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Abstract: Molecular dynamics simulators are indispensable tools in the arsenal of chemical engineers and material 
scientists. However, they are often difficult to use and require programming skills as well as deep 
knowledge of both the given scientific domain and the simulation software itself. In this paper, we describe 
a metaprogramming approach where simulator experts can create a library of simulation components and 
templates of frequently used simulations. Domain experts, in turn, can build and customize their own 
simulations and the required input for the various supported simulators is automatically synthesized. The 
web-based environment also supports setting up a suite of simulation jobs, for example, to carry out 
automated parameter optimization, via a visual programming environment. The entire simulation setup – 
including the various parameters, the version of tools utilized and the results – is stored in a database to 
support searching and browsing of existing simulation outputs and facilitating the reproducibility of 
scientific results. 

1 INTRODUCTION 

Molecular dynamics (MD) simulations play a very 
important role in chemical engineering and material 
science. For example, they are used extensively to 
predict and explain the properties and formation of a 
wide variety of complex phases composed of 
grafted- or tethered-nanoparticles (TNP). 
Unfortunately, MD simulators are often hard to set 
up and there is a steep learning curve to acquire the 
knowledge needed to design non-trivial simulations. 
Scientists use a variety of simulators because each 
has its own strengths and weaknesses 
(functionalities provided, efficiency, targeting CPUs 
and/or GPUs, etc). However, the decision which 
environment to use while creating/setting up a 
simulation is one of the first steps of the design 
process and it is often difficult and error-prone to 
switch between them. 

Typical simulations, for example, those of TNPs, 
can be broken down into a few key stages.  First, 

simulations configurations must be initialized, 
including defining the basic building block geometry 
and topology as well as defining the starting 
conditions (e.g., from an energy minimized state 
arranged on a lattice). While these initial 
configurations tend to contain the same basic 
information regardless of the simulation software 
being used, each simulator tends to have a unique 
and incompatible file format. Thus the initialization 
typically takes place outside of the simulator, often 
in a "one-off" code developed by the researcher. 

With a configuration data file generated, a 
simulation equilibration stage is typically 
undertaken. Here, the configuration data file is used 
as a starting condition, and the system is run at a 
given thermodynamic statepoint in order to reach 
steady state. Just as each simulator typically requires 
its own unique file format even though the data is 
essentially the same, each simulator will have its 
own syntax and structure for defining a simulation 
progression. For example, LAMMPS (Plimpton, 
1995) and HOOMD-Blue (Anderson, Lorenz and 



 

 

Travesset, 2008), two common molecular dynamics 
simulation packages, do not use the same scripting 
language to handle the definition of key simulation 
routines, e.g., defining particle interactions, 
thermostats, etc.   Furthermore, as most simulation 
codes are still actively being developed, internal 
components of the codes may change, also requiring 
syntax changes as new versions are released. 
However, in most cases, the basic data, simulation 
progression and parameters are the same regardless 
of the simulator being used. 

Finally, the simulation output is used as input to 
analysis routines, which, like initialization software, 
are independent of the simulator used to generate 
them.  Essential to this stage is that there is a clear 
understanding of what the data represents.  For 
example, if a system configuration file is generated, 
it is important to understand what each particle 
"type" represents and how is it connected/related to 
other particles in the system. 

These stages are repeated over and over again, 
often at different thermodynamic statepoints or for 
slight modifications to the building block design and 
topology.  Each loop, and indeed often times each 
stage, is completed as a totally separate, independent 
process, typically coordinated by an individual or 
team of researchers.  This certainly creates issues 
with human error and makes it challenging to 
encapsulate the entire workflow and toolchain used 
to generate the given results (such information is not 
generally well-preserved in this process). This 
ultimately makes it difficult to archive results and 
workflows as well as to apply optimization 
algorithms or other guided assembly routines which 
might ultimately enable a priori design of materials. 
The problems associated with the current state of the 
art can be summarized as follows: 

• The input data and script format of the 
various MD simulators are different. They can also 
change over time. Scientists need to learn multiple 
languages to be able to create useful simulations. 
Running essentially the same simulation on a 
different simulator requires significant effort. 

