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Abstract—The design of reliable, dynamic, fault-tolerant 
services in wireless sensor networks is a big challenge and a 
hot research topic. In this paper an optimization method is 
proposed that can be used to tune parameters of the 
middleware services and applications to provide optimal 
performance. The optimization method is based on 
simulation, and is capable of handling ‘noisy’ error surfaces. 
The proposed optimization algorithm is illustrated by a new 
spanning-tree formation algorithm, which can effectively 
operate even if links between nodes are asymmetrical. 
 
 1. INTRODUCTION 
In the near future large-scale sensor networks will be the key 
elements of embedded systems used in space and aviation-
related challenges, e.g. monitoring and control of safety 
critical systems [1], Smart Surfaces, Smart Dust [2], or can 
be used to make everyday life more comfortable, e.g. 
Intelligent Spaces [3]. These sensor networks often use 
distributed operating system-like services (called middle-
ware) over wireless communication protocols, which must 
be fault tolerant and adaptive because of the dynamic 
network topology and changing mission objectives. The 
design of such middleware services is not straightforward, 
since the sensors have limited resources, and thus the used 
protocols are usually very simple compared to ones used in 
wired communication schemes. The nondeterministic nature 
of the environment is another factor making the design more 
difficult. This paper presents a simulation-based 
optimization method that can be used to tune the algorithms 
used in the middleware layer. Also some results are 
presented that were gained by the proposed method. 
 
The hardware structure of the wireless sensors may vary 
greatly, but invariably each of the intelligent sensors is a 
compact device with its own power source, it contains a 
processing unit (a small microprocessor), a communication 
unit and the sensor itself. The widely used Berkeley field-

nodes (or motes) have similar structure containing an 8-bit 
microcontroller, a 916.5 MHz radio and several interchange-
able sensors. These tiny units have a simple local operating 
system called TinyOS. Application-specific middleware 
services can be added to provide an interface between the 
application and the primitive services of the local operating 
system. The middleware can also be considered as a 
distributed operating system that establishes network-wide 
resources and functions that the applications can utilize, e.g. 
leader election, spanning tree formation, distributed 
consensus and mutual exclusion, distributed transactions, 
group communication services, clock synchronization, etc. 
 
Typical applications may include hundreds or thousands of 
motes with often unknown or random distribution (e.g. 
motes dropped from an airplane to a hostile environment). 
The communication services must be reliably established to 
achieve the overall goal of the distributed sensor system.  
During the operation of the sensor network different metrics 
for the quality of service (QoS) are required, a dynamic 
tradeoff is necessary between accuracy, response time, 
power consumption, and other qualities of interest. Thus, the 
middleware services must be prepared to adapt to the actual 
circumstances and the QoS metric. To design such 
middleware services, the highly random nature of the 
environment (wireless communication with possible distur-
bances, random layout, possibly damaged motes, etc.) must 
be taken into consideration.  
 
The proposed design method is a probabilistic simulation-
based optimization that can help the designer choose the 
right algorithm with an optimal parameter set. The 
MATLAB-based simulator is capable of simulating the 
important aspects of the communication scheme: local OS 
services including the network protocol stack, and also the 
radio transmission phenomena (signal power vs. distance, 
fading, collision, disturbances). In the simulation 
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environment it is easy to implement and test any services. 
Around the simulator an optimization algorithm tunes the 
parameters of the service to provide an optimum for a given 
QoS metric. The proposed solution provides a way to design 
and optimize distributed middleware services in a highly 
nondeterministic environment for a large number of 
cooperating intelligent sensors. 
 
In Section 2 the Berkeley motes and the TinyOS operating 
system is briefly described, while Section 3 contains the 
detailed description of the simulation environment. In 
Section 4 the proposed optimization method is discussed. It 
is illustrated in Section 5 through examples. One of the 
examples is a new tree-formation algorithm that can be 
effectively used even if the communication links are 
asymmetric.  
 
