
A Domain-Specific Visual Language For
Domain Model Evolution

Jonathan Sprinkle, Gabor Karsai
Vanderbilt University

Abstract:

Domain-specific visual languages (DSVLs) are concise and useful tools that allow the

rapid development of the behavior and/or structure of applications in well-defined

domains. These languages are typically developed specifically for a domain, and have a

strong cohesion to the domain concepts, which often appear as primitives in the

language. The strong cohesion between DSVL language primitives and the domain is a

benefit for development by domain experts, but can be a drawback when the domain

evolves – even when that evolution appears insignificant. This paper presents a domain-

specific visual language developed expressly for the evolution of domain-specific visual

languages, and uses concepts from graph-rewriting to specify and carry out the

transformation of the models built using the original DSVL.

1. Introduction

The concept of the domain-specific language has existed since the first computer

languages were designed [1]. The expense and relative infancy of the computer required

efficient code with a small footprint – thus many programs were fine-tuned in assembly

code. When languages such as COBOL and FORTRAN emerged as a specific tools to

build solutions to a particular type of problem (business, and mathematics, respectively),

many programmers were skeptical that the assembly code generated from these abstract

programs would be able to satisfy the speed and size requirements. However, the

improved abstraction level of these languages provided outweighed the relative

inefficiency of the generated code, since programs could be created and debugged much

more efficiently.

Many years later, the idea of the domain-specific language remains nearly identical

to that which emerged with the first languages: an improved abstraction of the problem

allows for the rapid creation and maintenance of an application for a particular domain if

the abstraction is sufficiently clear to a domain expert (i.e., someone who is familiar with

the domain but not necessarily a programmer). The domain-specific language is then

translated into some form more usable by the domain-specific runtime system, for

example a configuration file, interface, or perhaps even code.

The domain-specific visual language (DSVL) is a special kind of domain-specific

language that provides a visual programming interface. The advantages of a visual

interface are plentiful, but in particular a DSVL allows someone who is a domain expert

and also basically understands how to use a computer to use the visual language to create

applications for the domain. As such, the DSVL is traditionally a restrictive language

that consists only of domain concepts (an ontology), and also has well-formedness rules

(constraints) that evaluate the domain models (or “programs”) created in the DSVL. By

restrictive, we mean that the unique ways that n types of visual objects may be associated

with each other is limited to a relatively small number when compared to the total

number of unique associations possible with n types, (n(n-1)/2).

The DSVL is restrictive for two main reasons. One, the smaller the possible

constructs in the language, the more straightforward it is to learn the language and create

a translator(s) that generates the domain artifacts. Two, the language uses the domain

context and inherent semantics of domain primitives to define the semantics of language

constructs. In this way, behavior that might be difficult or time consuming to express in a

general purpose language could be concisely represented in one domain primitive. A

restrictive language provides the user of the language with only those association and

objects that are relevant to the domain, and permits their association only when that

association has a defined semantic meaning.

As the early domain-specific languages evolved they retained much of their original

syntax and semantics, and extended the ontology to enhance the language rather than

modify the syntax or semantics of existing portions of the ontology. Consider languages

such as COBOL and FORTRAN, which business and engineering professionals preferred

for their relative ease in expressing problems in the business and mathematics domains

(respectively). The domains did not change radically – the reasons for changes to the

languages were driven by usage requirements such as a more convenient syntax, or

additional features. Thus, the existing programs could (with a few exceptions for

deprecated syntaxes) still work with the new language compilers.

Evolution of a DSVL is similar to a textual language when the ontology and

semantics are extended rather than modified. Drawbacks to a DSVL with a restrictive

syntax become apparent when the domain with which the DSVL is associated evolves.

As opposed to “convenience” modifications which can retain the previous syntax and its

semantics, domain-driven modifications can result in,

• changes to the semantics of an existing syntactical pattern,
• removal of a syntax pattern from the language, or
• replacement of a syntax pattern with another syntax pattern that will assume

the existing semantics of the existing pattern.

Thus, the evolution of the DSVL immediately places into question the validity of any

existing domain models (the “programs” of the DSVL). While many (or perhaps all) of

the existing domain models may be syntactically correct, it is possible that their

semantics in the new DSVL will not be what was intended when the models were

originally built. This discrepancy between the original – or intended – meaning and the

meaning after the DSVL is evolved is shown visually in Figure 1.

Figure 1. The meaning of the final executable system is in jeopardy when domain models are
modified for use in the evolved DSVL.

This paper describes a language that serves to mitigate the problems encountered

when evolving a DSVL. Many of the techniques used to perform this evolution stem

from research of graph transformations and graph rewriting. Some background on this

research and some techniques used to perform graph transformations are provided in the

following section. Once graph transformations have been introduced the formal

definition of domain model evolution is defined. We then describe our domain evolution

language in detail, including its model of computation, syntax structure, and fundamental

properties. Once the language is described, we provide a canonical example for domain

evolution that can be solved with our language. Finally, we present our conclusions.