• Research groups tend to create their own 
tools to prepare simulations and/or to process the 
result or to automate multiple simulation runs. These 
tools typically remain undocumented and hence, are 
hard to use and are not useful for the scientific 
community as a whole.  

• Raw simulation data are only meaningful in 
the context of the tools that were used to obtain 
them. Furthermore, simulation results can be hard to 
reproduce and verify by third parties without 
knowing the full procedure and tools used to 

generate those results. Over time this contextual 
information can get lost even within the group as 
people leave, new software versions are introduced 
and computers are replaced. 

 
1.1 Approach 

Our goal is to provide a tool that allows for 
capturing, generalizing and structuring the 
knowledge that has been gained by users who 
mastered the design process of MD simulations and 
make it widely available to others to create and run 
their own simulations in an easy to learn 
environment. 

To this end, we have created a web-based 
metaprogramming environment for MD simulations. 
Simulator functionalities, from elementary steps to 
more complex operations, are captured in a 
hierarchical manner by "super users" or 
"metaprogrammers." These are the people who are 
experts in one or more MD simulators (LAMMPS, 
HOOMD-Blue, etc.) and scientific domains (e.g. 
grafting, tribology, rigid body experiments, etc.). 
Essentially, they create building blocks and even 
entire simulation workflows by abstracting out the 
general concepts and capturing the tool specific 
details in code fragments. Simulator-specific 
software synthesizers are then used to assemble the 
required input data files and scripts for a desired 
simulation run. 

Ordinary users who are experts in their own 
field, but may have no deep knowledge of the 
various simulators and do not wish to write their 
own software to initialize MD simulations, can build 
one from the predefined blocks or adopt one of the 
ready-made simulations, modify the default 
parameter values as they see fit, and run the 
simulations using one of the supported tools. 

This solution has the advantage to opening up 
MD simulation to a much wider audience by using 
higher abstraction levels and not requiring 
programming skills while still being future proof. To 
support a new simulator or a new version of an 
existing simulator, only the software synthesizer 
needs to be extended. While this may not be a trivial 
effort, it still is negligible compared to the 
alternative of manually porting the countless 
existing simulations to the new tool.  

The rest of the paper is organized as follows. 
First, we summarize related work. Then we describe 
our metaprogramming approach followed by the 
section on software synthesis. Finally, we present 
the prototype system architecture. 



 

 

2 RELATED WORK 

Within the MD simulation domain, the approach 
most closely related to our work is the Nanohub 
(Nanohub, 2013). The Nanohub has been developed 
as a place for computational nanotechnology 
research, education, and collaboration, however 
most of primarily resources have an educational 
focus. Nevertheless, it provides a web-based 
interface for a variety of simulation softwares.  
However, the interface is somewhat unusual.  Each 
simulator has its own front-end and Nanohub serves 
them up via a java-based VNC (screen sharing) 
client.  The complexity of the variety of simulators 
is addressed through simplified user interfaces: the 
user is only presented with a limited subset of 
options to help guide the simulations. Most of the 
modules have a consistent look and feel, so the 
learning curve is reasonable. Visualization and 
plotting tools are often built into the GUIs. Jobs are 
submitted to clusters and the results copied back to 
the nanohub space. Unfortunately, Nanohub has its 
set of limitations. The VNC-based user interface is 
not very responsive. User-level customization is not 
supported. The user can only change the parameters 
that Nanohub includes in its simplified interface. 
There is no interaction supported between various 
tools: the output of one simulator cannot be trivially 
fed to the input of another. Similarly, the primary 
mode of operation is interactive, since most tools 
have been developed with education in mind, and 
thus submitting a large set of jobs is not easily 
accomplished. 

The Atomic Simulation Environment (ASE) 
(Atomic Simulation Enviroment, 2013) is a Python-
based tool that can connect to many different 
simulation codes as "calculators" you plug into the 
environment.  It has thus far been primarily being 
developed for quantum mechanical calculations and 
is not well suited for most MD simulations. The 
power of ASE lies in its ability to bring in many 
different codes and tools that can be linked together 
in a common interface.  The fact it is Python makes 
it potentially easy to expand and interface with other 
math toolkits, plotting and visualization libraries, 
etc.  However, using ASE involves developing 
Python code and has a steep learning curve for those 
with limited or no programming experience. For 
example, since each "calculator" may in fact be very 
different, the functions required to use a given 
calculator are often unique, so tool integration with 
ASE is not seamless at all.   