 2. THE TARGET SYSTEM 
A very successful, low-cost prototype field-node (mote) 
family was developed at Berkeley. The used variant (MICA) 
of the Berkeley motes (see Figure 1) includes an 8-bit, 4 
MHz Atmel ATMEGA103 microcontroller, 128kB program 
memory, 4KB RAM, and an RFM TR1000 radio chip 
capable of providing 50 kbit/s transmission rate at 916.5 
MHz. The motes can also accommodate a set of 
interchangeable sensors (temperature, light, magneto, sound, 
etc.) [4]. 
 
The motes use a small operating system called TinyOS, 
designed to provide the necessary services in despite of the 
very limited hardware resources. It contains a complete 
network stack with bit-level error correction, medium access 
layer, network messaging layer, and timing [5].  
 
The Medium Access Control layer uses a simple Carrier 
Sense Multiple Access protocol: it waits for a random 
duration before trying to transmit a packet and then waits for 
a random backoff interval if the channel was found busy. It 
keeps trying until the transmission can be performed. This 
simple approach is not as effective as the more sophisticated 
protocols (e.g. IEEE 802.11, [6]) in terms of collision 
avoidance, but it certainly consumes less energy and the 
communication overhead is much smaller. 
 

 3. WIRELESS NETWORK SIMULATOR 
The probabilistic wireless network simulator (Prowler) is an 
event-driven simulator that can be set to operate in either 
deterministic mode (to produce replicable results while 
testing the application) or in probabilistic mode (to simulate 
the nondeterministic nature of the communication channel 
and the low-level communication protocol of the motes). It 
can incorporate arbitrary number of motes, on arbitrary 
(possibly dynamic) topology, and it was designed so that it 
can easily be embedded into optimization algorithms. The 
simulator runs under MATLAB, thus it provides a fast and 
easy way to prototype applications, and has nice 
visualization capabilities. The graphical user interface of 
Prowler is shown in Figure 2. 
 
The network simulator models the important aspects of all 
levels of the communication channel and the application. 
The nondeterministic nature of the radio propagation is 
characterized by a probabilistic radio channel model. A 
simplified, but accurate model is used to describe the 
operation of the Medium Access Control (MAC) layer. The 
applications interact with the MAC layer through a set of 
events and actions. 
 
Radio propagation models 

The radio propagation model determines the strength of a 
transmitted signal at a particular point of the space for all 
transmitters in the system. Based on this information the 
signal reception conditions for the receivers can be 
evaluated and collisions can be detected.  
 
The signal strength from the transmitter to a receiver is 
determined by a deterministic propagation function 
(modeling the decay of signal strength with distance), and by 
random disturbances (modeling the fading effect, the time-

Figure 2 – The Probabilistic Wireless Network Simulator, 
while generating a spanning tree on a grid layout. 

Figure 1 – A Berkeley field-node (mote) 
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varying nature of the signal strength, and other 
miscellaneous transmission errors.) 
 
The deterministic part of the propagation function can be 
any user-supplied function, but a reasonable and frequently 
used model of the signal strength versus distance is given by  

  γd
PdP transmitidealrec

+
=

1
1)(,   (1) 

where idealrecP ,  is the ideal reception signal strength, 

transmitP  is the transmission signal power, d is the distance 
between the transmitter and the receiver, and γ  is a decay 
parameter with typical values of 2 ≤ γ  ≤ 4. 
 
Real signals, however, behave in a much different manner. 
The signal strength can vary very heavily as distance 
changes. Also in time the signal strength can change even if 
the distance between the transmitter and receiver is constant. 
This fading effect is modeled by random disturbances in the 
simulator. The received signal strength from node j to node i 
is calculated from the propagation function (1) by 
modulating it with random functions: 

 ( ) ( ) ( )[ ] ( )[ ]tddPjiP jijiidealrecrec βα +⋅+⋅= 11, ,,,  (2) 

The random variable α depends on the distance only, thus in 
the simulator it is calculated only when he position of either 
the transmitter or the receiver changes; while β is time-
dependent, so its value is recalculated at the beginning of 
every transmission. In the simulator the random variables α 
and β have normal distributions ( )ασ,0N  and ( )βσ,0N , 

respectively, with adjustable parameters ασ and βσ . 

