
 1

Simulation-based optimization of communication
protocols for large-scale wireless sensor networks 1

Gyula Simon, Péter Völgyesi, Miklós Maróti, Ákos Lédeczi

Vanderbilt University
Institute for Software Integrated Systems

Box 1829, Station B
Nashville, TN 37235

615-322-3162
gyula.simon@vanderbilt.edu

1 0-7803-7651-X/03/$17.00 © 2003 IEEE
2 IEEEAC paper #1136, Updated October 10, 2002

Abstract—The design of reliable, dynamic, fault-tolerant
services in wireless sensor networks is a big challenge and a
hot research topic. In this paper an optimization method is
proposed that can be used to tune parameters of the
middleware services and applications to provide optimal
performance. The optimization method is based on
simulation, and is capable of handling ‘noisy’ error surfaces.
The proposed optimization algorithm is illustrated by a new
spanning-tree formation algorithm, which can effectively
operate even if links between nodes are asymmetrical.

 1. INTRODUCTION
In the near future large-scale sensor networks will be the key
elements of embedded systems used in space and aviation-
related challenges, e.g. monitoring and control of safety
critical systems [1], Smart Surfaces, Smart Dust [2], or can
be used to make everyday life more comfortable, e.g.
Intelligent Spaces [3]. These sensor networks often use
distributed operating system-like services (called middle-
ware) over wireless communication protocols, which must
be fault tolerant and adaptive because of the dynamic
network topology and changing mission objectives. The
design of such middleware services is not straightforward,
since the sensors have limited resources, and thus the used
protocols are usually very simple compared to ones used in
wired communication schemes. The nondeterministic nature
of the environment is another factor making the design more
difficult. This paper presents a simulation-based
optimization method that can be used to tune the algorithms
used in the middleware layer. Also some results are
presented that were gained by the proposed method.

The hardware structure of the wireless sensors may vary
greatly, but invariably each of the intelligent sensors is a
compact device with its own power source, it contains a
processing unit (a small microprocessor), a communication
unit and the sensor itself. The widely used Berkeley field-

nodes (or motes) have similar structure containing an 8-bit
microcontroller, a 916.5 MHz radio and several interchange-
able sensors. These tiny units have a simple local operating
system called TinyOS. Application-specific middleware
services can be added to provide an interface between the
application and the primitive services of the local operating
system. The middleware can also be considered as a
distributed operating system that establishes network-wide
resources and functions that the applications can utilize, e.g.
leader election, spanning tree formation, distributed
consensus and mutual exclusion, distributed transactions,
group communication services, clock synchronization, etc.

Typical applications may include hundreds or thousands of
motes with often unknown or random distribution (e.g.
motes dropped from an airplane to a hostile environment).
The communication services must be reliably established to
achieve the overall goal of the distributed sensor system.
During the operation of the sensor network different metrics
for the quality of service (QoS) are required, a dynamic
tradeoff is necessary between accuracy, response time,
power consumption, and other qualities of interest. Thus, the
middleware services must be prepared to adapt to the actual
circumstances and the QoS metric. To design such
middleware services, the highly random nature of the
environment (wireless communication with possible distur-
bances, random layout, possibly damaged motes, etc.) must
be taken into consideration.

The proposed design method is a probabilistic simulation-
based optimization that can help the designer choose the
right algorithm with an optimal parameter set. The
MATLAB-based simulator is capable of simulating the
important aspects of the communication scheme: local OS
services including the network protocol stack, and also the
radio transmission phenomena (signal power vs. distance,
fading, collision, disturbances). In the simulation

 2

environment it is easy to implement and test any services.
Around the simulator an optimization algorithm tunes the
parameters of the service to provide an optimum for a given
QoS metric. The proposed solution provides a way to design
and optimize distributed middleware services in a highly
nondeterministic environment for a large number of
cooperating intelligent sensors.

In Section 2 the Berkeley motes and the TinyOS operating
system is briefly described, while Section 3 contains the
detailed description of the simulation environment. In
Section 4 the proposed optimization method is discussed. It
is illustrated in Section 5 through examples. One of the
examples is a new tree-formation algorithm that can be
effectively used even if the communication links are
asymmetric.