DSVL

Domain model

Executable
system

describes

describes

describe

(1) The evolution of the domain-specific language
(2) The evolution of the domain model

Metamodeling-language

(1)

=?

DSVL

Domain model’

describes

describe

Executable
system

describes

(2)

DSVL

Domain model

Executable
system

describes

describes

describe

DSVL

Domain model

Executable
system

describes

describes

describe

(1) The evolution of the domain-specific language
(2) The evolution of the domain model

Metamodeling-language

(1)

=?

DSVL

Domain model’

describes

describe

Executable
system

describes

(2)

Metamodeling-language

(1)

=?=?=?

DSVL

Domain model’

describes

describe

Executable
system

describes

DSVL

Domain model’

describes

describe

Executable
system

describes

(2)

2. Background

The models created using a DSVL – referred to throughout this paper as domain

models – can be represented using a tree structure. The evolution of those models to

conform to a new version of the DSVL can be seen as a rewriting of this tree to another

tree as required by the new DSVL. For a better understanding of the basic theory of

graph transformations, a brief review of the area is provided.

Graph rewriting is a useful tool for solving abstract problems that have a well-

defined visualization method. Graph rewriting has been used to solve compiler theory

problems [2][3], formalization of basic mathematical theory [4], not to mention graph

theory and algorithm problems [5].

More recently, and to the subject of semantic mappings in high-level languages,

graph rewriting (in the form of graph transformations) has been used as a sort of

universal semantic description language that allows the specification for transformation

from one syntax pattern to another. This approach appeared in [6] as a semantic

extension for UML. Lately, graph grammars (the syntax used to express graph

transformations) have been suggested as an implementation platform for the Model

Driven Architecture (MDA) [7][8].

→ → ?
?

?
??

?
(a) (b)

Figure 2. (a) A pattern and its transformation rule. (b) The desired transformation is sometimes
difficult to specify unambiguously.

Graph rewriting takes two forms: replacement – where sub-graphs are replaced with

sub-graphs (and consequently, the rest of the graph remains unchanged), and recreation,

where every node and line in the graph are created from scratch.

Unfortunately, rules defined to carry out graph transformations, while simply drawn

up, can be quite difficult to implement. A simple rule, say to replace a triangle with a

bowtie can be ambiguous in its desired implementation. Figure 2(a) shows a rule that

might describe the rewriting of a graph element from triangle to bowtie. However,

Figure 2(b) shows the six possible outcomes of the graph as presented. Should all of

these outcomes be written? Only some of them? Only ones that meet certain criteria? A

graph translation language should be specific enough that such ambiguities are not

present upon translation.

Fortunately, much research exists in the area of graph transformation, and

specifically in graph transformation languages. Well-formed arguments for the benefits

of several types of graph rewriting approaches are found in [9][10][11][12]. There are

also tools that claim to have devised a universal solution to the graph rewriting problem

[13][14]. Most of these tools operate on a particular source graph (called the input graph)

and produce an output (or target) graph. Nodes are traversed and matched based on

syntax patterns entered into the graph-rewriting engine, and the output graph is produced

based on the mapping between the syntax patterns and the desired output graph pattern.

In addition to such mature specifically graph oriented tools such as PROGRES

[10][11][12], there are also tools that are not specifically graph oriented, but can perform

rudimentary graph rewriting operations. One example tool is the Extensible Stylesheet

Language (XSL) with its XSL Transformation script language [14].

3. Domain Evolution: Definition

Domain evolution as a problem is recognizable through the satisfaction of certain

criteria. If any of these criteria are not met, then a solution such as the one presented in

this paper is not necessary, as it will be needlessly complicated. It is important, therefore,

to correctly identify the scope of the problem.

3.1. Scope

The following subsections define the five required aspects of a problem such that it

is solvable through domain model evolution. If any of these portions is missing, then it is

not practical to perform domain evolution with the DSVL in question; a low-level

method should be sought.

3.1.1. Language syntax

There exists a well-defined syntax for the possible constructs in the DSVL.

3.1.2. Dynamic and static semantics

Without semantics, domain models are nothing more than illustrations. In order for

system modeling to be effective there must exist a semantic definition that:

• ensures the correctness of domain models, and
• transforms the domain models into a semantic domain.

The correctness of domain models is governed by static semantics. These are

essentially the well-formedness rules of the domain, although they may also be

expressions of contextual differences in syntax (i.e., although certain model constructions

may be permissible given the syntax, they are not allowed in certain contexts).

The style and form of the executable models is governed by the dynamic semantics,

which are implemented in the DSVL’s translator that performs the mapping from domain

model (the language of the DSVL) to the semantic domain. The implementation of the

dynamic semantics is known as the semantic mapping (see [16] for more information).

Note that the executable form (i.e., domain artifact) need not necessarily be executable

machine code, but can take the form of C++/Java files, SQL database constraints, XML

schemas, etc. Basically, the models should be transformed into some artifact that is

useful to the domain users.

3.1.3. Domain models

The domain models are produced using the DSVL, according to its language syntax.