MDAPI (MDAPI, 2013) is similar to ASE, 
however developed for biophysical simulation, 

where the interface and computational engines are 
separated.  However, similar to ASE, a steep 
learning curve is required and it no longer appears to 
be actively developed. 

Etomica (Etomica, 2013) is a molecular 
simulation code written in Java, enabling it to be 
easily used and distributed via the web.  While it 
does not allow end users to directly create custom 
simulations via the web, nevertheless, the user can 
run a variety of prewritten modules with custom 
parameter settings, similar to Nanohub. Etomica has 
defined a molecular simulation API, enabling 
simulations to be constructed from "generic" pieces, 
however, the API contains many specifications that 
are related to Java and interactive frontend 
development, rather than generic simulation 
elements. 

In contrast to these existing efforts, our approach 
has the goal to provide an extensible, fully 
customizable, web-based environment where 
simulator experts can build a library of simulation 
components, define how these components are 
mapped to (potentially multiple) simulation 
platforms,  create full simulation templates that can 
be customized and run by domain experts without 
the need to write computer programs. There are a 
number of reports on systems with similar objectives 
in the literature outside the MD simulation domain -- 
e.g. the SAFE framework for automating network 
simulations (Perrone, 2012), or WorMS (Rybacki, 
2011), a workflow framework for modelling and 
simulation in general -- the most important 
distinguishing characteristic of our approach is that 
it does not define a language in which simulations 
are defined. Instead, it provides a means for the 
domain expert to create such languages. These 
languages will then be available for the end users for 
building MD simulations in a simplified manner. 

3 METAPROGRAMMING 
APPROACH 

Typically, simulations consist of the same 
elementary building blocks regardless of the MD 
simulator used. These building blocks represent 
Basic Operations, such as reading or writing a data 
file, resizing the box, setting up integrators or 
evolving the system for a number of time steps. 
Their syntax is tool-specific, but semantically they 
are equivalent. 

An important design approach of our 
metaprogrammable tool is that basic operations are 



 

 

not hard-coded into the system, but are specified by 
the domain experts. A basic operation has an 
identifier, a textual description, zero or more 
parameters with predefined default values, and a set 
of code templates for each supported simulator 
target. The textual description provides information 
for the simulator designer on what functionality the 
basic operation implements. Its semantics are 
captured in the code templates, which describe what 
code snippets will be generated from the basic 
operation and its parameters for a particular MD 
simulator target environment. (By target 
environment we mean a particular version of a 
particular simulator, e.g. LAMMPS Q3, HOOMD-
Blue 0.10.1.) A particular basic operation can have 
code generation templates defined for multiple MD 
simulators. It is the responsibility of the 
metaprogrammer to assure that the basic operation is 
mapped to the same conceptual functionality in all 
supported target environments. 

For each target environment, the 
metaprogrammer must define, through code 
templates, how the basic operation is mapped to 
simulator code. We observed a common pattern 
across several simulators, namely that a conceptual 
operation often does not correspond to one 
contiguous section of code. This is because 
commonly simulators require an initialization before 
the operation is carried out, and a finalization that 
releases resources and does the cleanup after that. 
Therefore, we chose to represent a basic operation 
with three logically related code snippets (init, code 
and finalize). This three-part code representation will 
come very handy on a higher logical level of our 
modeling hierarchy, and is easy to understand by 
metaprogrammers, who are experts in MD 
simulations, but not in programming language 
design.  

Multiple parameters can be defined for a basic 
operation with name, type, default value, 
environment and visibility properties. Parameter 
values can be set or overridden at higher levels of 
the design hierarchy when we are using basic 
operations as building blocks. The visibility attribute 
may be used to mark a particular parameter value as 
private, which means that it cannot be altered later. 