 2. THE TARGET SYSTEM
A very successful, low-cost prototype field-node (mote)
family was developed at Berkeley. The used variant (MICA)
of the Berkeley motes (see Figure 1) includes an 8-bit, 4
MHz Atmel ATMEGA103 microcontroller, 128kB program
memory, 4KB RAM, and an RFM TR1000 radio chip
capable of providing 50 kbit/s transmission rate at 916.5
MHz. The motes can also accommodate a set of
interchangeable sensors (temperature, light, magneto, sound,
etc.) [4].

The motes use a small operating system called TinyOS,
designed to provide the necessary services in despite of the
very limited hardware resources. It contains a complete
network stack with bit-level error correction, medium access
layer, network messaging layer, and timing [5].

The Medium Access Control layer uses a simple Carrier
Sense Multiple Access protocol: it waits for a random
duration before trying to transmit a packet and then waits for
a random backoff interval if the channel was found busy. It
keeps trying until the transmission can be performed. This
simple approach is not as effective as the more sophisticated
protocols (e.g. IEEE 802.11, [6]) in terms of collision
avoidance, but it certainly consumes less energy and the
communication overhead is much smaller.

 3. WIRELESS NETWORK SIMULATOR
The probabilistic wireless network simulator (Prowler) is an
event-driven simulator that can be set to operate in either
deterministic mode (to produce replicable results while
testing the application) or in probabilistic mode (to simulate
the nondeterministic nature of the communication channel
and the low-level communication protocol of the motes). It
can incorporate arbitrary number of motes, on arbitrary
(possibly dynamic) topology, and it was designed so that it
can easily be embedded into optimization algorithms. The
simulator runs under MATLAB, thus it provides a fast and
easy way to prototype applications, and has nice
visualization capabilities. The graphical user interface of
Prowler is shown in Figure 2.

The network simulator models the important aspects of all
levels of the communication channel and the application.
The nondeterministic nature of the radio propagation is
characterized by a probabilistic radio channel model. A
simplified, but accurate model is used to describe the
operation of the Medium Access Control (MAC) layer. The
applications interact with the MAC layer through a set of
events and actions.

Radio propagation models

The radio propagation model determines the strength of a
transmitted signal at a particular point of the space for all
transmitters in the system. Based on this information the
signal reception conditions for the receivers can be
evaluated and collisions can be detected.

The signal strength from the transmitter to a receiver is
determined by a deterministic propagation function
(modeling the decay of signal strength with distance), and by
random disturbances (modeling the fading effect, the time-

Figure 2 – The Probabilistic Wireless Network Simulator,
while generating a spanning tree on a grid layout.

Figure 1 – A Berkeley field-node (mote)

 3

varying nature of the signal strength, and other
miscellaneous transmission errors.)

The deterministic part of the propagation function can be
any user-supplied function, but a reasonable and frequently
used model of the signal strength versus distance is given by

 γd
PdP transmitidealrec

+
=

1
1)(, (1)

where idealrecP , is the ideal reception signal strength,

transmitP is the transmission signal power, d is the distance
between the transmitter and the receiver, and γ is a decay
parameter with typical values of 2 ≤ γ ≤ 4.

Real signals, however, behave in a much different manner.
The signal strength can vary very heavily as distance
changes. Also in time the signal strength can change even if
the distance between the transmitter and receiver is constant.
This fading effect is modeled by random disturbances in the
simulator. The received signal strength from node j to node i
is calculated from the propagation function (1) by
modulating it with random functions:

 () () ()[] ()[]tddPjiP jijiidealrecrec βα +⋅+⋅= 11, ,,, (2)

The random variable α depends on the distance only, thus in
the simulator it is calculated only when he position of either
the transmitter or the receiver changes; while β is time-
dependent, so its value is recalculated at the beginning of
every transmission. In the simulator the random variables α
and β have normal distributions ()ασ,0N and ()βσ,0N ,

respectively, with adjustable parameters ασ and βσ .

An additional parameter errorp models the probability of a
transmission errors caused by any unmodeled effects (e.g.
external disturbances, unreliable hardware, etc.)

Signal reception and collisions

There are two models currently used in the simulator.

Model 1 The signal is received if the signal strength is
greater than a reception limit parameter. The channel is
sensed idle if there is no signal that could be received. There
is a collision if two transmissions overlap in time and both
could be received.

