
Modeling Agent Negotiation

J. Sprinkle, C. P. van Buskirk and G. Karsai
Vanderbilt University
Nashville, TN, 37203

Abstract

A Multi-Agent System (MAS) is a cooperation focused
implementation of multiple programs (agents) that
coordinate with each other to attempt to converge on the
solution to one or more tasks. Agent negotiation is the
convergence upon this solution through compromise and
communication. Currently, the implementation of agents is
highly dependent on the programming language, and any
perspective to the negotiation methods agents use to
achieve goals and tasks are drawn after the implementation
phase of the development. A better solution to the
development of agent interaction is to model the negotiation
interaction on a high level, and produce from that model the
implementation. Model-Integrated Computing (MIC) and
Model-Integrated Program Synthesis (MIPS) are two tools
which may be used toward the implementation of such a
method.

1 Introduction to Agents

Before any discussion of agents, there should exist a
somewhat elementary understanding of what an agent is,
and what capabilities an agent has. It is almost impossible
to find one particular definition of the term “Agent.” A
quick reference to several documents could yield as many
definitions as there are documents, not to mention
documents that examine the fact that there is no hard and
fast definition [6][7][12]. Fortunately, this paper is
concerned with the highest levels of agent interaction, so
the set of attributes of an agent for this topic is fairly small.

1.1 Abstract Layers of an Agent

In the substance of an agent, several conceptual layers of
information exist [1]. The agent knows about things (its
domain, consisting of objects defined in terms of its
ontology), can perform tasks, can communicate, etc. For
this paper, the most important aspect of agent existence is
in its communication with other agents. All other levels are
implementation details.

More importantly, the world outside an agent
communicates with it through its communication layer.

This implies that the agent itself is responsible for
interpreting messages it receives, and reacting to them.

Figure 1 - Conceptual drawing of an agent [1]. The internal
workings of the agent are accessed by the outer layer
through API calls.

Figure 1 shows a conceptual view of an agent at the highest
level of abstraction. The communication portion of this
outer layer is the most important with regard to negotiation.
Coordination and legacy integration are important for the
statically determined behavior of the agent, and thus are not
considered or used during negotiation. This view of an
agent is consistent with that set forth by the Foundation for
Intelligent Physical Agents (FIPA) [5].

1.2 Target Application

Although there exist standards for the format of messages
in agent communication [5], much of the implementation in
general is nonstandard. Not only are the internal workings
of an agent unspecified, but they are implemented in
different languages. Even with the acceptance of the FIPA
notion that agents must have communication, coordination,
and legacy integration aspects, there still exists no standard
for their implementation.

However, many agent systems, though they differ in
implementation, are conceptually the same. This is the
solution point: that by conceptually modeling a process, the
output can be an implementation. The MIC and MIPS tools
have been proven to provide such solutions
[8][9][10][11][14], and are the tools used in the solution of
this problem.

In a nutshell, the idea of MIPS is to define concepts of the
domain, then model the problem using these concepts.
After the problem is modeled, then a custom program

Internal Layer(s)

Communication

Coordination
Legacy
 Integration

interprets the model, and produces the compilable code that
implements the solution to the problem.

The Generic Modeling Environment (GME), developed at
Vanderbilt University, was the modeling environment used
to define the domain concepts, or paradigm. The
negotiation paradigm allowed GME to become a domain-
specific modeling environment in the agent negotiation
domain. GME was also used to construct the actual models
of the negotiation.

The objective of negotiation modeling is to model the agent
negotiation domain well enough such that as many target
environments as possible can use the same domain
concepts, and then to create a custom program for each
target environment. In theory, one would be able to
generate solutions for any agent environment with the same
paradigm. To properly understand the negotiation domain,
therefore, let us examine aspects of agent behavior and
negotiation.

2 Agent Behavior

Negotiation between agents is captured in the behavior of
the agent with regard to stimuli. In some respects,
therefore, the concepts of agent behavior are a subset of the
concepts of agent negotiation, and thus behavioral concepts
must be identified in order to be able to model them. The
behavior of an agent may be viewed conceptually in two
categories: what it does internally, and how it responds to
external stimuli.

2.1 Intra-Agent Behavior

Modeling the behavior inside the agent is outside the scope
of this paper. First of all, each target application’s
definition of an agent has different internal capabilities, so
by that argument it would not be possible to produce
implementations for all target applications because those
individual applications would have to be included in the
modeling environment.

However, the need to define internal behaviors during
negotiation is recognized and accounted for. One solution
is to define a concept within the modeling environment that
allows the modeler to input custom implementation code.
While this removes the ability of the MIPS environment to
produce a solution for any agent implementation from this
instance of models, the modeling environment itself is still
implementation independent. This limitation is discussed
further in section 5.