A basic operation, therefore, is a prototype object 
with well-defined structure (parameters) and 
semantics (code templates). To allow for describing 
MD simulations at higher levels of abstraction, basic 
operations can be cloned and grouped together to 
form Simulation Steps. A simulation step may 
override parameter values of the basic operations it 
contains, and may restrict their visibility to prevent 

them from being modified by the simulator 
designers at an even higher level. 

The third, (top) level of the hierarchy groups 
simulations steps together in a well-defined order to 
form a Simulation Specification, representing an 
entire simulation. Parameter values that are public in 
the simulation steps can still be altered by the users 
prior to running the simulation. This hierarchical 
structure is illustrated in Figure 1. 

We generate simulator scripts from the 
simulation specification as follows. As the 
simulation contains simulation steps and steps 
contain basic operations, the simulation 
specifications have a tree structure. Parameter types 
and default values are defined in the leaves, i.e. the 
basic operations, and may be overridden at the 
higher levels of the hierarchy. When traversing the 
tree in the first pass, the code generator propagates 
the overridden parameter values down to the leaves. 
Once the parameter values have been computed, the 
code generator starts to generate the simulator script. 

 

 
Figure 1: Hierarchical representation of simulations. 

For every simulation step, the code generator 
first generates the initialization code of the step by 
substituting the parameter values into the 
initialization code templates of the basic operations 
in the order they are contained. This is followed by 
generating the body of the simulation step in the 
same way, from the respective body code templates 
of the basic operations. Finally, the finalization part 
of the simulation step is generated, traversing the 
contained basic operations in the reverse order. Each 
simulation step is turned into a contiguous block of 



 

 

code, which are concatenated to form the complete 
simulator script, maintaining the ordering of the 
steps within the simulation specification. This code 
generation scheme guarantees that a) allocated 
resources can be used by other operations within the 
same simulation step, that b) resources are properly 
freed when not needed any more. 

 
Figure 2: Program logic representation in a workflow. 

3.2 Server Profiles 

To run a simulation we need to set up specific 
simulators on local servers or use remote systems. 
To achieve this, we maintain a list of server profiles 
where we can store configuration settings (e.g.  
credentials to access the job manager (e.g. PBS), 
number of cores used, etc.) that can be used for 
running simulations.  

3.3 Workflows 

A workflow is the top level entity that connects 
simulation logic with particle data and server 
profiles. The user can load simulations into a 

workflow, define custom parameters, and set up a 
program flow that controls simulation execution. 
This is supported through a visual programming 
approach built on top of Blockly (Blockly, 2013). 
An example workflow is shown in Figure 2. The 
green blocks represent the program logic. In the 
example in the figure, it iterates 11 times and sets 
various variables. The maroon block represents one 
simulation run using a specific simulation called 
"VLE simulation" and a data file, server and 
simulator specified as parameters. VLE simulation 
consists of three simulation steps: Initialize 
simulation, Equilibrate system and Collect data. The 
Equilibrate system step shows how simulation steps 
are further broken down into basic operations, like 
running the simulation for a given number of steps, 
or dumping the current state into a data file. 
Individual parameters of basic operations may be 
viewed or edited directly from the workflow, as 
specified by the visibility rules of their containers 
(basic operations or simulation steps). 

3.4 Particle Description 

One of the main ingredients of simulation inputs is 
the data that includes the structure of particles, 
connections and constraints between them, a 
description of the simulation box and physical 
properties of the particles that are present in the 
system (e.g. position, velocity, electrical charge, 
etc). To model the particles, we provide a web-based 
visual editor that shows a list of atoms that are 
contained by a nanoparticle with all necessary 
properties, and also the connections and constraints 
that are present between the atoms. With such a 
visualizer, particle designers are less likely to make 
mistakes with either particles or bonds. For setting 
up data input files, we need to define a box that will 
contain all our particles and set up a rule how our 
small particle building block will be replicated 
throughout the whole box. The information captured 
via the web-based interface is used to generate the 
actual data files for the various supported simulators. 