Since one of the advantages of a model-based approach to computing is that the models

can be evolved throughout the life of a system (thus evolving the software that runs the

system), it is advantageous that the domain models be available for modification by the

DSVL.

However, any changes to the language syntax will change the DSVL. In this case, a

new DSVL might not provide the correct interface to modify the domain models, thus

preventing the evolution of those domain models to reflect the new system. It is

important, then, to transform the domain models into some form that is usable by the new

DSVL, for the purposes of model-reuse.

3.1.4. Updated language syntax

After a domain has been modified in some fundamental way, the metamodel that

describes that domain must be changed to reflect this fundamental evolution. This results

in the updated syntax.

3.1.5. Updated dynamic and static semantics

Because of the complexities of domain model storage, an updated language syntax

means that domain models could be in danger of being invalid. By invalid, we mean that

the existing types may no longer exist, or that the domain concepts may have changed

since the original creation of the model, thus changing the semantics of the models when

compared with the intent of the original modeler. Since the type of a domain model is

encoded in it when it is stored, retrieving that domain model from storage could be

difficult if its type no longer exists, or has been modified significantly.

The degree to which the language syntax was changed when it was updated is

usually indicative of the difficulty in updating the domain models. Once the domain

models are updated to reflect the new language syntax, then another obstacle emerges:

the need to update the static semantics and translator.

Since the translator (the executor of the dynamic semantics) operates on domain

models, it is usually defined to operate on types of models (i.e., through the metamodel).

Any changes to the metamodel, therefore, require changes to the translator. If no changes

are required for the translator, then the translator was not written correctly for the original

language syntax.

This also holds true for the static semantics, with certain exceptions. Modifications

to the metamodel may not require changes to the static semantics, if the modifications

involved the addition or deletion of types that were/are not subject to context-specific

syntax constraints. If any types subject to static semantics were added or deleted, then

the static semantics of the DSVL should be updated to reflect the changes.

3.2. Semantics versus syntax

Syntax and semantics are quite often distinguished as two different, yet related,

aspects of any language (visual and modeling languages included). While it is not

difficult to convince someone that these two concepts are not identical, their relationship

to each other during the model evolution solution is not quite as clear-cut. In order to

explore this further, let us examine the meaning of a semantic versus a syntactic

evolution. The following definitions and formalizations will apply,

Let δ be a domain
Let B be the boolean result set

B ≡ {true,false}
Let O be a set of object types (an ontology)
Let Y be a set of syntax rules between objects o1,o2,...on ∈ O
Let Sδ be a set of semantic mapping functions to a domain, δ,

S ≡ { s(o) | o∈O }
s ≡ { f(o) : O → Ωδ }

Ωδ ≡ { δ-object, undefined, false }
 Where a δ-object is an artifact in the δ domain.
Let Cδ be a set of static semantics (constraints) for the domain,

δ,
C ≡ { c(o) | o∈O }

c ≡ { f(o) : O → B }
Let α be a paradigm, a quadruple of <O,Y,C,S>
Let α’ be the new paradigm
Let M be a model database (set of domain models)
Let M’ be M evolved to conform to a new paradigm
Let m be any original domain model contained in the set M
Let m’ be m evolve to conform to a new paradigm, contained in the

set M’

Syntactic Transform: transforms a model, m, in the model database M

into an evolved model, m’, such that m’ is syntactically correct
according to the δ syntax rules of a new paradigm

TrSYN ≡ { f(m): M → M’ | transform m into m’ }
(Definition 1)

Syntax Evaluator: evaluates a model, m, in the model database M

against the set of syntax rules, Y, that exist within paradigm
α,

Syn ≡ { f(m,α) : M → { B } }
(Definition 2)

Semantic Evaluator: executes the set of semantic functions for a

model, m, in the model database M, according to the domain
semantics, Sδ, of a paradigm α

Sem ≡ { f(m,α) : M → Ωδ | s(m) }
(Definition 3)

Static Semantic Evaluator: evaluates the static semantics of a model,

m, in the model database M, according to the static semantics C,
of the paradigm α,

SemSTAT ≡ { f(m,α) : M → { B } }
(Definition 4)

Semantic Transform: transforms a model, m, in the model database M

into a model, m’, such that m’ is correct according to the 1. δ

semantics, 2. δ static semantics, and 3. δ syntax rules of a new
paradigm

TrSEM ≡ { f(m) : M → M’| transform m into m’ }
(Definition 5)

3.2.1. Syntactic evolution

This is a crude method for solving domain evolution. Basically, this method will

modify the existing domain models sufficiently (either through deletion, or a type of

search-replace algorithm) such that the models obey the syntactic rules of the new

language. When this technique is used, we say that a complete syntactic evolution has

taken place. One drawback to a syntactic evolution (i.e., without taking semantics into

account) is that the new data models will not necessarily reflect the intended semantics of

the old domain. In order to model the system correctly, a domain user must modify the

new data models (in the new language) using her domain knowledge; in essence,

manually modeling the system all over again. A formalization of syntactic evolution is as

follows:

Syntactic Model Evolution: transforms a model database, M, into an
evolved model database, M’, such that M’ is syntactically
correct in a new paradigm, α’,

 Preconditions:
 ∃m ∈ M s.t. Syn(m, α’) == false
 and
 ∀m ∈ M Syn(m, α) == true

 MMSYN ≡ { f(M,α,α’) : M → M’ | ∀m∈M
 if Syn(m,α’) == true
 m’ = m
 else
 m’ = TrSYN(m)
 M’.insert(m’)
 }

 Postconditions:
 ∀ m’ ∈ M’ Syn(m’, α’) = true

 (Definition 6)

The main advantage to this technique is that if the required modifications are type-

based (or if the system is in development stage, and the old domain models were only for

internal testing, and are not an important artifact), then it is not necessary to perform a

complete semantic evolution. Just as a trade-off analysis is required to measure the

benefits of creating a DSVL versus the time required to develop one, it pays to perform a

similar analysis to justify the creation of a syntactic evolution – based on the amount of

changes in each model, and the number of models that need to be changed.

3.2.2. Semantic evolution

This is the most sophisticated method for solving model evolution. Semantic

evolution requires that the meaning of the old domain models is preserved after the

transformation, and that the new domain models conform to the entire set of static

constraints required in the new DSVL. When these two needs are satisfied, we say that a

complete semantic evolution has taken place. A formal notation of this requirement is as

follows (see the definitions in 3.2.1):

Semantic Model Evolution: transforms a model database, M, into an
evolved model database, M’, such that M’ is syntactically
correct, and semantically correct in a new paradigm, α’,

 Preconditions:
 ∃m ∈ M s.t. Sem(m, α) != Sem(m, α’)
 or
 Sem(m, α’) is undefined
 or
 SemSTAT(m, α’) == false
 and
 ∀m ∈ M Syn(m, α) = true

 MMSEM ≡ { f(M,α,α’) : M → M’ | ∀ m ∈ M
 if Sδ(m,α’)==Sδ(m,α)
 m’ = m
 else
 m’ = TrSEM(m)
 M’.insert(m’)
 }
 Postconditions:
 ∀ m’ ∈ M’ Syn(m’, α’) == true
 and

 SemSTAT(m’, α’) == true
(Definition 7)

Satisfaction of all of the requirements for semantic evolution is not a trivial task.

The domain knowledge of the human programmer creating the evolution algorithm must

be extensive, as the meaning of some syntax in the old domain models must be accurately

transformed into the appropriate syntax in the new domain models. This is in stark

contrast to a syntactic evolution, where out-dated syntaxes can be deleted or restructured,

with no thought given to the former or future semantics of the domain models. By

closely examining Definitions 6 and 7, several things are apparent:

1. the postcondition for syntactic evolution is a postcondition for semantic
evolution (i.e., semantic evolution occurs only if syntactic evolution occurs),

2. semantic evolution has additional constraints that speak of semantics of
domain models,

3. syntactic evolution does not mention semantics at all,
4. no matching of semantics occurs in the postconditions of semantic evolution,
5. syntactic evolution includes preconditions not found for semantic evolution

(namely, syntactic mismatch).

Out of these four, the last two items are the most interesting. The first of these –

semantics between the domains do not necessarily match – seems somewhat counter-

intuitive. After all, why would one perform a semantic model evolution if the semantics

were not to be preserved? The answer is that it is not always necessary (or even

desirable) to preserve the same semantics, but the resulting semantics should always be

correct in the new domain. Thinking back to the reasons for domain environment

evolution, they revolve around evolution of the DSVL versus evolution of the domain.

When the DSVL evolves separately from the domain it is generally preferred to preserve

exact semantics of the output models m’. However, when the domain evolves along with

the DSVL, then the semantics of the output models should match the new domain, and

should be preserved only as much as the TRSEM deems appropriate.

For the last point, the fact that a syntactic mismatch need not be in place for a

semantic evolution to take place is, perhaps, perplexing at first. More thought, however,

reveals that just because data types match does not mean that data semantics do.

Consider, for instance, the well-publicized mistake in the Mars spacecraft that failed

based on misunderstanding of the units of given data (meters versus feet). The semantics

of the data were important, but there was not a problem in the syntax (e.g., reading a

floating point value).

Since so many factors must be considered, and a great number of syntax patterns

might need to be examined, semantic evolution requires a more significant time and

training investment to carry through correctly. However, for significant amounts of data

models, the reward of developing a transform of old data into useful new data might be

worth the cost of creating the semantic evolution algorithm.

3.2.3. The link between syntax and semantics in evolution

Although syntax and semantics are frequently distanced both in definition and

discussion, their cohesion in the domain evolution process is tighter than in most other

software applications, because the syntax and semantics are inputs to the domain

evolution process. The reason for this link is that a semantic evolution cannot take place

unless a syntactic evolution has occurred.