2.2 Inter-Agent Behavior

With regard to negotiation, the behavior of an agent while
dealing with other agents is the more interesting of the two
types of behaviors.

Agents communicate with each other through messages,
and the sending and receiving of these messages are the two
main concepts of inter-agent behavior. Two generally
accepted standards for messaging are KQML [4] and the
FIPA-ACL [5]. Unfortunately, these standards provide
only the conceptual structure of the message, and not the
actual implementation syntax of the text string. However,
they do specify certain performatives and parameters. For
this particular modeling environment, the FIPA-ACL is
implemented as the standard for describing message
sending and receiving.

3 Agent Negotiation

Now that the domain concepts of internal and external
behavior are defined, the next step in defining the model is
to expand the set of behavior concepts with the concepts of
the actual process of negotiation. The bolded names in
parentheses denote the name by which the modeling
paradigm refers to these concepts.

3.1 Negotiation State

One way to model negotiation (or for that matter, any type
of behavior) is with a state machine. Before continuing on
this line of discussion, it is important to differentiate
between the state of the negotiation, and the state of the
agent. The negotiation state is determined by the last
message received and its content, while the agent state is a
function of the internal values of the agent’s variables.

There are several implementations of agent frameworks that
use state machines to model behavior [1][2][15], but none
of these actually provide an agent platform independent
solution: they either solve the problem for that particular
agent environment, or give a general mapping with no
ability to provide implementation.

Therefore, a state machine framework was designed that
used as states and transitions the concepts from intra-agent
and inter-agent behavior. The framework follows the
concept of a Mealy state machine [16], with the states being
the concept of waiting for a message, and the transitions
being the concept of sending a message or performing some
action within the state of the agent.

3.2 Possible Negotiation Transitions (Actions)

The agent action which furthers the negotiation is the
sending of a message (send). The message sent by the
negotiating agent is directly related to the last message
received (which likely gave some indication as to the next
state of the negotiation) and the current internal state of the
agent. The attributes of such an action are limited to the
attributes of a FIPA-ACL message, which are available in
[5].

The concept of modification of the internal state of the
agent (action) is an elusive concept to model in general.
The most generic model of this action is to allow direct
input of code that will translate into a subroutine or method
of the agent (implemented through its API) that returns a
state indication variable which is then used to make a
change in the state of the negotiation. Each action must
return some value (defined at model building time), which
is returned from the subroutine and used to determine the
path to take next.

3.3 Possible Negotiation States (Waiting)

The only concept of waiting in agent negotiation is that of
waiting on the receipt of a message (receive). Arguably,
more sophisticated agent implementations may obey
interrupts from the underlying agent architecture, but we
will assume that this is handled through the API and is
transparent to the negotiation state machine.

It is possible to wait on as many types of messages as a
send message action could send (in accordance with the
FIPA-ACL). The transitions extending from the wait
message therefore have the same properties as a send
message action. There is no current way to visualize the
properties of the connections without a dialog box (due to a
GME limitation that will no be present in the new release),
so the names under the “Receive” atoms serve as
mnemonics for the connection types.

3.4 Roles In Negotiation Protocols

There are two distinct roles in any interaction protocol: that
of initiator, and that of responder. Take for instance, the
simple protocol of two persons who meet on the street, say,
Jon, and Mary.

 Jon: “Hello, how are you?”
 Mary: “Fine. How are you?”
 Jon: “Just fine.”

Then, Jon and Mary resume their paths, or decide to
converse further. Jon and Mary both knew when this
portion of the conversation was over, because they had a
notion of whether they initiated or responded to the
conversation. Consider the following protocol, without this
knowledge.

 Jon: “Hello, how are you?”
 Mary: “Fine. How are you?”
 Jon: “Just fine. How are you?”
 Mary: “Fine. How are you?”

Jon: “Just fine. How are you?”
 Mary: “Fine. How are you?”

There would be no end to the conversation. This example,
albeit quite simple, illustrates the need for negotiating
parties to understand their roles in the ongoing protocol.

4 Implementation

Now that all the concepts of agent negotiation and behavior
as it pertains to negotiation are recognized, it is time to
formally define them in terms of a model. A modeling
paradigm was developed which embodies these concepts
and defines a visual language for the expression of the
negotiation state machine. For a legend of the modeling
concepts used and their representative icons, see Figure 2.

Figure 2 - Legend of the parts used when building the model
of a protocol. The Send, Receive, Action and DefaultAction
parts all play states or transitions in the state machine,
while the Succeed and Fail parts play roles in the exit value
of the protocol.

