

Petri nets are a promising tool for describing and studying systems that are
characterized as being concurrent, asynchronous, distributed, parallel, nondeterministic,
and/or stochastic. As a graphical tool, Petri nets can be used as a visual-communication
aid similar to flow charts, block diagrams, and networks. In addition, tokens are used in
these nets to simulate the dynamic and concurrent activities of systems. As a

mathematical tool, it is possible to set up state equations, algebraic equations, and other

14



mathematical models governing the behavior of systems. The primary feature of Petri
Nets is its concurrent and asynchronous nature. Along with concurrency and
asynchronicity, there are a number of mathematical analyses that can be performed on
Petri Nets. The lack of hierarchy makes Petri Nets difficult to be use for large systems.
Hierarchical Petri Nets (HPNs) [8] have been developed to mitigate the
complexity of a flat representation. HPNs are modeled by bipartite directed graphs with
inscription on the nodes and edges. There are two types of nodes, transitional nodes that
represent activity and places that represent data or the state of the system [2]. This
approach extends the Petri Net semantics with hierarchy making it suitable for large and

complex systems.

Data Flow Graphs

The classical programming structure of computer-based systems is control
dominated. An alternative approach is data-dominated where the control flow is
determined by availability of data. These systems have nodes describing computation and
edges between nodes denoting a data path. Here the control is based on the availability of
data. In other words the scheduling of the computation is tied to the availability of data. If
a node has sufficient data available on its incoming edges then it is ready to fire and will
use the input data to generate output data. Transfer of data between computational
modules is typically done via buffers. This allows the tasks to run independently.

Various flavors of data flow are seen in literature. The two popular and distinct
ones are Synchronous Data Flow (SDF) and Asynchronous Data Flow (ADF). In SDF the
number of token produced and consumed is fixed and must be known at the system

design stage. This requirement allows the SDF to be statically scheduled [9] and
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optimized for minimum buffers. The ADF is defined as a data flow graph with
unbounded buffers where the computations can produce and consume variable number of
tokens. Since the consumption and production of tokens can change at runtime, the ADF
cannot be scheduled statically and hence, it has a greater run-time cost. However, it is
more flexible than the SDF and can represent the majority of systems. Similarly, in
hardware, structural description is widely used. The structural layout of the target DSP
hardware is data driven and on a closer look it is very similar to an unbuffered
asynchronous data flow. It is defined in a variant of ADF with the buffer length being

zero. In other words there is no buffering of data.

Results Of The Survey
Most of the models of computation discussed are suitable for either data-
dominated or control-dominated systems. SDF and ADF methods are good for the signal-
processing domain. Similarly FSM is useful in representing control-dominated systems.
There is no single model well suited for both control and data requirements. Thus,
depending upon the target application area, the model of computation needs to be chosen.

Composing different models of computation is also worth considering [22][23].

16



Table 1 Strengths and Weakness of different models.

Model

Strengths

Weaknesses

Finite State Machine

Good for sequential control

No code reuse, application

Can be made deterministic specific.
Maps well to hardware and software
Discrete Events Good for digital hardware Expensive to implement in
Global time software
Can be deterministic
Synchronous/Reactive Good for control-intensive systems Computation-intensive
Model Tightly synchronized systems are over specified.
r iniic
Maps well to hardware and software
Dataflow Good for signal processing Control-intensive ~ systems
Loosely synchronized are hard to specify.
Deterministic
Maps well to hardware and software
Communication Models resource sharing well Some systems are over
Sequential Processes Partial-order synchronization synchronized and difficult to
be made deterministic.

Supports naturally non-deterministic

Interactions

17




Real Time Embedded System Design Tools

Many Computer Aided Software Engineering tools (CASE) are available to assist
the developers with the software development process. Since the early days of writing
software, there has been an awareness of the need for automated tools to help the
software developer. Initially the concentration was on program support tools such as
translators, compilers, assemblers, macro processors, and linkers and loaders. However,
as computers became more powerful and the software that ran on them grew larger and
more complex, the range of support tools began to expand. In particular, the use of
interactive time-sharing systems for software development encouraged the development
of program editors, debuggers, code analyzers, and program-pretty printers. The first
generation of CASE tool developers concentrated to a large extent on the automation of
isolated tasks such as document production, version control of source code, and design
method support. While successes have been achieved in supporting such specific tasks,
the need for these ‘islands of automation' to be connected has been clearly recognized by
many first generation CASE tool users. For example, a typical development scenario
requires that designs be closely related to their resultant source code, that they be
consistently described in a set of documentation, and that all of these artifacts be under
centralized version control. The tools that support the individual tasks of design, coding,
documentation, and version control must be integrated if they are to support this kind of
scenario effectively.

In fact, such tools are more often used as components in a much more elaborate
software development support infrastructure that is available to software engineers. A

typical CASE environment consists of a number of CASE tools operating on a common
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hardware and software platform. Also note that there are a number of different classes of
users of a CASE environment. Some users, such as software developers and managers,
wish to make use of CASE tools to support them in developing application systems and
monitoring the progress of a project. On the other hand, tool integrators are responsible
for ensuring that the tools operate on the software and hardware platform available, and
the system administrator's role is to maintain and update the hardware and software
platform itself.

Software developers, tool integrators, and system administrators interact with
multiple CASE tools and environment components that form the software and hardware
platform of the CASE environment. It is these interactions among the different CASE
environment components and between users and those components which are the key
elements of a CASE environment. In many respects the approach toward the
management, control, and support of these interactions distinguishes one CASE
environment from another. Hence, we can define a CASE environment by emphasizing
the importance of these interactions:

“A CASE environment is a collection of CASE tools and other components together with
an integration approach that supports most or all of the interactions that occur among
the environment components, and between the users of the environment and the
environment itself. “

This section reviews the existing research and tools for co-design for real time embedded

systems.
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MetaH
MetaH is a language and toolset for developing reliable, real-time multiprocessor
avionics system architectures. It is also used for system analysis and integration as

illustrated in Figure 3. It is a product of Honeywell and is a research prototype tool.
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Figure 3 MetaH Architecture

MetaH specifies how software modules developed in a variety of styles are
composed together with hardware objects to form complete system architecture. MetaH
exhibits elements of real time process and concurrent state machine styles. MetaH
specifications allow developers to compose software objects such as subprograms,
packages and processes and hardware objects such as memories and processors.
Hierarchical specification is supported, where macros and modes hierarchically combine

software objects, and systems hierarchically combine hardware objects. MetaH allows
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computer system engineers to integrate the source modules for all the various functional

subsystems to form the final real-time, fault-tolerant, securely partitioned multi-processor

system.

Three major classes of features distinguish MetaH from existing approaches to

designing and integrating software using CASE tools and real-time operating systems.

1.

MetaH specifications can be used to drive automatic software and system
integration. Users do not need to design and hand-code configuration-specific
sequences of calls to the various application modules and real-time operating
system services. This reduces development effort and reduces defects in the code
that integrates the application modules. Because the integration code is
automatically generated, it is possible to rapidly reconfigure systems. Finally,
static analysis by the tools allows many operations to be preplanned at
development time rather than dynamically computed at run-time, which can
significantly reduce on-board code size and overhead.

MetaH specifications can be subjected to formal analysis. Partial MetaH
specifications can be partially analyzed, which supports design trade-off studies
beginning very early in the development process. The co-generation of code and
analytic models from a common specification provides high assurance that the
analysis results accurately predict and bound final implementation behavior. The
accuracy of analysis results can be relied upon during design trade-offs, and
analysis results can be used in the V&V process.