Model 2 [7] Each receiver has a noise variance parameter

2
nσ . The Signal to Interference and Noise ratio (SINR) for

receiver i and transmitter j is defined by

∑

≠
+

=

jk
recn

rec

kiP
jiP

SINR
),(

),(
2σ

. (3)

The total signal strength at node i is defined by

 () ∑=
k

rectot kiPiP),(. (4)

The signal is received if the SINR at the receiver is greater
than the reception limit during the whole length of the
transmission. The channel is sensed idle if the total signal
strength is smaller than an idle limit, which depends on the
noise variance of the receiver. There is a collision if the
SINR at the receiver becomes smaller than the reception
limit at any time during the reception.

Model 1 is simple and fast, while Model 2 is more accurate.
The choice of the model is always a tradeoff between speed
and accuracy. The radio models in the simulator are
interchangeable plug-ins, thus a new model can easily be
added if necessary.

MAC-layer model

The MAC layer communication is modeled by a simplified
event channel, illustrated in Fig. 3. When the application
emits the Send_Packet event, after a random Waiting_Time
interval the MAC layer checks if the channel is idle. If not, it
continues the idle checking until the channel is found idle,
before each idle check waiting for random intervals
characterized by Backoff_Time. When the channel is idle the
transmission begins and after Transmission_Time the
application receives the Packet_Sent event. After the
reception of a packet on the receiver’s side, the application
receives a Packet_Received or Collided_Packet_Received
event, depending on the success of the transmission.
The Waiting_Time and Backoff_Time parameters are
random uniformly distributed variables in predefined
intervals, while Transmission_Time is constant (i.e. all
messages have the same length).

The application level

The applications are event-based, similarly to the real
TinyOS framework. In the simulator the following events
can be caught: Init_Application, Packet_Sent,
Packet_Received, Collided_Packet_Received, Clock_Tick.
The application can activate the following actions (which
cause further events): Set_Clock, Send_Packet. A few
debugging/ visualization commands are also available, e.g.
switch on/off the LEDs on the motes, draw lines and arrows,

 Send_Packet Packet_Sent
Channel_Idle_Check

Waiting_Time Backoff_Time Transmission_Time

Figure 3 – The simplified MAC-layer
communication scheme; transmitter

 4

and print messages. A simple flood application illustrates the
structure of the program in Figure 4. One of the motes
initiates the flood by transmitting a message at time
instant 1000, and then each receiving mote retransmits the
message once.

 4. OPTIMIZATION FRAMEWORK
The network simulator can be used to test protocols and
algorithms and it also can provide metrics on the
performance of the tested application. Similarly to the core
of the simulator, the applications can be parameterized, so
different settings can easily be tested. The proposed
optimization algorithm is built around the simulator and it
calls the simulator with the required parameters.

In the development phase of new protocols, a typical
problem is to provide optimal performance in some metric,
versus a certain set of design parameters. This is a simple
optimization problem leading to the search of an error
surface above a parameter space. There are multiple
methods for solving this problem, if the error surface is well
defined. The main idea behind these methods is some kind
of exploration of the error surface, either a gradient-based
method, Monte-Carlo search, or an annealing method [8].
These optimization methods use so-called ‘function calls’ to
compute the value of the cost function. The more
computationally expensive the function call the more
important it is to keep the number of function calls low.
In case of our optimization framework, the error function
can be any performance metric defined above the parameter
space (e.g. time, energy, application-specific metrics, or

combination of them). Due to the stochastic nature of the
environment, a useful performance metric is typically not a
result of a single experiment, but rather an average value, a
minimum or maximum. To calculate such a performance
metric, several experiments must be made, i.e. several
simulations have to be run. Thus a single ‘function call’ of
the optimizer algorithm can be very expensive. Another
problem is that some a priori knowledge would be necessary
on the error surface itself so that the necessary precision of
the error surface calculation could be determined. Generally
such information is not available, thus the necessary number
of experiments is practically unknown. This can result in
error surface estimations not sufficiently precise, and thus
the optimization algorithm may not converge to the right
minimum.

It must be noted that the optimum is usually not required
with high precision. The rationale behind this statement is
that the algorithm shouldn’t be very sensitive to the
parameters; otherwise, it is probably not robust enough to
changes in the environment, either. Thus, an optimization
performed on a discrete grid may provide results accurate
enough for the given application.