4.1 Example Protocol: Contract Net

The contract net protocol is a high-level protocol for
communication among conceptually distributed objects
[13]. In the contract net (CN), the initiator issues calls for
proposal (cfp’s), and the responder decides whether to issue
return bids in the form of proposals. This negotiation
continues until the initiator decides that the proposal is
acceptable, or that the proposal is unacceptable, and that it
will no longer accept new proposals. For a graphical
representation of the initiator and responder, please refer to
Figure 3 and Figure 5.

Figure 3 - A model of the initiator role of the contract net
protocol. Attributes of the parts determine the types of
messages they send or receive.

The default action icon plays the role of determining which
of the states is the initial state of the negotiation state
machine for the initiator/responder. The default action can
point to either an action, or a state.

Note the “EvalProposal” icon, and that connections go to
the “accept” and “PrepareFirstCfp” icons. Those connect-
ions bear names that directly correspond to the values set in
Figure 4.

Figure 4 - The exit connections of the “EvalProposal” action
contain values that correspond exactly to the possible return
values from this segment of code. The code is specified in the
API of the agent framework (a portion of the dialog was
omitted for brevity).

Figure 5 - A model of the responder role of the CN protocol.

4.2 Verification Methods and Constraints

In theory each receive transition in one role (either initiator
or responder) should have a corresponding send in the other
role. Otherwise, the protocol could end up in a state from
which it would have no exit.

One solution to this problem is to allow action matching on
a higher level. Figure 6 shows the initiator and responder
roles and the high level expectations that one role has from
the other. It is the responsibility of the modeler to take
advantage of this feature of the modeling environment; it is
not strictly enforced.

The reason for this is that it is not an error to have receives
that do not match to a send. For example, this particular

implementation of CN requires a message from the initiator
agent to itself (an inform message), and therefore there is
no matching send from the responder. Hence, this ability to
match aids in omission errors, but does not restrict the
modeler’s ability to custom craft the agent negotiation
behavior.

However, model constraints are enforced by GME, and are
expressed when the paradigm is defined. One of the
constraints of this modeling environment is that exactly one
default action is allowed per initiator/responder, and it must
connect to one and only one atom. Another is that a send
atom must have exactly one connection coming out of it (to
ensure that the state machine is deterministic).

Figure 6 - Matching the sends and receives in the high level
views of negotiation roles.

4.3 MIPS Output and Model Interpreter

As discussed in the Introduction, the objective of modeling
agent negotiation using MIPS is to visually lay out the
negotiation, and produce from that visual language
compilable code for an agent implementation. Just as text
based programming languages have a compiler that
translates the code into executable binary files, the
graphical modeling language for this paradigm has a similar
compiler, called an interpreter. This interpreter examines
the context and syntax of the models and then produces the
output desired by the interpreter writer. Interpreter writing
is done through a text language by accessing the API of the
GME.

For this particular paradigm, the output of the interpreter is
compilable code files that describe the agent negotiation
process. While many different agent packages may be
modeled using the same paradigm, a different interpreter
must be written for each agent package. This is because the
syntax and semantics of the model are interpreted
differently by each agent package. For example, one agent
package may format all of its messages with XML, while
another may define its own tag based language. By putting
the syntax definition in the interpreter, the modeler need
only define the semantics.

The particular target application for which this solution was
tested was the Zeus Agent Building Tool-Kit [3]. An
interpreter was written and tested for the protocol paradigm
which outputted Java files that implemented the interfaces
necessary for a Zeus negotiation protocol. In the CN
example, two Java classes were created, one for the
initiator, and one for the responder. In order to incorporate
the CN protocol in the agent, the agent must be configured
(using the agent platform tools, in this case Zeus) to
interface with the classes. Once the classes are compiled
and “plugged-in” to the agent definition, then the
construction phase is complete.

5 Future Work

Modeling the negotiation when dealing with the inter-agent
interaction gives the ability to model the high level
interactions of an agent easily. However, some subtle
behaviors of a negotiation are still left in textual form. The
major one of these is the concept of a negotiation strategy.
Currently, negotiation strategy is defined by using the
action icon, and typing in the code that implements it.
“EvalProposal” is an example of an icon in the initiator role
of the CN that represents a strategy.

The negotiation strategy is intra-agent behavior that
determines by how much an agent may increase its bid, or
whether an agent is willing to sell some of its resources in
order to obtain enough money to purchase some other good.
In the future, the concepts of the negotiation strategy
domain (e.g. increment-bid, linear-increase, exponential-
increase) would be a welcome addition to the negotiation
modeling paradigm.