The MetaH architecture specification language includes as part of its definition a

discussion of the coding guidelines used for source modules. These guidelines
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together with the MetaH language features define a set of common
software/software and software/hardware interface mechanisms. Source modules
can thus be more independent of the application, hardware and software context
in which they are used. MetaH supports increased reuse of source modules. It also
allows system architectures to be rapidly reconfigured to adapt to changing
hardware and functional requirements without making changes to application
source modules.

MetaH allows a specification of system components and connections, and attributes
of those components and connections that are relevant to real-time, fault-tolerant, secure
partitioning, and multi-processor aspects of an application. The kinds of objects in a
MetaH specification can be divided into lower-level objects that describe source code
modules (e.g. subprograms, packages) or hardware elements (e.g. memories, processors);
and higher-level objects that specify how previously declared objects may be combined
to form new objects (modes, macros, systems, applications).The language has both a
textual and a graphical syntax, and the tools allow a specification to be viewed and edited
interchangeably in either format.

The release toolset includes targets to a portable Ada 95 configuration (the MakeH
build scripts use the GNAT toolset), and to single processor 960EXV and single and
dual-processor 960CVME configurations (i80960MC processors using the Tartan Ada

toolset and protected memory run-time).

PTOLEMY
Ptolemy is a project dedicated to modeling, simulation and design of real-time,

embedded applications started in 1990 at University Of California at Berkeley with focus
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on component-based design. The philosophy of this project is centered on using different
models of computation and developing an environment that allows the mixing of these
models of computation to create a heterogeneous application [30].

The primary aim of the Ptolemy project is to build a framework for modeling,
designing and development of embedded applications. Figure 4 shows the design
management strategy proposed by the Ptolemy project. Design starts with application
specification using different models of computation and constraints. Different tasks of the
system are evaluated and estimates are drawn. These estimates decide the hardware and
software partition of the application. This is followed by hardware and software synthesis

and verification. The final stage is the integration and system wide simulation [31].
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A Java-based framework called Ptolemy II has been developed that implements
the project ideas. The framework has an environment for the simulation and prototyping
of heterogeneous systems. It is an object-oriented system allowing interaction between
diverse models of computation. The Ptolemy software is extensible and publicly
available. It allows experimentation with various models of computation, heterogeneous
designs and co-simulation. The primary feature of Ptolemy is the facility to compose
various models of computation. Some of the models of computation supported by
Ptolemy are hierarchical finite state machine, data flow graphs, discrete-event and
synchronous/reactive. After specifying the application using heterogeneous models, the
next step is to partition the application. This is done using different partitioning
algorithms like GCLP [29]. Ptolemy facilitates mixed mode system simulation and
synthesis. Software synthesis is supported for various models of computation along with
support for composing these models. Hardware portions of the application are
synthesized to VHDL. A register transfer level simulator (THOR) has also been added for
simulating hardware applications [30].

Other key features of the project are the representation of modern theories in a
block diagram specification, modular approach, a mathematical framework for
comparison between models of computation and simulation and scheduling of complex

heterogeneous systems [30].
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CHAPTER III

BTeV TRIGGER SYSTEM OVERVIEW

At Fermi National Accelerator Laboratory in Chicago, high energy physicists
conduct experiments using massive facilities to delve into the basic composition of
matter. The objective of the BTeV experiment is to search for charm charge-particle (CP)
violations, mixing, and rare decays, as well as take measurements of beauty CP violation
and rare decays [9]. The physicists expect to explain the large discrepancy between
matter and anti-matter in the universe with such experiments. In these experiments, a
particle accelerator called the Tevatron, applies enough energy to accelerate protons and
anti-protons up to relativistic speeds. Packets of these particles rotate around a 1 mile
diameter ring with particles and anti-particles moving in opposite directions. At specific
locations within the ring, called the detector stations, the packets collide where collisions
breaking the particles into the basic components of matter, or quarks [10]. Figure 5 shows
a view of the equipment used to detect these basic particles.

The accelerator is set up so that the collisions occurs every 135 nanoseconds. The
sub-particles, product of the collisions, are measured by a set of planes of detectors,
giving a 3-dimensional dataset. Each dataset consists of 200 KB of data. The aggregate
raw data rate exceeds 1.5 TB per second. Most of these collisions result in well-known
components, and are uninteresting to the physicists. Interesting products of collisions
occur remarkably infrequently. In order to get sufficient data (on the order of 100 events),

the experiments must run days or even months at a time.
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Figure 5 BTeV Detector

Clearly, the aggregate data rate is too high to blindly record all data. Instead,
algorithms, called Triggers, must be executed online to dynamically compute a
keep/discard decision. These algorithms necessarily must be computed in real-time,
although significant queuing is typically available. Distributed and concurrent computing
solutions are necessary in order to perform the trigger algorithm in real-time. It is
estimated that ~ 2500 front-end current-generation DSP processors and ~ 2500 general-
purpose processors will be required. The primary focus of our research collaboration,
which is known as the Real-Time Embedded Systems (RTES) group within the BTeV
experimenters’ community, is with the Trigger algorithm and its fault-tolerant execution.

Next we provide an overview of the planned architecture for the trigger implementation.
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BTeV Trigger Architecture

Functionally, the trigger spans three different levels. L1 is the first-level of trigger
system responsible for detecting secondary vertices in a 3-dimensional data set, and
rejecting non-interesting data-sets [15], with a reduction order averaging ~100:1.

L2 is the second level of the trigger algorithm. It does a refined tracking and
vertex cut [34], with a reduction order of ~5-10:1. L3 is the third and final level of the
trigger algorithm responsible for a complete event. L3 has a reduction order of ~5-10:1.
Figure 2 shows a view of the trigger architecture.

This functional organization is mapped over three-categories of processor
architectural organization. The L1 is implemented by a network of Field Programmable
Gate Arrays (FPGA-s), and a network of Digital Signal Processors (DSP-s). The L2 and

L3 is implemented over a network of commodity (general-purpose) workstations. The
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FPGA-s are programmable, but are typically not dynamically loaded and adapted during
runtime. Some limited fault-tolerant concepts can be applied in the FPGA hardware
designs, but since deployment is relatively static, FPGA-s are currently considered

outside the scope of the fault mitigation target.

DSP Network

A network of Digital Signal Processors (DSP) is the primary computational
engine for the L1 trigger. Chosen for their simple architecture, low-power and efficiency
at low-level mathematical operations, the DSP-s must sustain high input data and
processing rates, and operate with stringent real-time requirements. It has been estimated
that ~2500 DSP-s are required. A DSP has minimal resources — 1 MB SRAM, and 64
MB DRAM - with no memory management facilities. To keep overhead to a minimum, a
small microkernel provides a small set of facilities to the programmer. Communication
facilities are also minimal. A point-to-point network allows transfer of data packets
between processors. DMA co-processor assists the transfer over the communication ports
and permit direct access of data from specialized I/O interfaces.

The DSP processor network is configured in application-specific topologies that
optimize the aggregate system bandwidth. Since multiple communication ports are
available per processor, the network can be tuned to increase bandwidth, or to support
redundant pathways between processors.