This claim is best justified by a consideration of its negation (i.e., it is possible to

perform a complete semantic evolution without a complete syntactic evolution). If this is

true, then there could exist a domain model that, once evolved, is a semantically accurate

model in the domain. However, if syntactic evolution has not occurred, then there would

exist syntactic problems that would prevent the new domain model from being valid in

the new DSVL. Thus, it is not possible to perform a semantic evolution without

performing a complete syntactic evolution (i.e., a semantic evolution subsumes a

syntactic evolution).

The link between syntax and semantics is further strengthened by the following

claim: that if a complete semantic evolution is performed, then the process by which the

semantic evolution is specified must be defined as a syntactic evolution. While this

might seem extraordinary, consider how the semantics of a language are defined – in

terms of the syntax of that language. Since the old and new DSVLs are two languages,

then the domain model evolution may be cast as a pattern-based transformation, where

syntactical patterns in the old language are transformed into a semantically accurate new

syntax.

4. The Domain Evolution Language

The domain evolution language is a domain-specific visual language for the domain

of domain evolution. The domain evolution domain requires that the preconditions found

in Definitions 6 or 7 are met, and that there exists a DSVL that meets the criteria set forth

in Section 3.1. The overall use of this language, including its basic syntax and semantics,

model of computation, and the objective of its interface are described in the following

sub-sections.

4.1. Objective

The objective of the domain evolution language is very simply to provide an

interface that is specialized for describing an algorithm to transform domain models from

one DSVL to another. Once the user understands the process of evolving the domain

models from the DSVL to its evolved self (i.e., the algorithm for domain evolution) then

the user should be able to enter that algorithm with a language friendly to the concepts of

domain model evolution. The way this is achieved in the language is to provide the user

with the ability to create mappings from pieces of the existing DSVL’s metamodel

(syntax patterns) to the evolved metamodel. The advantages to this approach are that,

• knowledge of the tools is more important than knowledge of the

transformation language,

• mappings are described with elements directly from the domain,

• the solution is metamodel driven, and

• abstracts the format of the data storage from the problem.

The intention, then, is that if a user is familiar with metamodeling concepts, and

understands the algorithm to transform from one DSVL to its evolved self, then with very

little guidance that user can create a domain evolution transformation that will evolve the

domain models for user in the evolved DSVL.

4.2. Ontology

The domain evolution language allows the domain-specific abstraction of algorithms

for the translation of one graph to another. However, a precept of the language is that the

two DSVLs that are the focus of the evolution are more similar than they are alike.

Therefore the language itself is geared toward describing how different things are

equivalent, or how things should be removed or created in certain circumstances. The

overall definition for the evolution is created in a Transformation (as shown in Figure 3).

A Transformation contains an OldClassDiagram and a NewClassDiagram (the

existing and evolved DSVL metamodels), which serve as the libraries from which

patterns are extracted to define the semantic mapping. Most of the ClassDiagrams used

during domain evolution are in UML form, and this is currently supported in our domain

evolution language. However, the language is extensible to other metamodeling

approaches. As the Transformation is an abstraction of an algorithm, it must also contain

a sequence of actions, as well as flow control; these are found in the set of sequenced

Transforms contained in the Transformation.

Transformation

NewClassDiagram

OldClassDiagram

Transform

+Delete
PatternItem

+CreateNew
ConsequenceItem

*

*

Sequenced

*

Mapping

*
*

*

Figure 3. Simplified metamodel of the domain evolution language.

Each Transform is made up of PatternItems (items from the existing metamodel) and

ConsequenceItems (items in the evolved DSVL metamodel). The PatternItems specify a

syntax pattern that – if matched – would be transformed according to the Mapping

between the Pattern and Consequence items.

4.3. Semantics

The meaning of the sequence of Transforms and of the mapping between Patterns

and Consequences is required before domain evolution algorithms can be described. The

next section (4.4) describes the evaluation of the Transforms, while the semantics of the

patterns and mappings is given in the current section.

4.3.1. Describing patterns

The most complex – and powerful – portion of the language is the constructs that

describe the patterns and mappings of the DSVL evolution. Based on the syntax of a

metamodeling language, the patterns are created as object diagrams using as objects the

classes in the metamodel. An example construct is shown in Figure 4.

Figure 4. A pattern specification within a Transform. Patterns from the existing DSVL metamodel
are colored blue, whereas Consequences (from the evolved DSVL) are shown in red.

This particular pattern describes a parent-child relationship between the parent P (of

stereotype ModelProxy) and the child C (of stereotype AtomProxy). As a sidenote, all

objects used to describe Patterns or Consequences will have the stereotype [Type]Proxy,

as they are proxy representations of the actual objects in the metamodel; the Type of the

object in the metamodel is what is used to create the pattern meaning. This particular

pattern can be semantically interpreted in two equivalent ways, as shown below.

1. There exists an P:Model with 1..* childen C:Atom
2. There exists a C:Atom with parent P:Model

It should be noted that the containment connection between the parent and child is

navigable in the domain evolution language. While not all DSVLs support this, the

domain evolution language operates regardless of these concerns, because of its ability to

use the domain models as data, rather than domain representations, and it operates

outside the normal bounds of the created objects.