Another future item is the ability to produce code for any
agent environment from the same instance of models. One
solution to allow this is to create a generic API that would
execute standard methods in the target agent domain. Then,
all actions could be coded using this API instead of the
agent platform’s API, and each agent platform interpreter
could implement the interface defined by the API.

6 Conclusions

Both MIC and MIPS yield benefits when used to create
negotiation protocols. When considering the basic
contributions of MIC, visualization allows for easy
documentation, and also makes it easy for a domain expert
(whether a programmer or not) to lay out his concept of
negotiation without ambiguity. However, the MIPS
offerings are more numerous, and fall into three major
contributions.

The first is that the programmer is not forced to think “in
the small” through constructing software state machines,
and looking up return types, etc. because he may visually

lay out the model of the negotiation, and produce from it
the necessary code using the interpreter.

Secondly, the modeler is given the tool to see the
interaction of the initiator and responder roles, which can
prevent the development of a protocol that has an
inescapable state.

Thirdly, if several negotiation protocols were developed for
a particular agent package, and the agent programmer
wanted to also implement the protocols for another agent
environment, then the same modeling paradigm could be
used to do it. This allows the programmer to write code
only once (for the interpreter), which then would produce
the state machine in the target environment. After
reconfiguring the internal actions of the negotiation in
accordance with the API of the target environment, the
models would be ready for complete generation.

Acknowledgements

This work was sponsored by the Defense Advanced
Research Projects Agency, as part of the Autonomous
Negotiating Teams project, under contract #F30602-99-2-
0505.

References

[1] M. Barbuceanu, M. S. Fox, “Capturing and Modeling
Coordination Knowledge for Multi-Agent Systems,”
International Journal of Cooperative Information
Systems, Vol 5, No. 2, pp. 275-314, 1996.

[2] L. Bölöni, D. C. Marinescu, “A Multi-Plane State
Machine Agent Model,” Fourth International
Conference on Autonomous Agents, Jun. 1999.

[3] J. Collis, D. Ndumu, H. Nwana, L. Lee, “The Zeus
Agent Building Tool-Kit,” BT Technology Journal,
Vol. 16, No. 3, pp. 60-68, Jul. 1998.

[4] T. Finin, et al., “Specification of the KQML Agent
Communication Language,” The DARPA Knowledge
Sharing Initiative, External Interfaces Working Group,
1992.

[5] Foundation for Intelligent Physical Agents, “FIPA 97
Specification,” Part 1, Ver. 2.0, Oct. 1998.

[6] S. Franklin, A. Graesser, “Is It an Agent, Or Just a
Program? A Taxonomy for Autonomous Agents,”
Proceedings of the Third International Workshop on
Agent Theories, Architectures, and Languages,
Springer-Verlag, 1996.

[7] N. R. Jennings, M. Wooldridge, “Software Agents”,
IEE Review, pp. 17-20, Jan. 1996.

[8] G. Karsai, F. DeCaria, “Model-Integrated On-line
Problem-Solving Environment for Chemical

Engineering,” IFAC Control Engineering Practice,
Vol. 5, No. 5, pp. 1-9, 1997.

[9] G. Karsai, J. Sztipanovits, S. Padalkar, C. Biegl,
“Model Based Intelligent Process Control for
Cogenerator Plants,” Journal of Parallel and
Distributed Systems, pp. 90-103, 1992.

[10] E. Long, A. Misra, J. Sztipanovits, “Increasing
Productivity at Saturn,” IEEE Computer Magazine,
August, 1998.

[11] A. Misra, G. Karsai, J. Sztipanovits, “Model-
Integrated Development of Complex Applications,”
Proceedings of the Fifth International Symposium on
Assessment of Software Tools, pp. 14-23, Pittsburgh,
PA, June, 1997.

[12] H. Nwana, “Software Agents: An Overview,”
Knowledge Engineering Review Journal, Vol. 11, No.
3, pp. 205-234, Nov. 1996.

[13] R. G. Smith, “The Contract Net Protocol: High-Level
Communication and Control in a Distributed Problem
Solver,” IEEE Transactions on Computers, Vol. C-29,
No. 12, Dec. 1980.

[14] J. Sztipanovits, G. Karsai, “Model-Integrated
Computing,” IEEE Computer, pp. 110-112, April,
1997.

[15] Y. Tahara, A. Ohsuga, S. Honiden, “Agent System
Development Method Based on Agent Patterns”,
Proceedings of the 21st International Conference on
Software Engineering, ACM Press, pp.356-367, 1999.

[16] J. Wakerly, Digital Design Principles and Practices,
2nd edition, p. 468, Prentice Hall, 1994.