A network of general purpose computers with roughly the same node count as the
DSP subsystem is the primary computational engine for the L2/L3 trigger. The planned
architecture leverages commodity processors implementing a large-scale Linux-based

network. These nodes are connected via high-speed Ethernet interfaces, with multiple
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interfaces in each permitting some fault resilience. Each node has more resources than a
DSP-s, with large memory (~1 GB), storage, and runs a full-scale commodity operating
system. In addition, the real-time requirements are much more relaxed than with the
DSP-s. The nodes still have soft real-time requirements, but the deadlines are at least an

order of magnitude greater

Buffers and Switches

A third component of the BTeV trigger architecture which is present across
multiple levels are buffers and switches. The pixel data from the detectors is collated into
packets and time-stamped, and are queued in a large buffer (L1 buffer). A de-
multiplexing switch delivers elements, which represents a single crossing’s (collision)
worth of data, from the queue to DSP-s in a round-robin fashion. The data is deleted from
the L1 buffer if the trigger algorithm results in a reject decision; otherwise it is retained
for further processing in the L2/3 trigger.

Given the scale of the BTeV Trigger system, a wide range of failures can be
expected. Failures ranging from mechanical failures such as fans, cables; to electrical
failures such as power supplies, voltage regulators; to processor hardware failures such as
memory errors, communication link errors, processor and board failures; to software
failures, such as algorithm bugs, are expected to occur. Moreover, the constraint of
operating in proximity of a high radiation environment, with budget and technology
limitations (radiation hardened processors are typically a generation behind their
commonly available counterparts, and an order of magnitude greater in cost) precluding

the use of radiation hardened devices, renders the system more vulnerable.
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When failures do occur, they must be corrected very quickly. Otherwise the
system will rapidly saturate the available queuing and start dropping potentially valuable
experiment data. The loss of data in the event of a failure must be minimized and
controlled. A highly coordinated fault mitigation mechanism is required that responds
rapidly to failures, restoring the functionality in a short period of time thereby limiting
the loss of experiment data. In the following section we describe the self-adaptive
approach that rapidly adapts the system when failures occur retaining the system
functionality, and in a longer time-scale re-optimizes the system to minimize the

performance degradation.

Proposed Solution

The system to support BTeV experiment is extremely large and expensive.
Budget limitations preclude redundancy approaches to add robustness to the system such
as the triple mode redundancy, or more than that. The physics community would not
permit the “waste” of these resources, so any redundancy will be consumed with elective
processing. The solution needs to be robust and cost effective. In this case a, fault
mitigation approach is more desirable than traditional fault tolerance. Fault mitigation
allows the system to adapt, giving a ‘best-effort” behavior. The definition of ‘best-effort’
is application and mode specific.

A proposed solution provided by the BTeV group at Fermi lab is shown in Figure
7 which shows the overall approach where the modeling tools provide the ability to
define expected faults and corresponding fault mitigation actions. These actions can be
analyzed and simulate the fault mitigation behaviors to assess the systems ability to

respond to different failure scenarios. Analysis and simulation allows assessment without
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having to create expensive test-beds and running exhaustive tests. Moreover, the tools
have the ability to synthesize low-level programming artifacts from the higher-level
abstractions, alleviating the system developer from the burden of constructing low-level
artifacts and ensuring consistency with the higher-level abstractions.

With this motivation we have been developing high level design tools, and a
highly matching flexible fault-tolerance runtime infrastructure. With this approach, the
physicists — domain experts and users of the system — model the system using a domain-
specific graphical language (DSL). Here they specify the hardware configuration, the

software application and the fault-mitigation behaviors.
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The DSL is implemented within the Generic Modeling Environment (GME) tool, which
is a meta-programmable modeling environment, developed at the Institute of Software
Integrated Systems ISIS, Vanderbilt University.

Model Integrated Computing (MIC) is a design philosophy that advocates the use
of domain specific concepts to represent system design. The models capturing the design
are then used to synthesize executable systems, perform analysis or drive simulations.
The advantages of this methodology are that it speeds up the design process, facilitates
evolution, helps in system maintenance and reduces the cost of the development cycle

[14].
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A metaprogrammable toolkit within Generic Modeling Environment (GME)
implements the MIC methodology. It provides an environment for creating domain-
specific modeling environments [11][14]. The GME metamodeling enviroment provides
a graphical interface similar to UML [21] class diagrams (tutorial in appendix A), in
which the user can specify the modeling environment to be developed for the specific
domain. The graphical description is referred to as a metamodel. It captures the syntax,
semantics and visualization rules of the target environment. In the metamodels the user
can specify the set of entities or objects that can be created in the target environment,
their organization and interactions with other entities. It also specifies associations,
grouping and ordering of these objects. The target environment implements a modeling
language, which allows the user to create any possible models consistent with the
metamodel. A tool called the meta-interpreter interprets the metamodels and generates a
configuration file for GME. The file is used to automatically configure GME so that it
behaves like the target environment. Thus GME is used as both the metamodeling
environment and the target environment.

GME models are entity relationship diagrams that are graphical and hierarchical
with multiple aspects and attributes. The semantics of the models are enforced in two
stages. The first stage is in the form of constraints that are applied to the models to
enforce the static semantics. These constraints are specified in the metamodel using an
Object Constraint Language (OCL) type specification and are applied on the models
using a built-in constraint manager. In the second stage dynamic semantics are enforced
by the model interpreters. Model interpreters parse the application models and generate

source code, configuration files and analysis as output.
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The key elements of an MIC-based approach in our application are:

1. A Domain-specific modeling language (DSML), the syntax and static semantics
of which are precisely defined using UML-based notations and OCL-based
constraints in a meta-programming environment.

2. System developers build Integrated multiple-view models in the DSME
capturing information relevant to the target system from several aspects. The
information captured includes adaptive behaviors, information processing
architecture, and physical architecture of the target system.

3. Model translators, generate inputs to various analysis tools, as well as synthesize

various low-level artifacts for instantiating/deploying the system.

Summary

Given the scale of the BTeV Trigger system, a wide range of failures ranging
from mechanical failures such as fans, cables; to electrical failures such as power
supplies, voltage regulators; to processing hardware failures such as memory errors,
communication link errors, processor and board failures; are expected to occur.
Moreover, the constraint of operating in proximity of a high radiation environment, with
budget and technology limitations (radiation hardened processors are typically a
generation behind their commonly available counterparts) precluding the use of radiation
hardened devices, renders the system more vulnerable. The following summarizes the

motivation behind handling such kind of systems.

34



When failures do occur, they must be corrected very quickly, or the system may
rapidly saturate the available queuing and start dropping valuable experiment
data.

The loss of data in the event of a failure must be minimized.

. A highly coordinated fault mitigation mechanism is required that responds rapidly
to failures, restoring the functionality in a short period of time thereby limiting the
loss of experiment data.

Self-adaptive approach that rapidly adapts the system when failures occur to
retain the system functionality, and in a longer time-scale re-optimizes the system

to minimize the performance degradation.
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CHAPTER 1V

MODELING ENVIRONMENT

Prototype Overview

In the previous chapter we presented an overview of the BTeV system. In this

chapter we will discuss how we design, specify and implement the system using model

based tools.

Prior to discussing the modeling tools we discuss a prototype software application

that was implemented as a case study to simulate the L1 Trigger of the BTeV system.

The L1 trigger prototype contains several different software entities which are as follows:

1.

2.

3.

Generator: simulates the behavior of the detector subsystem which is responsible
for collating the pixel data from the detectors into time-stamped packets that are
queued in a large buffer (L1Buffer).

Buffer Manager: simulates a large buffer of 120kb on each farmlet for queueing
up events prior to processing.

Switch: mimics the behavior of a round robin network switch that distributes the
incoming events from the L1 Buffer to the Buffer Managers It is a de-
multiplexing switch which delivers events, which is crossings worth of data, from
the queue to Buffer Manager DSP’s in a round robin fashion. The data is removed
from the L1 buffer if the trigger algorithm results in a reject decision; otherwise it
is retained for further processing in the L2/3 trigger.