4 SOFTWARE SYNTHESIS 

Once the simulation has been designed, it is the 
workflow specification that aggregates all the 
required information:  1) the prototype of the 
particles used in the simulation and the description 
of how it will be replicated throughout the 
simulation box, 2) the specification of the simulation 
with the hierarchy of simulation steps and their basic 



 

 

operations included, 3) the visual program 
describing how the simulation needs to be repeatedly 
run with all parameter values specified by the user 
including the selected simulation engine and finally, 
4) the necessary information about the target server. 

The orchestration engine is an extensible 
interpreter that executes the Blockly code. It can 
process a) control flow blocks (conditional 
branching, loops, function definitions and calls), b) 
arithmetic and c) logic operator blocks, d) list and e) 
string handling blocks, as well as f) variable 
assignment and evaluation blocks. All other block 
types are handled by external interpreter plugins. An 
example of such an extrinsic block is the simulation 
instance block, drawn in maroon in Figure 2. 

When the orchestration engine encounters an 
extrinsic block, it locates the interpreter plugin 
registered for that particular block type, and invokes 
it with the following parameters: 
• the relevant part of the abstract syntax tree, 

including the extrinsic block itself and all of its 
descendants, 

• the actual variable assignments as a key-value 
map, and 

• the current stack frame. 

The interpreter plugin may freely read, write and 
define variables, and optionally, it may place a 
return value on the stack, all of which are then 
available for the orchestration engine after the plugin 
completes. 

Let us look at a particular example. When the 
orchestration engine encounters the simulation 
instance block (drawn in maroon in Figure 2), the 
simulation instance interpreter plugin is invoked. It 
translates the series of simulation steps to simulator 
scripts for the HOOMD 0.10.1 simulator target. The 
parameter values delta_t, temperature, Lz_start and 
Lz_end are taken from the actual values of delta_t, 
T_system, L_initial and L_final in the variable 
assignment map, respectively. The plugin then 
generates the PBS scripts specific to the 
vanderwaals server profile, and submits the job to 
the server. The plugin periodically polls the job 
status from the server. After the job is completed, it 
collects the result data set and returns control back to 
the orchestration engine. 

While the simulation instance block has no 
return value, many other extrinsic block types do 
have one. In particular, blocks that describe data 
analysis (e.g. the ratio of molecules in liquid and 
vapor states) place their return value on the stack 
before they exit. The orchestration engine may 
assign this return value to variables, according to the 
Blockly code describing the control flow. Such 

variables can then be used in conditional branching, 
allowing the workflow programmers to implement 
algorithms that take into consideration the simulator 
outcomes. 

  

 
Figure 3: Synthesis and orchestration. 

Once workflow execution is initiated, the system 
provides real-time feedback on the status of the 
entire process: system synthesis, file upload, job 
status provided by the PBS scheduler (queued, 
running, finished, etc). Once the results are 
available, they are shown on the web interface. 
Figure 3 illustrates the process. 

As the entire process is automated, it frees the 
users from going through this complicated and error-
prone process manually where they would need to 
interact with multiple tools, set up server 
connections, upload/download multiple files, place 
them in the right path, set up simulator 
configurations, and maintain simulator-generated 
result files. In addition, the system provides a well-
structured and searchable backend for simulation 
setups and results. This enables searching for 
existing results potentially saving significant time 
and CPU cycles. Also, the repeatability of 
simulations is ensured because all setup information 
down to the versions of tools used are saved along 
with the end results. 

5 SYSTEM ARCHITECTURE 

From technical point of view we had to make several 
decisions to create a useful and easy-to-use 
application. In the very beginning, we decided to use 
web-based technologies for the following reasons: as 
we mentioned before, toolsets that are used by 
chemical engineers are custom-made, hard to setup 



 

 

and organizing results of simulations are not solved 
yet. A desktop-based solution would have multiple 
downsides such as the fact that all users have to 
setup all the tools they need to use for a simulation, 
which is not easy because these common-used tools 
are not always platform-independent, need custom 
dependencies (as they need to be compiled on the 
target machine). On the other hand, users have to 
have access to their workstations always to be able 
to work. Having a web-based solution, necessary 
tools have to be installed and maintained (version 
refresh, etc) only on the hosting servers. 