 
An additional parameter errorp  models the probability of a 
transmission errors caused by any unmodeled effects (e.g. 
external disturbances, unreliable hardware, etc.) 
 
Signal reception and collisions 

There are two models currently used in the simulator. 
 
Model 1 The signal is received if the signal strength is 
greater than a reception limit parameter. The channel is 
sensed idle if there is no signal that could be received. There 
is a collision if two transmissions overlap in time and both 
could be received.  
 
Model 2 [7] Each receiver has a noise variance parameter 

2
nσ . The Signal to Interference and Noise ratio (SINR) for 

receiver i and transmitter j is defined by  
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The total signal strength at node i is defined by  
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k
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The signal is received if the SINR at the receiver is greater 
than the reception limit during the whole length of the 
transmission. The channel is sensed idle if the total signal 
strength is smaller than an idle limit, which depends on the 
noise variance of the receiver. There is a collision if the 
SINR at the receiver becomes smaller than the reception 
limit at any time during the reception.  
 
Model 1 is simple and fast, while Model 2 is more accurate. 
The choice of the model is always a tradeoff between speed 
and accuracy. The radio models in the simulator are 
interchangeable plug-ins, thus a new model can easily be 
added if necessary.  
 
MAC-layer model 

The MAC layer communication is modeled by a simplified 
event channel, illustrated in Fig. 3. When the application 
emits the Send_Packet event, after a random Waiting_Time 
interval the MAC layer checks if the channel is idle. If not, it 
continues the idle checking until the channel is found idle, 
before each idle check waiting for random intervals 
characterized by Backoff_Time. When the channel is idle the 
transmission begins and after Transmission_Time the 
application receives the Packet_Sent event. After  the 
reception of a packet on the receiver’s side, the application 
receives a Packet_Received or Collided_Packet_Received 
event, depending on the success of the transmission.  
The Waiting_Time and Backoff_Time parameters are 
random uniformly distributed variables in predefined 
intervals, while Transmission_Time is constant (i.e. all 
messages have the same length). 
 
The application level 

The applications are event-based, similarly to the real 
TinyOS framework. In the simulator the following events 
can be caught: Init_Application, Packet_Sent, 
Packet_Received, Collided_Packet_Received, Clock_Tick. 
The application can activate the following actions (which 
cause further events): Set_Clock, Send_Packet. A few 
debugging/ visualization commands are also available, e.g. 
switch on/off the LEDs on the motes, draw lines and arrows, 

 Send_Packet Packet_Sent 
Channel_Idle_Check 

Waiting_Time Backoff_Time Transmission_Time 

Figure 3 – The simplified MAC-layer  
communication scheme; transmitter 
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and print messages. A simple flood application illustrates the 
structure of the program in Figure 4. One of the motes 
initiates the flood by transmitting a message at time 
instant 1000, and then each receiving mote retransmits the 
message once.  
 
 4. OPTIMIZATION FRAMEWORK 
The network simulator can be used to test protocols and 
algorithms and it also can provide metrics on the 
performance of the tested application. Similarly to the core 
of the simulator, the applications can be parameterized, so 
different settings can easily be tested. The proposed 
optimization algorithm is built around the simulator and it 
calls the simulator with the required parameters. 
 