Workers: are composed of processes which include the Physics Application

(Trigger Application), Detector and the Local Manager. The Physics
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Application (PA) grabs the events from the Buffer Manager and executes the
trigger algorithm on the given event. The Detector is a fault detection process
which monitors the occurrence of different types of faults including those in the
Physics Application (ex: PA is stuck in a loop, event data errors, etc.). The
Detector sends a message to the nearest Manager (Local Manager) to notify of the
failures. The Local Manager acts a lowest level of Fault Manager, handling the
faults in a user-defined manner.

The Fault Managers are synthesized from the modeling tools, using the user-specified

fault mitigation behavior captured in the models. A highly coordinated fault mitigation

mechanism is required that responds rapidly to failures, restoring the functionality in a

short period of time thereby limiting the loss of experiment data.
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As shown in Figure 9 EPICS is the user interface and ARMOR is fault manager
software — a product of UIUC [20]. In the BTeV application, we have defined three
different hierarchical levels of control: local, regional, and global fault-managers.
Hierarchy is a simple, yet powerful concept [32] that has been applied and proven in
many types of complex and large-scale organization. Clearly, in a system of this size,
sending all fault-information to a centralized fault-manager for a mitigation decision is
not a scalable approach. Reaction time would suffer in small systems, and be increasingly
large as systems are scaled up. We propose a hierarchical organization of fault-managers
(FM) operating independently. Each FM has its individual control domains. FM
coordinates with peers and parents/children, above/below outside their control domain.
This improves the reaction time, and enhances scalability. Furthermore with distributed
and coordinated decision making, a single-point failure of a centralized fault manager
will not cause the entire system to fail.

The Local managers are the leaf nodes, responsible for sensing faults and
implementing control actions and making low-level mitigation decisions. Regional
managers handle successively larger regions of hardware and higher levels of mitigation
behavior. There can be multiple levels or layers of regional manager. Global managers
are the top-level fault mitigation agents, interfacing with external systems and/or users.
These levels roughly correspond to the inherent hierarchical organization of the BTeV

Trigger architecture.
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Faults are handled at the lowest layer possible. At any specific level, if mitigation
is not possible due to resource availability, or lack of sufficient contextual information,
the fault is promoted to the next level of fault manager. This has the advantage of scaling,
since the number of fault managers at the lower levels increases with the architecture
size. In addition, response to a failure can be more rapid, since decisions are made closer

to the source of error.

BTeV Paradigm

Mapping of Prototype into Modeling Environment
We now define a language to specify the Software /Hardware and the Fault
Mitigation behavior of the target application. The meta-programmable tool GME

implements a modeling environment with this graphical language. The goals of the
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domain-specific graphical abstractions are to be are particularly natural to the physicists,
amenable to analysis, and suitable for system synthesis. The BTeV modeling paradigm
attempts to meet these goals by allowing for the specification of system from several
different aspects. The significant aspects are:
1. Application Data Flow: the component-based specification of information
processing to be performed by the system,
2. Hardware Resources: the physical computer hardware, consisting of processors
and interconnections, used in system implementation, and
3. Failure Mitigation Strategies: the specification of how the system should detect
and react to component and system failures.

These aspects will be described in detail below.

Application Dataflow

This Application data flow aspect allows a system developer to define the key
software components and the flow of data between them. The semantics are captured as a
Dataflow Model, a modeling formalism, particularly suitable for modeling image and
signal processing computations [37]. The basic dataflow model doesn’t support
hierarchical representation. However many extensions have been proposed that
introduces hierarchy in the dataflow model [38]. Based on these extensions a hierarchical
dataflow notation is used, where nodes (boxes) capture the software components
(algorithms) and lines show the flow of data between nodes. Each of the software
components are connected to each other by means of Ports. These models can represent
synchronous or asynchronous behavior, and a variety of scheduling policies. For the

BTeV trigger, these are primarily asynchronous in operation, with data-triggered
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scheduling. The primitive software components represent a single computational block or
algorithm to be executed in the runtime system. Each software primitive in the dataflow
modeling are associated with a script that provides the implementation of the software
component. Software Compounds are hierarchical composition of nodes. A Compound
can contain other Primitives or Compounds. These data flow models are derived from

those used in ACS-MIDE [19][24] and are made closely resemble a directed data flow

graph [33].
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Figure 11 shows a screen-shot of an example dataflow modeling aspect of the trigger
prototype with several processes and dataflow links between them. The network of
heterogeneous processing elements constitutes execution resource of the system. The set
of computational components, the communication topology between the components, and
the resource allocation together define the computational structure of the system. System
configuration refers to computational structure of the system. Formally as mentioned in
[24] the execution resources may be expressed as a set R of resources (processing
elements) available for system execution.

Formally the computational structure of the system may be expressed as 3 tuple

{P,F, A} (6)
where,
P is the set of computational processes (components)
F < P x P is the set of dataflow between processes and
A: P—R is the resource allocation. Each process is assigned to a processing
element.

The semantics of the computational structure can be described with an attributed
directed graph know as process graph [37]. The nodes of the graph are computational
processes. The edges of this graph represent communication (dataflow) between
processes. Conceptually the processes operate continuously and concurrently
transforming infinite sequence of input data to infinite sequence of output data. The
processes communicate via exchange of data tokens. The communication is
asynchronous and the tokens are buffered in FIFO queues. The processes in the process

graph are distributed and executed over the set of resources R.
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Hardware Resource Library

This Hardware resource aspect defines the physical structure of the target

architecture. Block diagrams capture the processing nodes (e.g. CPU-s, DSP-s, FPGA-s).

Connections capture the networks and busses over which data can flow. These hardware

resources provide the processing capabilities for executing software component currently

modeled in the system. These hardware models are decomposed hierarchically to enable

system scaling and support the use of types and instances to preserve the correctness of

lower level hardware models.
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Figure 12 shows the segment of the hardware resource model for the prototype —
4 VME boards are wired to the host processor .Each VME board has maximum 4 DSP
processors (TI TMSC6xxx).The hardware picture is arranged out the same way as the
actual physical prototype hardware. The language for modeling the hardware component

is again defined in UML.
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CHAPTER V

FAULT MITIGATION LANGUAGE

As discussed previously about our approach towards mitigating the fault uses
three level of hierarchy of fault managers operating independently with their own control
domains and coordinating with peers outside their control domain. In this present chapter
we will see the detailed explanation of the generation of these Fault- Manager behaviors

from the models.

Requirements

Historically physicists have developed custom software and hardware for
experiments such as BTeV [15]. Any fault-mitigation would be manually programmed
into the system. The motivation behind the fault mitigation strategy language is to
provide a flexible method for specifying arbitrary mitigation behaviors. This tool
provides for integration of prior knowledge into the fault detection system and the ability
to use a recursive narrowing of fault probabilities to aid in the identification of
symptoms. The goals of the fault mitigation language are as follows:

1. User friendly , keeping in mind that the target users are physicists

2. The language should be able to help the physicists introduce custom self-adaptive
behaviors without any difficulty as they are the best people to define how the
system should behave in fault conditions.

3. The language should integrate the application specification and design, since

application is closely linked with the fault mitigation behavior.
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4. Tt should support direct generation of software and system configuration artifacts

from the specifications.