4.3.2. Describing mappings

The mappings, which provide the low-level transform from one type to another,

follow a “pattern implies consequence” form. The mappings are associations between

patterns and consequences, or attributes of a pattern or consequence, and are formed from

a fundamental set of operations, in similar fashion to the fundamental set of string

replacement operations (i.e., insert, concatenate, delete, replace). The determination of

the fundamental set of replacement operators for models is a significant problem in its

own right. Textual replacement has only one “association” – position – while object

replacement in a graph can have as many associations as are permitted for that type of

object by the metamodel. For the purposes of this paper, that set of operators is limited to

Create, CreateWithin, Becomes, and Delete (analogous to insert, concatenate, replace

and delete for textual manipulation).

Create – a unary association of a Consequence object. This specifies that if the

Pattern is matched, then this object is created. There must exist a

CreateWithin association to determine the parent of this object.

CreateWithin – a binary association between a Consequence object (child) and

another object (parent), which details the parent of the Consequence object

that is to be created. The parent object need not be a Consequence object. It

is an error to specify a circular dependency with CreateWithin associations

between Consequence objects.

Becomes – a binary association between a Pattern object (source) and a

Consequence object (destination). The semantics is that the source will be

removed from the tree, and replaced with the destination. Neither the source

or destination objects may participate in a Create or Delete association.

Delete – a unary association of a Pattern object. If this object is matched, it will be

deleted. Any children of this object will not necessarily be deleted, but will be

promoted up one level of ancestry in the tree unless specified otherwise.

4.4. Model of Computation

The model of computation provides an exact knowledge of the behavior of a

Transformation to the user.

4.4.1. Sequences of Transforms

The domain evolution algorithms must be deterministic, and therefore the model of

computation for sequenced Transforms operates on the input domain models with the

first Transform and continues on through until there are no further Transforms to apply.

After each Transform, a complete set of domain models exists, and is passed on to the

next Transform. Thus, the exact semantics of the Transform sequence shown in Figure 5

is,

 Let a Transform be a function, T(d), such that, d’ = T(d)
 Let A be a Transform
 Let B be a Transform
 Let M be the input, then

 M’1 = A(M)
 M’2 = B(M’1)
 M’ = M’2
 Or, more simply,
 M’ = B(A(M))

Figure 5. A sequence of Transforms, A and B, with an initial transition.

4.4.2. Matched Patterns

The mapping from one object to another operates en masse rather than hierarchically.

That is, the morphing of the objects from Pattern to Consequence may be considered an

atomic action that occurs simultaneously on all patterns in the file. Thus, matches made

that result in the deletion of an object will not affect matches where that object is used for

context, and not deleted. If any features that require the state of the input objects to

change are needed, then Transform sequences should be used to guarantee it.

5. Example: Port Specialization

A canonical example of the requirement for domain evolution is found in the

specialization of a domain concept into two or more derived concepts. For example,

consider the two DSVL metamodels shown in Figure 6. In the domain of signal

processing, there are individual signal processors that may be joined together through

their Ports via Connection associations. However, the domain language evolved by

requiring that there be exactly two different types of Port, Input and Output, and

furthermore, that Input and Output ports may be connected only in accordance to certain

static semantics, namely,

• Any Port may not be the source of a connection where the
destination of the connection is itself (previously existing
constraint)

• An Input may not be the source of any connection in which the
destination of that connection is an Output

• An Output may be the destination of any connection in which the
source is an Input

• An Input may be the source of a connection in which the
destination is an Input provided that the parent ProcessSignal of
the destination is contained by the parent ProcessSignal of the
source

• An Output may be the destination of a connection in which the
source is an Output provided that the parent ProcessSignal of the
source is contained by the parent ProcessSignal of the
destination

Figure 6. The original DSVL metamodel (left) and the evolved DSVL metamodel (right).

Simply said, Input and Output ports may be used to pass along the input or output

signals of parent or child processes, but should never connect the same type if the

ProcessSignals exist on the same level of hierarchy.

5.1. Algorithm

In this case, we wish to maintain the exact semantics of the domain models when

they have been evolved, so we assume that the original modeler intended that the Port

objects behave as if they were the Input or Output ports in the evolved DSVL. Given the

existing constraints, and the evolved constraints, it is possible to write an algorithm to

convert any input domain model into its equivalent evolved domain model, while

maintaining the intention of the original modeler. The algorithm is as follows:

1. Transform all Ports that will become Input ports connected to other Input ports
2. Transform all Ports that will become Output ports connected to other Output ports
3. Transform all remaining Ports that will become Input ports
4. Transform all remaining Ports that will become Output ports

This algorithm is fairly simple, but must be divided into at least two portions, based

on the fact that any port may be either an Input or an Output if it is the source of a

connection, due to the ability of ports to pass along signals from ProcessSignal models on

another level of hierarchy. Since this sort of control flow exists, the algorithm is divided

into four sequenced Transforms, as shown in Figure 7.