In the development phase of new protocols, a typical 
problem is to provide optimal performance in some metric, 
versus a certain set of design parameters. This is a simple 
optimization problem leading to the search of an error 
surface above a parameter space. There are multiple 
methods for solving this problem, if the error surface is well 
defined. The main idea behind these methods is some kind 
of exploration of the error surface, either a gradient-based 
method, Monte-Carlo search, or an annealing method [8]. 
These optimization methods use so-called ‘function calls’ to 
compute the value of the cost function. The more 
computationally expensive the function call the more 
important it is to keep the number of function calls low.  
In case of our optimization framework, the error function 
can be any performance metric defined above the parameter 
space (e.g. time, energy, application-specific metrics, or 

combination of them). Due to the stochastic nature of the 
environment, a useful performance metric is typically not a 
result of a single experiment, but rather an average value, a 
minimum or maximum. To calculate such a performance 
metric, several experiments must be made, i.e. several 
simulations have to be run. Thus a single ‘function call’ of 
the optimizer algorithm can be very expensive. Another 
problem is that some a priori knowledge would be necessary 
on the error surface itself so that the necessary precision of 
the error surface calculation could be determined. Generally 
such information is not available, thus the necessary number 
of experiments is practically unknown. This can result in 
error surface estimations not sufficiently precise, and thus 
the optimization algorithm may not converge to the right 
minimum.  
 
It must be noted that the optimum is usually not required 
with high precision. The rationale behind this statement is 
that the algorithm shouldn’t be very sensitive to the 
parameters; otherwise, it is probably not robust enough to 
changes in the environment, either. Thus, an optimization 
performed on a discrete grid may provide results accurate 
enough for the given application. 
 
To overcome the problem of the ‘noisy’ error surface, the 
following approaches can be used: (1) the simple brute force 
solution can scan the parameter space on a finite grid and 
thus the optimum can be found. The user may supervise the 
required number of experiments, so the surface can 
gradually improve. (2) The proposed solution, however, 
uses a mixed stochastic/gradient-like optimization method 
that is not sensitive to the above-mentioned problems, but in 

… 
switch event 
case 'Init_Application' 
    SIGNAL_STRENGTH=100; 
    %%%%%%%%%%%%%%%%%%%% Memory  initialized here %%%%%%%%%%%%%%%%%%%%%%% 
    memory=struct('send',1, 'signal_strength', SIGNAL_STRENGTH); 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    if ID==1 %           first node starts flood 
        Set_Clock(1000) 
    end 
case 'Packet_Sent' 
    LED('red on') %      switch on red LED 
case 'Packet_Received' 
    if memory.send 
        Send_Packet(radiostream(data, memory.signal_strength)); 
        memory.send=0; % no further retransmission is necessary 
        PrintMessage('Received') 
    end 
case 'Collided_Packet_Received' 
    % this is for debug purposes only 
case 'Clock_Tick' 
    Send_Packet(RadioStream(data, memory.signal_strength)); 
end 
… 

Figure 4 – Example application FLOOD.  
Color coding: Events - red; actions – blue; visualization: green. 
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fact, it utilizes the stochastic nature to achieve better global 
convergence properties. The main features of the proposed 
algorithm are the following: 
 
• The search is performed over a finite set of predefined 

parameter values (i.e. discrete points in the parameters 
space).  

• The function call for one point returns the outcome of 
one experiment only. The search method uses this 
‘noisy’ cost function value. calls are calculated for the 
same point several times, thus in certain points the error 
surface becomes more and more accurate during the 
search process. 

• The search algorithm makes steps on the discrete 
parameter space after each function call, depending on 
the result of the last function call and the values of the 
averaged error function.  

 
The algorithm is the following:  
 
A set of points in the parameter space are given: P={Pi}, 
i = 1..N, where N is the number of points (e.g. on a grid in 
two dimensional cases). For all of these points the averaged 
cost function values C={Ci} are maintained. The current and 
the previous points are denoted by Pcur and Pprev, 
respectively. The direction D has a finite set of values 
(denoting the possible directions of move, e.g. up, down, 
right, left in the two-dimensional case.) A ‘Step Function’ S: 
{D, P} → P is defined that translates the direction to the 
actual topology. The function call is denoted by F: P → ℜ.  
 
1. Initialization:  

Ci=0, for all i. Pcur = Pprev = Pinit.  