User Defined Mitigation Strategies

State machine [4] based formal specification methodologies have found widespread
acceptance in system design and development. This is especially true in the field of
hardware /software Co-Design, since concepts of finite automata are often used to
describe reactive system behavior. In addition to defining the normal system behavior, as
in typical HW/SW codesign, we describe the desired behavior under fault conditions

One of the aspects of the BTeV modeling paradigm is the establishment of fault-
mitigation strategy. A Statecharts-like [4] notation is provided that allows a developer to
define various failure states. Conditions necessary to enter or leave these states, along
with actions to be performed when state transitions occur are also defined in transitions.
The language can be summarized at a high level as follows:

1. The nodes in the state diagram are system states, corresponding to a particular
phase of system operation or a mitigation step.

2. Lines are transitions between states, capturing the logical progression of system
modes. Transitions occur in reaction to specific events (i.e. hardware faults, OS
faults, user-defined errors, fault-mitigation commands from higher level of fault-
managers etc).

3. Transitions are annotated with triggers, guards and actions. Triggers determine the
specific combination of events present when state transition should occur.

4. Actions define the operations to be performed as a transition occurs. These

actions can include moving tasks, rerouting communications, resetting and
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validating hardware and changing the application algorithms. An action language

definition is currently being developed, and is left as future work.

The hierarchical mitigation scheme is specified by: 1) defining fault-managers to
be executed at specific levels in the dataflow modeling hierarchy and 2) associating fault-
mitigation strategies with each fault manager. In effect the fault-mitigation managers can
be thought of as a system of concurrent and coordinating state-machines interacting via
system state detectors data and event propagation.

The first step in the development of a new language is to specify the syntax and
the visualization in the GME [14] -modeling environment. The meta-model for the state
machine language uses a notation based on UML [21] class diagrams describing the key
concepts of the modeling language and their associations. Figure 13 shows the meta-
model of the fault mitigation language. It can be seen that Behaviour Component contains
Machine which in turn contains the State. The Machine is the Fault Manager whose
behavior can be described using StateChart concepts. Based upon whether they receive or
send data the Ports can be specialized as Input or Output. The Behavior state machines
perform actions based on triggering conditions. The Triggers is defined as a Connection
which has attributes. These attributes specify the triggering condition and action to be
performed. The action code which is the fault handling code is mainly written in C and
based on the type of the guard/trigger. The action is user defined e.g. to send the message
(action, error, statistical) upstream or downstream. These triggering conditions are logical
equations using messages as inputs. Messages are utilized to propagate notification of
failures up through the hierarchy, interact with fault detection processes, or communicate

with other system components (e.g. user interfaces or system control).
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Figure 13 State Machine paradigm

In order to minimize the bandwidth while providing the maximum flexibility, the

messages are specified to have a variable length, based on the originator of the message.

Message Structure
Considering the reactive and distributed nature of the system there is a need to
send messages containing commands, status, and monitoring data back and forth between

various software components in BTeV trigger systems. The messages defined for this

prototype are:

1. Faults/Error Message for reporting errors in hardware, or application
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2. Controls/Command serves as both decision requests and commands that force
parameters to change in the running system

3. Statistical/Info is periodic in nature and they contain the data of averages over n
time.

4. Response Message is feedback message which are sent when any kind of

command or error messages are either executed or failed to execute.

Header
size version priority category type dest orig-id dest-id response
error  response info ' command Link Fail, Prescale .....

Figure 14 Message Structure

The above Figure 14 shows the message structure and the hierarchy of the message

schema.

Input and Output of the Fault Manager Machine
The state machine is an automaton whose state transitions may involve multiple
input and output simultaneously on any number of ports. The key concepts here are the
states (and in particular the transitions between them) and the interactions. By

interactions we mean the explicit buffered communication via named ports. On each port
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one receiver listens to potentially many senders. The input buffers are a set of message
FIFOs. Message exchange is triggered by a state machine output within an Action
specification or by other parts of computational environment. Inputs can be queued, i.e.
they may occur at any time, appending the received value to the corresponding FIFO. The
values in the input buffer will be processed based on the scheduling of the fault manager
and its internal behavior. Processing is done by the user specified transitions, which is
written in C language checks the type of message and uses it in a transition condition or
guard. Based on the type of message the physicist can specify an action to be taken. This
action would range from simply forwarding the message up the hierarchy to a parent fault
manager, notification to another entity on the Fault Manger processor, updating an,
activity log or internal state, restarting processes or hardware, or rerouting a
communication link (if there is a link failure). Figure 15 shows the input and the output

of the state machine.
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Figure 15 Input and Output of State Machine
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In order to use the system model described above, the messages and FSM definition is
formally defined as follows:

Formally the messages can be expressed as:

Let M be the type of all messages potentially exchanged by the state machine (extended)
and PN be the type of port names. Then the message families which are used to denote
both input buffers and the output patterns have type

MSGs=PN—M* (7)
where,

M*is any finite sequence of elements of M.

States and Transitions: The type of a state is

STATE( Y )=MSGs x ) (8)
where, the parameter ) stands for the type of the local state. The set of transitions has
type

TRANS (> )=(STATE( ) ) x MSGs x STATE( } ) ) 9)
where, each of its elements has the form ((i, ), 0 ,(i ¢ T’)) and means that the state
machine can perform a step from local state T to 1’, taking the current input buffer
contents from i to i’ (thus consuming as much as input as required) and producing output
0. Here i, i’ and o each denote the whole families of FIFO’s.

Formally, the Fault Managers behavior can be given as a 5 tuple:

(Q, In, Out, T y, Trans (a)) (10)

where ,
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-Q is the set of finite states

-In is the set of input ports names
-Out is the set of output port names
- 7 918 the initial local state

-Trans (a) is the transition relation

Various Features Of State — Machine Language

Since the classic state machine doesn’t handle hierarchy, extensions have been
proposed to the FSM representation to introduce hierarchy and concurrency by Harel
[4].The main entities of the state machine are:

State: a particular condition in which a fault manager may consume signal /messages and
evaluates conditions for transitions. The states are extended with two main concepts:

-State Hierarchy: The semantic of hierarchical state decomposition are designed
to allow sharing of behavior

-Orthogonal Regions: Hierarchical decomposition can be viewed as the classical
exclusive-or applied to states. State hierarchy can be viewed as or-decomposition and the
nested states are called or-states. UML statecharts also introduce the complementary and-
decomposition. This decomposition means that a state can contain two or more
orthogonal regions which means independent state, and being in such a composite state

entails being in all of its orthogonal regions simultaneously [4].

Trigger: A trigger uses a sequence of activities triggered by the (consumption of the

signal/message/events) and evaluates the information with a logical equation. The
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transition specifies a initial state and a destination state. In most general terms, an event is

an occurrence in time and space that has significance to the system.

Guard: a particular condition which needs to be satisfied before taking the transition. It
can be seen as a Boolean expression which is evaluated dynamically based on the value
of extended state variables. Guard conditions affect the behavior of a state machine by

enabling or disabling certain operations.

Action: An action is an activity in reaction to a transition. Every state in the model can
have optional entry actions and exit actions.

-Entry Action: Actions which are performed upon entering into the state

-Exit Action: Actions which are performed upon exit of a state
Entry and Exit actions are associated with the states, not transitions. Such actions allow
the designer to implement a common desired behavior without replicating for all
transitions touching a state. This results in more ease of use and reduction in modeling

€ITors.

Data Type: Data types can be defined which are translated to a state variable. The state
variables maintain local state to be sued in transition, guard, and action logic. These data
types can be of type int, float, volatile etc as defined by the user. The user can also

specify the initial value of the data variables
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Timer: In order to express real time constraints, the state machine engine provides access
to the actual time. A timer can be created with an expiration time. The expiration of the
timer creates a signal to the state machine, which can be processed as any other input

signal. This timer is dependent on the underlying OS and it is implementation specific.