A web-based solution also provides a higher 
level of usability: most of the tools are command-
line tools and have a long learning curve to get 
familiar with them, while on the web we can provide 
an intuitive interface that is easy-to-use for users 
who do not have any knowledge about certain tools. 

The second design decision involves the 
technology choices for easy data retrieval and 
manipulation, while having a structured backend 
system for archiving. A natural choice is to use a 
database. An object database fits naturally with the 
hierarchical representation of the simulations 
utilized in our approach. Also, storing and retrieving 
JSON-like documents/objects are supported by 
NOSQL databases quite well. 

Another key decision is the type of web-server to 
utilize. As most of the server-side tools the system 
needs to integrate are UNIX-based, a Microsoft-
based solution (i.e., Internet Information Server - 
IIS) seemed suboptimal. Node.js, a relatively new 
technology provides good performance and is very 
flexible with interacting external tools. Its 
programming language is Javascript which is also 
used on the client-side as a de-facto standard for 
web-based interactive user interface design. This 
choice also saves development time as it enables 
sharing code between server- and client-side. 
Node.js relies on reusable packages called node 
modules that provide certain functionalities or 
custom APIs for external tools and also help 
structure the application. 

Figure 4 shows the prototype system 
architecture. On the client side the application runs 
in the browser and downloads/ synchronizes data 
from the server. The widely used library, 
Backbone.js that follows the Model-View-Controller 
pattern, and require.js that provides a convenient 
way to modularize and structure the source code are 
utilized. The web-client has separate modules for 
simulation design, workflow creation and particle 
definition. A copy of the server-side code generator 
is also included here for debugging and educational 

purposes. Super users who develop simulation 
components can immediately get feedback on what 
the simulation script corresponding to their current 
design will look like. This helps them debug their 
design and also assists in finding bugs in the code 
generator itself. Regular users can also utilize this 
service to see the how their simulation designs 
decisions will manifest themselves in the generated 
code. 

 

 
Figure 4: System architecture. 

A handy tool helping both of these activities is 
the ability of the code generator to output pseudo 
code in the web client. This pseudo code is easy for 
human readers to comprehend. It shows the structure 
of the code that corresponds to the modeled system 
without the complexity of the specific syntax of the 
various target tools. Figure 5 shows the pseudo code 
generated for a portion of the workflow depicted in 
Figure 2. 

 On the server side multiple node.js instances are 
included: a proxy that routes requests to the proper 
instance to serve different data or files. The 
Orchestration module includes the execution engine 
that is responsible for interacting with local and 
remote workers (e.g., PBS servers, Simulation result 
repositories, etc.). The server-side architecture is 
inherently scalable. To separate certain parts or 



 

 

functionalities (e.g. switching to a stand-alone 
database server, creating a second file server for raw 
simulation output files, etc.) only the configuration 
settings need to be modified. 

 

 
Figure 5: Example generated pseudo code. 

A custom node module interacts with PBS: it 
uses ssh and scp to run commands and to 
upload/download files, monitors queued/running 
jobs and interacts automatically when certain job 
status changes happen. As we use node.js on the 
server-side, a natural transition from the 
conventional one-way communication method 
(RESTful interface) to a two-way communication 
method (through WebSockets) proved very useful: 
users can be notified about any job status (or data) 
changes without refreshing a page or polling the 
server. This makes the user interface interactive, and 
easy-to-use and provides up-to-date information 
while eliminating most common errors when users 
interact with the domain-specific toolchain. 

6 CONCLUSIONS 

The technology described in this paper has the 
potential to revolutionize how molecular dynamics 
simulations are carried out by the scientific 
community. The framework makes it possible to 

capture the deep knowledge of the few individuals 
who are intimately familiar with the various 
simulation tools frequently used in the domain and 
make it available at a much higher level of 
abstraction for the wider community through a user-
friendly, intuitive web interface. We envision that a 
rich library of simulation modules and templates will 
be developed. In addition, the results of MD 
simulations will also be archived and made available 
in a fully searchable form. The results will be tightly 
coupled with the exact simulation setup that was 
used to create it. This will make it easy for people to 
find existing results, recreate them if necessary or 
build upon them in their own research. Today such a 
collaborative infrastructure simply does not exist. 
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