Figure 7. The sequence of Transforms to evolve the domain models.

The domain evolution language provides interfaces to generate any type of graph

rewriting language that is convenient to the end user. In this case, the domain models are

all stored in an XML format, which tailors nicely to the generation of XSL stylesheets to

perform the evolution. Each Transform in the sequence above will generate an XSL

document, which will be called in sequential order on the output artifact of the previous

Transform output, until the final document – suitable for use in the new DSVL – is

produced.

5.2. Transforms and Output XSL

Only two Transform contents need be shown, since the other two will be the dual

(i.e., for Outputs instead of Inputs). The first of these is the contents of the

HierarchyInputs Transform, which is shown in Figure 8. This represents the algorithm

step number 1. Notice that the parent of the source Port is the grandparent of the

destination Port. The output XSL is given in Figure 9.

Figure 8. Contents of the HierarchyInputs Transform.

 <xsl:template match="atom[@kind='Port']">
 <xsl:variable name="Becomes62081992_focus_Port62075208" select="current()"/>
 <xsl:variable name="Becomes62081992_ProcessSignal62073296"

select="current()/parent::model[@kind='ProcessSignal']"/>
 <xsl:variable name="Becomes62081992_Port62074080"

select="current()/parent::model[@kind='ProcessSignal']/child::model[@kind='ProcessSignal']/child::ato
m[@kind='Port']"/>

 <xsl:variable name="Becomes62081432_Port62075208"
select="current()/parent::model[@kind='ProcessSignal']/parent::model[@kind='ProcessSignal']/child::at
om[@kind='Port']"/>

 <xsl:variable name="Becomes62081432_ProcessSignal62073296"
select="current()/parent::model[@kind='ProcessSignal']/parent::model[@kind='ProcessSignal']"/>

 <xsl:variable name="Becomes62081432_ProcessSignal62075856"
select="current()/parent::model[@kind='ProcessSignal']"/>

 <xsl:variable name="Becomes62081992_ProcessSignal62075856"
select="current()/parent::model[@kind='ProcessSignal']/child::model[@kind='ProcessSignal']"/>

 <xsl:variable name="Becomes62081432_focus_Port62074080" select="current()"/>

 <xsl:choose>
 <xsl:when

test="current()[@id=//connection[child::connpoint[@role='dst']/@target=$Becomes62081992_P
ort62074080/@id]/child::connpoint[@role='src']/@target][$Becomes62081992_focus_Port6207
5208][$Becomes62081992_ProcessSignal62073296][$Becomes62081992_ProcessSignal6207
5856][$Becomes62081992_Port62074080]">

 <xsl:call-template name="PortBecomesInput_62081992"/>
 </xsl:when>
 <xsl:when

test="current()[@id=//connection[child::connpoint[@role='src']/@target=$Becomes62081432_P
ort62075208/@id]/child::connpoint[@role='dst']/@target][$Becomes62081432_focus_Port6207
4080][$Becomes62081432_ProcessSignal62075856][$Becomes62081432_ProcessSignal6207
3296][$Becomes62081432_Port62075208]">

 <xsl:call-template name="PortBecomesInput_62081432"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>
 <xsl:template name="PortBecomesInput_62081432">
 <xsl:element name="atom">
 <xsl:apply-templates select="@*"/>
 <xsl:attribute name="kind">Input</xsl:attribute>
 <xsl:attribute name="role">Input</xsl:attribute>
 <xsl:comment>transformed using template 'PortBecomesInput_62081432'</xsl:comment>
 <xsl:apply-templates select="node()"/>
 </xsl:element>
 </xsl:template>
 <xsl:template name="PortBecomesInput_62081992">
 <xsl:element name="atom">
 <xsl:apply-templates select="@*"/>
 <xsl:attribute name="kind">Input</xsl:attribute>
 <xsl:attribute name="role">Input</xsl:attribute>
 <xsl:comment>transformed using template 'PortBecomesInput_62081992'</xsl:comment>
 <xsl:apply-templates select="node()"/>
 </xsl:element>
 </xsl:template>

Figure 9. XSL Output for the HierarchyInputs Transform.

Each Pattern object is given its own context in relation to the objects being

transformed through the Becomes association, and this context is shown in the

xsl:variable that is created for each member of the Pattern context. When each node is

parsed in the input file, it is passed through the set of filters to determine whether it is

matched. If so, it is passed on to become an Input; if not, it is copied as-is.

Figure 10. Contents of the DoInputs Transform.

The other Transform contents that bear noting are those of the DoInputs Transform,

shown in Figure 10. In this portion of the algorithm (step 3) the destination of the

Connection and the containment context of the Port are irrelevant: only the type of the

destination matters. Therefore, no further context is required for the Transform pattern.

The XSL output for the DoInputs Transform is much simpler, but omitted for brevity.