To overcome the problem of the ‘noisy’ error surface, the
following approaches can be used: (1) the simple brute force
solution can scan the parameter space on a finite grid and
thus the optimum can be found. The user may supervise the
required number of experiments, so the surface can
gradually improve. (2) The proposed solution, however,
uses a mixed stochastic/gradient-like optimization method
that is not sensitive to the above-mentioned problems, but in

…
switch event
case 'Init_Application'
 SIGNAL_STRENGTH=100;
 %%%%%%%%%%%%%%%%%%%% Memory initialized here %%%%%%%%%%%%%%%%%%%%%%%
 memory=struct('send',1, 'signal_strength', SIGNAL_STRENGTH);
 %%%
 if ID==1 % first node starts flood
 Set_Clock(1000)
 end
case 'Packet_Sent'
 LED('red on') % switch on red LED
case 'Packet_Received'
 if memory.send
 Send_Packet(radiostream(data, memory.signal_strength));
 memory.send=0; % no further retransmission is necessary
 PrintMessage('Received')
 end
case 'Collided_Packet_Received'
 % this is for debug purposes only
case 'Clock_Tick'
 Send_Packet(RadioStream(data, memory.signal_strength));
end
…

Figure 4 – Example application FLOOD.
Color coding: Events - red; actions – blue; visualization: green.

 5

fact, it utilizes the stochastic nature to achieve better global
convergence properties. The main features of the proposed
algorithm are the following:

• The search is performed over a finite set of predefined

parameter values (i.e. discrete points in the parameters
space).

• The function call for one point returns the outcome of
one experiment only. The search method uses this
‘noisy’ cost function value. calls are calculated for the
same point several times, thus in certain points the error
surface becomes more and more accurate during the
search process.

• The search algorithm makes steps on the discrete
parameter space after each function call, depending on
the result of the last function call and the values of the
averaged error function.

The algorithm is the following:

A set of points in the parameter space are given: P={Pi},
i = 1..N, where N is the number of points (e.g. on a grid in
two dimensional cases). For all of these points the averaged
cost function values C={Ci} are maintained. The current and
the previous points are denoted by Pcur and Pprev,
respectively. The direction D has a finite set of values
(denoting the possible directions of move, e.g. up, down,
right, left in the two-dimensional case.) A ‘Step Function’ S:
{D, P} → P is defined that translates the direction to the
actual topology. The function call is denoted by F: P → ℜ.

1. Initialization:

Ci=0, for all i. Pcur = Pprev = Pinit.

2. Search:
FC = F(Pcur). Update Ccur using FC.

3. Step:
if FC < Cprev then

keep the direction D (except for the outermost
points),

else
choose another direction D on a random basis.

end
Pprev = Pcur, Pcur = S(D, Pcur).

4. Repeat 2 and 3 until the exit criterion is met.

The choice of the exit criteria is an important but difficult
problem, even in the case of noiseless error surfaces. The
safest solution is user supervision, when a human supervisor
can decide whether the achieved precision is enough or not.
Another possible simple exit criterion is a limit on the
number of iteration.

A more sophisticated solution in the noisy error surface case
is the use of statistical measures (e.g. variance) to
characterize the precision of the error function values: to
each point in the search space a precision value is also

associated. If the global minimum is clearly identifiable,
given a certain precision distribution over the search space,
then the iteration can stop; otherwise, more experiments are
needed.
In our experiments the variance jσ of the mean error value

jC was used as a measure of precision. For each point j, if
the minimum value is at point k, then the set of points Λ is
defined by

 { }jjkk CCj φσφσ −>+=Λ : . (5)

The exit criterion is the following:

 Λ∈Ω<=Λ jj allfor or {} σ , (6)

where 3..1≈φ , and Ω is a predefined precision limit. The
first part of the exit criterion means that the minimum value
is below all the other values, with a confidence determined
by φ . The second part of the exit criterion assures that the
iteration is stopped when the error value of the possible
candidates are all within a range of Ωφ2 .

Note: As in the case of gradient-like algorithms, global
convergence cannot be guaranteed; the algorithm may get
stuck in a local minimum. However, the stochastic nature of
proposed algorithm increases the chance of escaping from
local minima, like in the case of annealing algorithms.