2. Search:  
FC = F(Pcur). Update Ccur using FC.  

3. Step:  
if FC < Cprev then  

keep the direction D (except for the outermost 
points),  

else  
choose another direction D on a random basis.  

end 
Pprev = Pcur,  Pcur = S(D, Pcur). 

4. Repeat 2 and 3 until the exit criterion is met. 
 
The choice of the exit criteria is an important but difficult 
problem, even in the case of noiseless error surfaces. The 
safest solution is user supervision, when a human supervisor 
can decide whether the achieved precision is enough or not. 
Another possible simple exit criterion is a limit on the 
number of iteration.  
 
A more sophisticated solution in the noisy error surface case 
is the use of statistical measures (e.g. variance) to 
characterize the precision of the error function values: to 
each point in the search space a precision value is also 

associated. If the global minimum is clearly identifiable, 
given a certain precision distribution over the search space, 
then the iteration can stop; otherwise, more experiments are 
needed.  
In our experiments the variance jσ  of the mean error value 

jC  was used as a measure of precision. For each point j, if 
the minimum value is at point k, then the set of points Λ is 
defined by 

 { }jjkk CCj φσφσ −>+=Λ : . (5) 

The exit criterion is the following: 

 Λ∈Ω<=Λ jj   allfor   or   {} σ , (6) 

where 3..1≈φ , and Ω  is a predefined precision limit. The 
first part of the exit criterion means that the minimum value 
is below all the other values, with a confidence determined 
by φ . The second part of the exit criterion assures that the 
iteration is stopped when the error value of the possible 
candidates are all within a range of Ωφ2 .  
 
Note: As in the case of gradient-like algorithms, global 
convergence cannot be guaranteed; the algorithm may get 
stuck in a local minimum. However, the stochastic nature of 
proposed algorithm increases the chance of escaping from 
local minima, like in the case of annealing algorithms. 
 
 5. EXPERIMENTAL RESULTS 
The proposed optimization scheme is illustrated through two 
examples. The examples are typical middleware service in 
sensor networks: broadcast and a new spanning tree 
formation algorithm. The performance in each case is 
measured by composite metrics. 
 
Message Broadcast  

The first example is a broadcast in a network of 100 nodes, 
equidistantly placed on a 10x10 grid. One of the motes 
initiates the transmission, and all the receiving motes 
retransmit the first received message with a probability of p 
(probabilistic flood). The transmission signal strength s can 
be set within a range. (The values p and s are the same on 
each mote.) The goal is to maximize the overall performance 
of the network by finding the optimal p and s parameters. 
The performance metric is composed from the number of 
receiving motes in the network (the more motes receive the 
better) and the consumed power (the less power is used the 
better): 

 ( ) sNNE TRREC 2
2

11 100 λλ +−= , (7) 

where the first term is the error when not all the motes 
receive the message, while the second is the estimation of  
the total consumed power.  
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The exhaustive search method was used to find the 
minimum of the error surface. The surface was evaluated in 
10x12 points in the regions of p = [0.1, 1], s = [0.1, 3]; in 
each point 10 experiments were run. The generated error 
surface is shown in Figure 5. The interesting result is that, 
although the best solution was p = 0.3, s = 1.0, the other 
points at the bottom of the canyon-shaped surface would 
give almost equally good results, while outside that region 
the performance drastically decreases. 
 
Spanning tree formation 

The second example shows the building of a spanning tree 
in a randomly distributed network. The links between the 
motes are not symmetric, but the algorithm has to assure that 
only bi-directional links are used in the tree. The protocol 
has an adjustable parameter P, affecting the behavior of the 
individual motes. The goal is to find the optimal value of P 
in order to achieve optimal performance. The performance 
metric is composed of the necessary time to build the tree, 
and the consumed total power.  
 