Action Language: Actions associated with states, transitions and top level default
entrance are defined by statements of the FSM language. This language is an evolving
offset of built-in functions and macros. Currently there are built in functions for sending
message on user defined port numbers. Extensions will include user specific action to a
particular fault which may include setting a variable for reset processor, reroute the link

etc.

Standard State Machine Implementation

Implementing state machines efficiently is challenging. Even with the classical
non hierarchical state machines, we must make large number of design decisions and
various tradeoffs. Typical implementations of state machine in the high level
programming language such as C, C++ include

e Nested switch statement,
o The state table
e The object oriented state design pattern and
e Other techniques that are mostly combinations of the previous three.
The majority of published state machine implementation techniques use state

machines that are intimately intertwined with a specific concurrency model and a
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particular event dispatching policy. For example, embedded systems engineers often
implement state machine inside polling loops or interrupt service routines (ISRs) that
extract events directly from hardware or global variables. GUI programmers are typically
base code on a runtime model that handles event queuing and dispatching for the
programmer. For a scalable real time system, it is better to separate the state machine
code from a particular concurrency model and to provide a flexible way of passing
signals and event parameters. Implementations in this chapter provide a simple and

generally applicable interface to a state machine.

Nested Switch Statement
Perhaps the most popular technique of implementing state machines is the nested
switch statement. States and Signals are typically represented as an enumeration.
Basically this technique uses two levels of the switch form of multi way decision.
Thereby, a scalar variable discriminates the first level and an event signal is used in the

second level.

Figure 16 Example FSM for Standard Implementation Techniques
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Considering as an example the state machine from Figure 16 the corresponding nested

switch implementation is shown by the listing from Figure 17

enum State {State(O, Statel, State2};
enum Signal {Event(O, Eventl, Event2};
State myCurrentState;
Signal myCurrentSignal;
switch (myCurrentState) ({
case StateO:
switch (myCurrentSignal) ({
case EventO:
myCurrentState = Statel;
send (OutputO) ;
break;
}
break;
case Statel:
switch (myCurrentSignal) {
case EventO:
myCurrentState = Statel;
break;
case Eventl:
myCurrentState = State2;
send (Outputl) ;
break;
}
break;
case State2:
switch (myCurrentSignal) {
case EventO:
myCurrentState = Statel;
send (OutputO) ;
break;
case Eventl:
myCurrentState
break;
case Event2:
myCurrentState = State0;
send (Outputl) ;
break;
}
break;

}

State2;

Figure 17 Switch Case Implementation

The nested switch statement implementation has the following advantages:

e [tissimple.
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e [t requires enumeration of states and triggers.

e It has a small memory footprint, since only one scalar state variable is necessary
to represent a state machine.

e It does not promote code reuse since all elements of a state machine must be
coded specifically for the problem at hand.

e Event dispatching time is not constant but depends on the performance of the two
levels of switch statements. This degrades with increasing number of cases
typically as O (log n), where n is the number of cases [39].

e Nested switch statements can be used to implement hierarchical state machine.

State Table
Another popular approach is to use the state tables (typically sparse) arrays of

transitions for each state.

Signals--------- —> (Triggers)
Signall Signal 2 Signal3 Signal 4
N Statel Actionll ()  Action21 () | Action31 () | Actiondl ()
i nextstate nextstate nextstate nextstate
i State2 Actionl2 ()  Action22 () | Action32 () | Action42 ()
8 State3 | ...... | o | .
N

Figure 18 State Table Representation

This technique uses a two dimensional m x n array to implement a state transition

diagram. Thereby m is the number of states and n determines the number of possible
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signal events. Transitions are represented by the contents of array cells, consisting of
transition target state and associated actions. This table lists signals (triggers) along the
top and states along the left edge. The contents of the cells are transitions represented as
{action, next-state} pairs. As opposed to switch case implementation which depends on
the number of states and possible signal events, the state table approach requires a large
two dimensional array, which is typically sparse and wasteful. In conjunction with event
dispatching time, the state table technique provides directly access to a transition with a

complexity of O (const).

Summary
The standard implementation techniques and their variations discussed in this
chapter can be freely mixed and matched to explore different trade-offs. For our purposes

we will be using switch case implementation technique.
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CHAPTER VI

CASE STUDY

The tools described in the previous chapter were tested by implementing a
physical prototype. A specific subset of the architecture and a small set of sample errors
were defined, along with the actions to handle these problems. The prototype system
structure and fault handling procedures are described below.

The BTeV system can have many failure scenarios. Some of these failures were
implemented and the behavior was studied. Recall from Chapter IV that the user interface
is implemented in EPICS. EPICS has some of the user control modes and it can send
messages directly from the user interface to the DSP’s. EPICS act as a Fault Injector,
which can inject the faults and the user can see the effects of those faults on the system. It
has the following control buttons:

1. Start /Stop the System

2. Change the values of the Interaction per crossing

3. Change the values of Interaction Size

4. Set the Authority Vector

5. Send a message to hang a PA

6. Send a message to restart a PA

7. Send a message to run the systems well (robustness to faults) or poorly (crash on
data errors).

8. Send the message to change the pre-scale factor.
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The Authority vector is an array of permissions set to authorize the fault managers
to perform certain mitigation actions autonomously. The motivation behind these
authority vectors is to give physicist the ability to enable/disable certain automated
behavior giving them an overall control over the system operation, which is necessary for
system acceptance. These permissions are encoded as messages that affect state variables
in the network. The three levels of Manager: Local, Regional (Farmlet), Global
(ARMOR) need to set their authority bit vector in their local state in order to take a

decision and act on the fault per their defined behavior.

Failure Scenarios

Case 1 — Supercomputing 2003 Implementations
Capturing fault scenarios is a useful way to understand and identify what a system

is required to do. We will consider 3 main fault scenarios:

PA Application Hang

This scenario was considered to analyze the behavior of the system if the Physics
Application gets hung. The reason for hanging may be possible due to various reasons of
which one could be improper error handling leading to the program to get in an infinite
loop. The figure below shows the data flow interaction inside the Worker node. The

worker node has Local Manager, PA, and Very Light Weight Agents (VLA -Detector).
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Figure 19 Worker Node

Local Manager resides on every DSP worker node in the network. It can receive
messages from detector (VLA) and the Fault Injector (EPIC). Hence the local manager
listens on 2 input ports: det fault and fm_inj in. PA Application Hang (message type is
PA_APPHANG) message comes down the hierarchy through the port fimm inj in. The

message path is the following:

EPIC—ARMOR—GATEWAY (Console) >FARMLETMANAGER—LOCAL MANAGER

Once this message arrives on the port the local manager changes its state from
NOMINAL LM to PA APP HANG if the guard condition is true. In PA_ APP HANG
state, it executes the exit action which sends a message to the worker (PA) of type

PA_APPHANG. Now the Local manager can propagate message through its output
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ports: fm _msg out (to farmlet), data rate (to PA), co _out (to console).When PA

receives this message from the Local Manager it sets an error_bit_value in order to hang

=
=1 i " =
_'il [ frn_msg_out
fm_iniin  ——\_2 1
void E|
=i data_rate
= st
det_fault FEI
c0_out
StateTF -
LFEk_behay

Figure 20 Local Manager data ports

the PA application by entering a while(1) loop till the bit is reset.