 5. EXPERIMENTAL RESULTS
The proposed optimization scheme is illustrated through two
examples. The examples are typical middleware service in
sensor networks: broadcast and a new spanning tree
formation algorithm. The performance in each case is
measured by composite metrics.

Message Broadcast

The first example is a broadcast in a network of 100 nodes,
equidistantly placed on a 10x10 grid. One of the motes
initiates the transmission, and all the receiving motes
retransmit the first received message with a probability of p
(probabilistic flood). The transmission signal strength s can
be set within a range. (The values p and s are the same on
each mote.) The goal is to maximize the overall performance
of the network by finding the optimal p and s parameters.
The performance metric is composed from the number of
receiving motes in the network (the more motes receive the
better) and the consumed power (the less power is used the
better):

 () sNNE TRREC 2
2

11 100 λλ +−= , (7)

where the first term is the error when not all the motes
receive the message, while the second is the estimation of
the total consumed power.

 6

The exhaustive search method was used to find the
minimum of the error surface. The surface was evaluated in
10x12 points in the regions of p = [0.1, 1], s = [0.1, 3]; in
each point 10 experiments were run. The generated error
surface is shown in Figure 5. The interesting result is that,
although the best solution was p = 0.3, s = 1.0, the other
points at the bottom of the canyon-shaped surface would
give almost equally good results, while outside that region
the performance drastically decreases.

Spanning tree formation

The second example shows the building of a spanning tree
in a randomly distributed network. The links between the
motes are not symmetric, but the algorithm has to assure that
only bi-directional links are used in the tree. The protocol
has an adjustable parameter P, affecting the behavior of the
individual motes. The goal is to find the optimal value of P
in order to achieve optimal performance. The performance
metric is composed of the necessary time to build the tree,
and the consumed total power.

The simplified protocol is the following:

Each mote has a unique ID, and a hop-number (initially
NaN, except for the root mote, where it is 0). It also
maintains a table containing the mote’s information about its
neighbors (a neighbor is a mote whose transmission was
received). The table contains the following information:
nID: The identifier of the neighbor.
InLink: Quality of the directed link (nID → ID)
OutLink: Quality of the directed link (ID → nID)
Hop: the hop-number of mote nID

Note: The link properties Inlink and OutLink are represented

by the strength of the received signal, but other measures are
also possible.

Each mote wakes up periodically and transmits its ID, hop-
number, and table data with a certain transmission
probability p. The transmission probability is the function of
the design parameter P, and the current content of the table:

• Initially p=P/8.
• For all the motes with a hop-number NaN, p=P/8.
• If the hop-number of the mote changes, p is set to P.
• If a mote k receives a message from mote j, indicating

that j has no information about k, but k has a good InLink
property of j, then mote k sets p= P.

• After each transmitted message p=p/2.
Upon receipt of a message from j, mote k updates its own
table:

• Updates the InLink property of j.
• Updates the Hop property of j.
• Updates the OutLink property of j, if the received table

contains information about k (the InLink value is used).

If the table of the receiving mote k indicates that there are
neighbors with bi-directional links (good InLink and
OutLink properties) and with non-NaN hop-numbers, the
‘best’ of these motes with ID = j is selected as parent, and
the mote’s own hop-number is set to Hopj+1. (‘Best’ means
the one with the smallest hop-number; in case of a tie the
one with the best link properties.)

Note that a large table may not fit into one message. In this
case, it’s enough to send only the most relevant entries (e.g.
only the rows with the best InLink values and missing
OutLink values), or alternatively, the table may be sent in
more than one message.

The tree building is considered to be complete if more than
90 percent of the motes are connected (i.e. have not NaN
hop-numbers). The time to build the tree (T) and the total
number of sent messages (M) are combined to a
performance metric:

 λMTE +=2 , (8)

where the scaling factor 200/1=λ .

The automatic optimization algorithm was used to find the
minimum of the error surface E2 with 50 motes placed
randomly inside a square. The distribution was uniform, and
the placement was regenerated in each experiment. To
provide comparable results, the starting mote was always
placed at the center of the square.

In the search procedure twelve points were used in the
region of P = [0.01, 0.9]. The results are shown in Figure 6.
The upper curve shows the mean run time (T), the second
plot is the mean total message number (M), the third plot is Figure 5 – The error surface of the broadcast problem.