The simplified protocol is the following: 
 
Each mote has a unique ID, and a hop-number (initially 
NaN, except for the root mote, where it is 0). It also 
maintains a table containing the mote’s information about its 
neighbors (a neighbor is a mote whose transmission was 
received). The table contains the following information: 
nID:  The identifier of the neighbor. 
InLink:  Quality of the directed link (nID → ID) 
OutLink:  Quality of the directed link (ID → nID) 
Hop:  the hop-number of mote nID 
 
Note: The link properties Inlink and OutLink are represented 

by the strength of the received signal, but other measures are 
also possible. 
 
Each mote wakes up periodically and transmits its ID, hop-
number, and table data with a certain transmission 
probability p. The transmission probability is the function of 
the design parameter P, and the current content of the table:  
 
• Initially p=P/8. 
• For all the motes with a hop-number NaN, p=P/8. 
• If the hop-number of the mote changes, p is set to P. 
• If a mote k receives a message from mote j, indicating 

that j has no information about k, but k has a good InLink 
property of j, then mote k sets  p= P. 

• After each transmitted message p=p/2. 
Upon receipt of a message from j, mote k updates its own 
table: 
 
• Updates the InLink property of j. 
• Updates the Hop property of j. 
• Updates the OutLink property of j, if the received table 

contains information about k (the InLink value is used). 
 
If the table of the receiving mote k indicates that there are 
neighbors with bi-directional links (good InLink and 
OutLink properties) and with non-NaN hop-numbers, the 
‘best’ of these motes with ID = j is selected as parent, and 
the mote’s own hop-number is set to Hopj+1. (‘Best’ means 
the one with the smallest hop-number; in case of a tie the 
one with the best link properties.) 
 
Note that a large table may not fit into one message. In this 
case, it’s enough to send only the most relevant entries (e.g. 
only the rows with the best InLink values and missing 
OutLink values), or alternatively, the table may be sent in 
more than one message.  
 
The tree building is considered to be complete if more than 
90 percent of the motes are connected (i.e. have not NaN 
hop-numbers). The time to build the tree (T) and the total 
number of sent messages (M) are combined to a 
performance metric: 

 λMTE +=2 , (8) 

where the scaling factor 200/1=λ .  
 
The automatic optimization algorithm was used to find the 
minimum of the error surface E2 with 50 motes placed 
randomly inside a square. The distribution was uniform, and 
the placement was regenerated in each experiment. To 
provide comparable results, the starting mote was always 
placed at the center of the square. 
 
In the search procedure twelve points were used in the 
region of P = [0.01, 0.9]. The results are shown in Figure 6. 
The upper curve shows the mean run time (T), the second 
plot is the mean total message number (M), the third plot is Figure 5 – The error surface of the broadcast problem. 
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the error surface (E2), while the last plot shows the number 
of experiments evaluated at each point. The search was run 
for 200 iteration steps to illustrate the smoothing effect of 
the averaging process, but the result was clearly visible after 
approximately 40 iterations. The optimum value is P = 0.1. 
With this setting the algorithm builds the tree in 
approximately four seconds by sending 350 messages on 
average.  
 
 6. CONCLUSIONS 
An optimization method was proposed, that is able to handle 
noisy error surfaces. This method, combined with a 
probabilistic wireless network simulator, can be used to 
optimize parameters of middleware services and 
applications in wireless sensor networks. 
 
The probabilistic wireless network simulator is able to 
simulate all the important aspects of sensor networks built 
from Berkeley motes, including the nondeterministic nature 
of the wireless communication channel. The simulator can 
be downloaded from: 
http://www.isis.vanderbilt.edu/projects/nest/downloads.asp 
 
The optimization method was illustrated though examples: 
an error surface was generated to determine the optimal 
probability and signal strength parameters of a broadcast 
service. The fully automatic optimization algorithm was 
illustrated by finding the optimal parameter of a spanning 
tree formation algorithm. 
 
The proposed optimization method provides a way to design 
and optimize distributed middleware services in a highly 
nondeterministic environment for a large number of 
cooperating intelligent sensors. 
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