Results
When the message is sent for PA to hang, the Buffer Manager queue size starts to
increase- since there will be only two alive worker nodes- and it will reach a red alert bar.
As shown in the Figure 21, as soon as the red alert bar is reached the 1) system starts

dropping events 2) system efficiency drops 3) system utilization increases.
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Figure 21 User Interface Showing the System Information

Prescale
Pre-scaling is a common technique that is applied in physics trigger application
when the processing capacity is not adequate to process in real-time all the events
generated by the detectors. Pre-scaling causes the trigger system to process only n out of
m events where m is fixed (say 100) and n is the pre-scale factor which changes
depending on the performance of the system. The remaining m-n events are simply

marked as ‘unprocessed’ and queued for later offline processing. In this prototype pre-
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scaling can be controlled by the system operator and/or by the fault-managers. The pre-
scale factor changes when:

e System operator controls

e cfficiency is too low

e average queue occupancy too high or too low

e average processing time is too high

e Jow utilization of resources (CPU)

Based on the authority either the Farmlet Manager or the ARMOR will start pre-

scaling if it senses any of the above mentioned reasons.
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Figure 22 Farmlet Manager Data ports

The Farmlet Manager listens from four input ports simultaneously: Lol in (from
Local Manager), epic cmd in (from EPICS), BM In (from BufferManager), PA In

(from PA). Again the behavior of the Farmlet Manager is laid out as a state machine.
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Since the Farmlet Manager gets the statistic message from BM In port, it has the

information about the queue size of the Buffer Manager; it keeps a track of the Buffer

Manager queue size.

E +/"| If (type=BM_Stats) |

Iritial Mo
Type of data check Bh_Stats
on | If(authority)
' i ; +if(queue_full)
_—>
[f(prescale up) | '@' ~a| fflprescale down)
err<0 err>0

Farmlet_Prescale
State @ State
Er_ Lpper Bound Er_Lowveer Bound

Figure 23 State Diagram for Prescale Behavior

The farmlet Manager applies a Proportional-Derivative (PD) controller algorithm
to check for the constant increase in the queue size of the Buffer. This type of feedback
controller produces a control output based on the error, between a set point and a

measured process variable, plus a factor based on how fast the error is changing.

Adaptive Prescaling
é Prescale
Controller
+
" lqda] BM/Q

Figure 24 Adaptive Prescaling Using PD Algorithm
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Each element of the PD controller refers to a particular action taken on the error.
e Proportional: Error multiplied by a gain Kp. This is adjustable and in many
systems this is responsible for process stability.
e Derivative: The rate of change of error multiplied by a gain Kd. In many
systems it is responsible for system response.
Looking into the Buffer Manager queue as the process (which is under

observation), the values of Kp and Kd are:

Kp=1; Kd=1;

Figure 25 Values of Proportional and Derivative constants

The set point is configured to 40% of the queue size .Since the definition states
that the process n out of every 100 events, we will consider the maximum queue size as
100, so the set point QSP_FFM 0.4.

After defining all the constant value we need to calculate the error value. The

error value is calculated as follows:

err = Kp* (QSP_FFM - (bm_stats_monitor—->avg_size/MAX_BM_Q_SIZE)) + Kd
*(0-avg_dg_size);

Figure 26 Equation for calculating error
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Based on the value of error and also the authority the Farmlet Manager would
change its states from BM_Stats to either BM_Upper Bound or BM Lower Bound which

is checked on the transition from BM _Stats to the two other states.

Results
To test this particular behavior we need to force the buffer queue size to fill up.
We can do this either by 1) killing one or two of the worker node 2) Increasing the

interaction rate or the interaction size, so that the PA is overloaded. We do the following

few steps:
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Figure 27 System Information showing the values of prescale and efficiency
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e Set the Authority to Farmlet Manager.
e Kill the PA in one of the worker node.
e As the Buffer Queue size fills up, the pre-scaling comes into action, and we can

see the queue size getting stabilizing after few iterations.

Buffer Manager Queue full

This error arises if the DSP’s on the farmlet are not keeping up due to one or more
processor deaths or algorithm is taking too long. When this error occurs the Farmlet
Manager sends a activity log message to the ARMOR (up the hierarchy).

The complete behavior of the Farmlet Manager is shown below.
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Figure 28 Complete Behavior
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Semantics

This section gives the logical meaning of above mention state machine based
language in detail.
Automata The state machine (extended) as given in Chapter 5, is 5 tuple:
a=(Q, In, Out, T y, Trans (a))
where
-Q is the set of finite states
{NOMINAL FM, CONFIGURATION PARAMS, LINK FAIL MESG, PA APP_HANG,

PA _RESTART APP, AUTHORITY VECTOR NUM, BM STATS, BM UPPER BOUND,
BM_LOWER BOUND, PRESCALE MESG}

-In is the set of input ports names

{epic cmd in, Lol in, PA In ,BM In}
-Out is the set of output port names

{co _out, FM out, Msg out}

- 7 ¢1s the initial local state

{Nomial FM)}

-Trans (a) is the transition relation

Case 2 — General Fault Scenario
The aim of this test case is to provide a methodology for the user to specify the
behavior considering the real time distributed systems based on the formal tools.
Providing a graphical environment for editing, prototyping and code generation have
been successful in the system in which we are involved. Considering the real time

systems where the timing constraint is an inevitable variable which needs to be
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considered. We can picture the state machine to be consisting of local data environment
and a behavior i.e., a timed state machine. Timing constraint can be involved in every
state machine. A state transition is described by a guarded command with a timing
constraint: G—C[1]. The guard G is made up of state variables of the machine. The
timing constraint [t] is typically a timing interval [tyi, tmax], tmin<=tmax, Which expresses
the possible rendezvous times for an IO or the possible duration times for an internal
command. Since the runtime environment provides a microsecond timer, the variable

timer can be defined at any state utilizing the timer function.
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Figure 29 General Example showing the fault mitigation language

In the above example we consider a concurrent state machine. As seen from the

example we have a timer which can be used to check if a particular fault state has been in
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the same state for a long period of time (by specifying the upper bound). The state starts
of in the /DLE mode and checks for any faults which occur in the system. If we keep a
check on the total faults occurring in the system and if we have an upper bound on the
total faults (which is 100 in this case), we can change the state to Maintenance. In
contrast, if we have the timer shooting just below 100 the process under observation can
enter the diagnosis state, and if it shoots over 100 we can just reset the processor and start
fresh. This example is just a high level idea of what other things can be done using the

concepts of state machine.

Fault Manager Synthesis Algorithm

“Automation is key to agility” (Matt Stephens, [28])
Today, automated code synthesis of diverse input models is used in a wide range of
application development. Especially in the field of system design, code generators fill the
gap between high level design methodologies and low level application code. Therefore a
complete design flow can be considered as seamless, if it’s possible to generate portable
code for a designed and verified model. Thus, in GME the gap between the models drawn
by the designer and the code consumed by the fault managers is bridged using the model

interpreters.

Input and Output
Interpreters parse the models to extract the required information. The foremost
step is to describe the input and output of the interpreter. The input of the interpreter is
the system design models built using GME. These models are stored in a database and

can be accessed using COM (Component Object Model) API (Application Program
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Interface). A high level C++ interface called the Builder Object Network (BON) also
exists that enables the access of these models as C++ objects. Thus interpreter can access
model information using BON. Applications described by the developers are stored as a
network of objects. Inside GME these objects are instances of a set of generic classes in
the BON. The class hierarchy of the generic BON is given in [14][11]. These generic

classes can be extended for a specific paradigm.