 7

the error surface (E2), while the last plot shows the number
of experiments evaluated at each point. The search was run
for 200 iteration steps to illustrate the smoothing effect of
the averaging process, but the result was clearly visible after
approximately 40 iterations. The optimum value is P = 0.1.
With this setting the algorithm builds the tree in
approximately four seconds by sending 350 messages on
average.

 6. CONCLUSIONS
An optimization method was proposed, that is able to handle
noisy error surfaces. This method, combined with a
probabilistic wireless network simulator, can be used to
optimize parameters of middleware services and
applications in wireless sensor networks.

The probabilistic wireless network simulator is able to
simulate all the important aspects of sensor networks built
from Berkeley motes, including the nondeterministic nature
of the wireless communication channel. The simulator can
be downloaded from:
http://www.isis.vanderbilt.edu/projects/nest/downloads.asp

The optimization method was illustrated though examples:
an error surface was generated to determine the optimal
probability and signal strength parameters of a broadcast
service. The fully automatic optimization algorithm was
illustrated by finding the optimal parameter of a spanning
tree formation algorithm.

The proposed optimization method provides a way to design
and optimize distributed middleware services in a highly
nondeterministic environment for a large number of
cooperating intelligent sensors.

ACKNOWLEDGMENTS
The DARPA IXO NEST program provided support for the
work described in this paper.

 REFERENCES
[1] D. Estrin, R. Govindan, S. Kumar, and J. Heeidemann:
“Next Century Challenges: Scalable Coordination in Sensor
Networks,” In Proc. of the Fifth Annual IEEE ACM
International Conference on Mobile Computing and
Networking, pp. 263-270, August 1999

[2] J. M. Kahn, R. H. Katz and K. S. J. Pister, “Mobile
Networking for Smart Dust,” ACM/IEEE Intl. Conf. on
Mobile Computing and Networking (MobiCom 99), Seattle,
WA, August 17-19, 1999.

[3] NIST, “A visionary Smart Space scenario,”
http://www.nist.gov/smartspace/smartSpaces/#scenario

[4] Crossbow, “MICA, Wireless Measurement System
Datasheet,” http://www.xbow.com/Products/Product_pdf
_files/Wireless_pdf/MICA.pdf

[5] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K.
Pister, “System architecture directions for network sensors,”
ASPLOS, Cambridge, MA, Nov. 2000

[6] ANSI/IEEE, “Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications,”
ANSI/IEEE std 802.11, 1999 Edition.

[7] M. Haenggi, “Probabilistic Analysis of a Simple MAC
Scheme for Ad Hoc Wireless Networks,” IEEE CAS
Workshop on Wireless Communications and Networking,
Pasadena, CA, September 2002

[8] W.H. Press (Ed), Numerical Recipes in C++: The Art of
Scientific Computing, Cambridge University Press, 2002.

Figure 6 – Results of the automatic optimization process

http://www.isis.vanderbilt.edu/projects/nest/downloads.asp

 8

Gyula Simon is a Research Assistant
Professor at the Institute of Software
Integrated Systems, Vanderbilt University.
His current research interest includes
digital signal processing and networked
embedded systems. He received a PhD in
electrical engineering from the Budapest
University of Technology and Economics. Contact him at
gyula.simon@vanderbilt.edu.

Péter Völgyesi is a research assistant at
the Budapest University of Technology and
Economics. He participated in the
development of the Generic Modeling
Environment (GME) at ISIS, Vanderbilt
University. His current research interests
include model integrated computing, visual
programming environments and embedded sensors. He
received an MSc in Technical Informatics from the
Budapest University of Technology and Economics. Contact
him at peter.volgyesi@vanderbilt.edu.

Miklós Maróti is a Research Assistant
Professor at the Institute of Software
Integrated Systems, Vanderbilt University.
His current research interest includes
formal specification and analysis of
embedded systems, and active libraries of
middleware components. He received a
PhD in mathematics from Vanderbilt University. Contact
him at miklos.maroti@vanderbilt.edu.

Ákos Lédeczi is a Senior Research
Scientist at at the Institute for Software
Integrated Systems, Vanderbilt University.
His current research interests include
model-based synthesis and simulation of
embedded systems. He received a PhD in
electrical engineering from Vanderbilt
University. Contact him at akos.ledeczi@vanderbilt.edu.