5.3. Domain Models – Before and After

Consider the set of models in Figure 11. The upper portion of the figure shows the

high level of the models, and the lower portion is the contents of ProcessSignal1, which

contains another level of ProcessSignal. Note that the contents of ProcessSignal1 satisfy

the hierarchy portion of the algorithm, where Input and Output ports may be connected to

others of the same type. Also, note that the name “Port” on the objects is an instance

name, not a type name (type in this domain is denoted by icon).

Figure 11. An original domain model in the SignalFlow domain.

Figure 12. The evolved domain model in the evolved SignalFlow domain.

After processing the models in Figure 11 with the domain evolution algorithm

created in the earlier part of the section, the output models are ready for use in the

evolved domain. Figure 12 shows the evolved domain models. Once again, it is

important to note that the icon with blue filling and white arrow represents Input type,

and white with red arrow and border represents Output type (contains a border). The

example evolved perfectly, and satisfies all of the syntactic and semantic constraints of

the evolved domain.

5.4. Other Approaches

Most of the other approaches to domain evolution are general purpose graph

rewriting tools such as [6][8][13]. Note that all of these approaches provide a particular

method to transform from one domain to another. However, this approach is more

appropriate in several ways. First, it is aimed at transforming between domains that are

nearly identical. Thus, no 1-1 mapping is required, as in [6]. Second, the interface is

focused on the metamodel concepts rather than abstractions that are mapped by the

domain evolution modeler onto domain concepts, as in [13]. Once again, the domain-

specific approach of the solution presented in this paper decreases the amount of domain-

independent specification required to do the evolution.

6. Conclusions

The problem of domain evolution is encountered whenever changes are made to any

domain specific language – including visual languages. Given that languages are easier

to create – and thus modify – it is important to provide a language designed specifically

to aid in the task of the evolution of models from one DSVL to its evolved self. The

language presented in this paper provides such an interface, and is convenient to use from

the perspective of a metamodeler, while powerful enough to create syntax patterns in any

form, since the pattern language is derived from the metamodeling language.

Furthermore, it is important to note that the language does not provide any magic for

creating the transformation algorithm, but instead provides an interface that is most like

the algorithms created in such an instance.

7. References

[1] S. Lohr, The Programmers who Created the Software Revolution – Go To, Basic Books,

2001.

[2] S. Johnson, “A Portable Compiler: Theory and Practice”, Proceedings of the 5th ACM

Symposium on Principles of Programming Languages, pp. 97-104, January 1978.

[3] M. Ganapathi, C. Fischer, J. Hennessy, “Retargetable Compiler Code Generation”, ACM

Computing Surveys, Vol. 14, No. 4, pp. 573-592, December 1982.

[4] F. W. Lawvere, S. Schanuel, Conceptual Mathematics: A First Introduction to Categories,

Cambridge University Press, Cambridge, UK, 1997.

[5] D. West, Introduction to Graph Theory, 2nd edition. pp. 289-90. Prentice Hall, Upper

Saddle River, NJ. 2001.

[6] D. H. Akehurst, “Model Translation: A UML-based specification technique and active

implementation approach”. Ph. D. Thesis. University of Kent at Canterbury, United

Kingdom. December 2000.

[7] J. Bézivin, N. Ploquin, “Tooling the MDA framework: a new software maintenance and

evolution scheme proposal”, OOPSLA, 2001: Workshop on Engineering Complex Object-

Oriented Systems for Evolution, Tampa Bay, FL, 2001.

[8] A. Agrawal, T. Levendovszky, J. Sprinkle, F. Shi, G. Karsai, “Generative Programming via

Graph Transformations in the Model-Driven Architecture”, OOPSLA - Workshop on

Generative Techniques in the Context of Model Driven Architecture, Seattle, WA,

November 2002.

[9] D. Blostein, A. Schürr, “Computing with Graphs and Graph Rewriting”, Software – Practice

and Experience, 6th Proceedings in Informatics, pp. 1-21, 1997.

[10] A. Schürr, “Specification of Graph Translators with Triple Graph Grammars”. University of

Aachen, AIB 94-12.

[11] A. Schürr, “Adding Graph Transformation Concepts to UML’s Constraint Language OCL”,

Electronic Notes in Theoretical Computer Science, Amsterdam, 2000.

[12] G. Engels, R. Heckel, “From Trees to Graphs: Defining the Semantics of Diagram

Languages with Graph Transformation”, ICALP Satellite Workshops, Proceedings in

Informatics, pp. 373-382, 2000.

[13] A. Schürr, “Programmed Graph Replacement Systems”. In Handbook of Graph Grammars

and Computing by Graph Transformation, Vol. I: Foundations, pp. 479-546. World

Scientific, Singapore, 1997.

[14] The Extensible Stylesheet Language, http://www.w3.org/Style/XSL/.

[15] “Turing Machine Markup Language”, http://www.xml.com/pub/r/1036

[16] D. Harel, B. Rumpe, “Modeling Languages: Syntax, Semantics, and All That Stuff. Part I:

The Basic Stuff”, Technical Report MCS00-16, Mathematics & Computer Science,

Weizmann Institute Of Science, Rehovot, Israel.