CHuilder0bject
CBuildertodel CBuilderAtom CBuilderConnection
CTransitionBuilder
CMachineBuilder CStateBuilder
ClinitialBuilder CDataBuilder CariableBuilder

Figure 30 Class Diagram of BTeV specific classes

For the BTeV state machine paradigm these classes were extended according to theFigure
30. The CBuilderModel class is a generic class in the BON and all other classes in Figure
30 have been defined for BTeV. Each user defined class corresponds to a kind of model
in the design environment.

The following steps are performed in the mapping:
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For each fault manager (software) component model in the dataflow models, an
associated state machine model that defines its mitigation strategy is located. This
state machine model defines the behavior to be synthesized for each fault
manager. In order to get the information of Machine we use the class
CMachineBuilder

Given the behavior, the set of defined states is collected. The information of the
states can be obtained by CStateBuilder. An enum construct is written into the
source code.

Based on the trigger interface variables in the state model, a function prototype is
defined for the state transition step function, with a parameter for current state and
each of the trigger input and output variables. This function is used to compute
next states and to read and write input and output messages.

Next, the body of the behavioral state transition step function is defined. For each
state, a case segment is defined.

Within the case, the code is generated to implement the guard conditions, in the
form of if clauses.

Within each of the if transition steps, the action code is inserted. This is based
on the action attributes that the user specified when creating the behavioral model.
The action shows creation of a message followed by a conditional transmission of
the message to another behavioral process.

Steps 4-6 are repeated for each state, guard, and action specified in the model.

Steps 1-7 are repeated for each physical resource in the models.
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This generated code is compiled and linked with the dataflow code generated to

create a set of executable models for the system.

BTEV - RTES-prototype - [LFM_behav - /RTES.prototype/Behavior/L FM_Behav/]
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Figure 31 Mapping of Generated code and the models

Evaluation Of The Case Study

The tools for modeling analyzing and synthesizing large scale parallel fault

adaptive real time systems have been developed and prototyped using the Model
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Integrated Computing infrastructure. We see the following advantages of the tool set and
design philosophies.
1. The concept of state machine being common and well known, its easy to
model the fault mitigation strategies using this concept.
2. Software and hardware sub modules of the application could be designed in
the same integrated framework.
3. The ease of setting up different fault manager’s behavior and generation of the
same by click of a button.
Finally, we see that a single framework is sufficient to design, implement,
synthesize and verify a large scale embedded system application making the development

cycle much shorter while improving the quality of the developed application.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

Conclusions

Software development for real time embedded systems can be difficult, as these
systems are part of a physical environment, with complex dynamics and stringent timing
requirements. Fault tolerance and reliability requirements further complicate these
systems. This field is growing fast, with ever increasing design and development needs.
The currently available support tools are not able to support the anticipated growth in this
field. With the ever-increasing complexity of embedded systems, an integrated
framework for design and development of these systems is needed in order to speed up
the design cycle and to explore various alternative solutions.

BTeV is a prototype framework which provides an integrated environment to
design reliable, large scale real-time embedded system applications using domain-
specific languages and concepts. This environment will help the systems designers
quickly build their applications without requiring deep expertise in the area of real time
embedded systems. Using a MIC approach, we developed a robust environment that can
provide a solid platform to support research in large-scale, fault mitigative systems.
Information hiding and data abstraction is also achieved by the use of multiple aspects.

In addition to the domain-specific graphical language (modeling environment);
model interpreters were developed to generate code for system operation and on-line fault

mitigation. No restrictions govern strict homogeneity of individual levels of managers in
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the network. Behaviors for different levels of fault managers are based on the physical
proximity to faults, underlying architecture, system mode, or on specific application.

The tools for modeling, analyzing, and synthesizing large-scale, parallel, fault
adaptive real-time systems have been developed and prototyped using the Model-
integrated computing infrastructure at Vanderbilt University. These tools were used to
model and synthesize a scaled down representative prototype of BTeV system. The
prototype contained 16 embedded DSP processors. These processors were configured in
an application-specific topology to reflect the dataflow of the BTeV trigger system. There
were approximately 20 concurrently executing processes, with around 100
interconnections.

Several relatively simple fault mitigation behaviors were implemented. These
behaviors ranged from a simple replication of a fault status message up the hierarchy, to
analyzing a parameter and adjusting algorithm characteristics. The fault-mitigation
behaviors took inputs from the kernel, the user interface, and the hardware monitoring
devices. The actions taken by the behaviors ranged from message formation for user
notification, simple algorithms, to resetting failed tasks etc.

These tools for modeling, analyzing, and synthesizing large-scale, parallel, fault
adaptive real-time systems were used to model and synthesize a scaled down
representative prototype of BTeV system. The prototype contained 16 embedded DSP
processors, configured in an application-specific topology to reflect the dataflow of the
BTeV trigger system. There were approximately 20 concurrently executing processes,

with around 100 interconnections.
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Several relatively simple fault mitigation behaviors were implemented. The fault-
mitigation behaviors covered a wide range of system behaviors. Results and functionality
of the prototype proved the efficacy of the tool-based approach.

The tools allowed full generation of all executable code. No by-hand modification
was necessary. The time to modify a behavior and implement it across the entire array of
processors was approximately 10 minute cycle. This represents a very large reduction in
the effort and time required to adapt the system behavior. As a prototype, the framework
is not complete and needs more effort to transform it from a research tool to a
commercial-quality tool.

The modeling language was reviewed by practitioners in the high energy physics
community, with a very detailed and extensive evaluation produced. Aside from several
software engineering details, the concepts were deemed powerful and appropriate to the
physics application domain. While some details will take training to become natural to
the tool user, the basic concepts in the modeling language were natural to the domain.

The prototype was demonstrated successfully at Supercomputing 2003.

Future Work
Several improvements and several new areas related to this research needs to be
explored.

1. Real time behavior of the system needs to be supported to a greater depth
by the tool. Adding a temporal behavior to the state machine for
reconfiguration specification is a first step

2. Model checking and reachability analysis should be done in order to

ensure model correctness.
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3. Greater use of simulation will enable a more rapid design cycle, and
enable design of systems for which the hardware is not yet available.

4. Modeling to date has focused on the behavior of the mitigation actions. In
order to predict operation of the system, and possibly prove stability, the
underlying ‘plant’ (i.e. computations, data throughput, etc) should be

modeled. A hybrid model would be appropriate for this representation.

Currently the capability of the tool has not been fully utilized. The fault behaviors
of the managers are relatively simple. Prototype sizes have been limited (16 vs. 2500).
The tools should be used to model, generate, and analyze complicated behaviors, coupled

with extensive performance measurements on real hardware.
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ELECTRICAL ENGINEERING

TOWARDS DEVELOPING TOOLS AND TECHNOLOGIES FOR MODELING

FAULTS IN LARGE SCALE REAL TIME EMBEDDED SYSTEMS

SHWETA SHETTY

Thesis under the direction of Dr. Theodore Bapty

The software development for real time embedded systems is widely
acknowledged as a difficult undertaking. Certain classes of RT systems, such as high-
energy physics trigger systems employ very large numbers of processors that must
operate consistently over several months. A “reasonable behavior” is expected from these
systems when the hardware or the software components fail or when faults occur. This
class of large-scale real-time embedded systems has a need for a highly customizable
fault-mitigation framework that includes high-level design tools.

This thesis presents a high-level tool for specifying the fault behavior which is
model based using domain-specific graphical language (DSL). The DSL is implemented
within the Generic Modeling Environment (GME) tool, which is a meta-programmable
modeling environment, developed at ISIS, Vanderbilt University. The Fermi lab’s
proposed BTeV trigger system is being used as a target application driving the research

and evaluation of the tools.
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