
Detection and Estimation of Multiple Fault
Profiles Using Generalized Likelihood Ratio

Tests: A Case Study

Joshua D. Carl ∗ Ashraf Tantawy ∗ Gautam Biswas ∗

Xenofon D. Koutsoukos ∗

∗ Institute for Software Integrated Systems, Vanderbilt University,
Nashville, TN 37235 {carljd1, tantawam, biswas,

koutsoxd}@isis.vanderbilt.edu

Abstract: Aircraft and spacecraft electrical power distribution systems are critical to overall
system operation, but these systems may experience faults. Early fault detection makes it easier
for system operators to respond and avoid catastrophic failures. This paper discusses a fault
detection scheme based on a tunable generalized likelihood algorithm. We discuss the detector
algorithm, and then demonstrate its performance on test data generated from a spacecraft power
distribution testbed at NASA Ames. Our results show high detection accuracy and low false
alarm rates.
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1. INTRODUCTION

Faults and degradation in dynamic systems can be at-
tributed to different fault profiles that have different
temporal characteristics: (1) abrupt persistent faults, (2)
abrupt intermittent faults, and (3) incipient faults. Two in-
teresting challenges that we discuss are: (1) how to extend
detection schemes to include abrupt intermittent faults,
and (2) how to combine abrupt, incipient, and intermittent
fault detection into an integrated on-line detection scheme.

This paper develops a general framework that enables on-
line detection of all three fault profiles using an integrated
detector. The detector employs change detection theories
that apply to systems with stochastic behaviors attributed
to uncertainty in the model parameters and measurement
noise. In our work, we assume measurement noise can be
modeled by Gaussian distributions with zero mean. We
use these assumptions to obtain closed form expressions
for the estimators and a recursive expression for the fault
detector [Tantawy, 2011]. We study the performance of
this detector on the ADAPT power distribution system at
NASA Ames.

Section 2 of this paper presents a brief overview to the
case study based on the ADAPT testbed at NASA Ames.
Section 3 presents the conceptual framework for the de-
tection problem, section 4 describes our approach and the
algorithms we have implemented for online detection of
faults, and section 5 presents the results of our case study.
The final section presents our conclusions.

2. CASE STUDY OVERVIEW

We perform a case study of the fault detector on data
generated from the NASA ADAPT-Lite Electrical Power
System (EPS), as part of the DXC’10 diagnosis competi-
tion. A complete description of the DXC’10 competition

can be found in [Kurtoglu et al., 2010] and the algorithm
evaluation metrics in [Kurtoglu et al., 2008].

The EPS supplies power to spacecraft systems and pay-
loads. The EPS schematic in Figure 1 shows a battery
connected to a load bank through a set of switches, cir-
cuit breakers and an inverter. Since the dynamics of the
inverter (a fast switching system that converts DC voltage
to AC) was not a factor in this competition, the rest of
the system represents a power source that is connected to
resistive loads that can be reconfigured using the switches.
Therefore, the system behavior is static, and a fault in any
of the system components produces an identical profile in
the related sensor data.

The competition was sponsored by researchers at NASA
Ames, and was designed to mimic a live situation so
all detection algorithms were required to support on-line
analysis. Each detection algorithm was evaluated using
metrics such as the fault detection time, accuracy, and
false alarm rate. A fast and accurate diagnosis and fault
isolation was a requirement to do well in the competition.

3. PROBLEM FORMULATION

3.1 Fault Detection Architecture

Fig. 2. Fault detection system.

Our observer-based approach for fault detection is illus-
trated in Figure 2. The physical system being monitored
and the observer receive the same input signals, and the
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Fig. 1. NASA Electrical Power System Schematic Diagram.

system output, i.e., the actual system measurements, are
labeled as y[n], and the observer estimates are labeled as
ŷ[n]. The system residual vector is computed as y[n] −
ŷ[n] = r[n] at timestep n. The fault detector uses hypoth-
esis testing methods to determine if the computed residual
signals imply a fault in the system. The fault detector has
to be robust to measurement noise, system disturbances
as well as model inaccuracies. The output of the fault
detector is a vector of binary variables, b, representing the
fault signature for the system, and a set of parameters,
θ, that describe the change in the residual signal. A non-
zero value for bi implies that measurement i is deviant
from its nominal value. Since the relation between a fault
and corresponding measurement values are algebraic, the
detector also provides an estimate for the residual pa-
rameters relevant to the fault type. The output of the
detector is given to fault isolation and fault parameter
identification units (not shown) for the completion of the
fault processing. The design of the fault isolator and fault
parameter identifier are discussed in [Carl et al., 2012].

In this paper we focus on the design of the fault detector.
The detector is required to accomplish the following tasks:
(1) decide if there is a change in the nominal behavior of
the system, (2) declare whether the existing fault is an
abrupt persistent, abrupt intermittent, or incipient, and
(3) estimate the relevant residual parameters.

3.2 Fault Hypothesis

We assume that the signals generated by the physical
system have added independent and identically distributed
Gaussian Noise, represented as w[n], with zero mean and
an unknown variance. The variance can be calculated with
knowledge of nominal system behavior and the sensor
measurements before a fault occurs in the system.

When a fault occurs in the system starting at tinj , the
system measurements can be defined as:

y[n] =

{
s[n] + w[n] t < tinj
sfi [n] + wfi [n] t ≥ tinj

. (1)

Where s[n], the nominal signal value at time step n, is
known from available system behavior data, or is estimated
using an observer scheme [Basseville and Nikiforov, 1993]
and w[n] represents the noise in the measurement that is
typically attributed to the sensor. After the fault occur-
rence, the signal value is linked to faulty system behavior
and is expressed as sfi [n] for n ≥ tinj , with a correspond-
ing noise component that is given by wfi [n]. In our work,
we assume that the measurement noise is unaffected by

system faults, therefore wfi [n] = w[n]. Taking this into
account, the detection problem can be expressed as:

H0 : r[n] = w[n]

Hi : r[n] = ∆sfi [n] + w[n] i = 1, 2, . . . ,m (2)

where H0 is the null hypothesis of no fault, Hi is the
alternative (fault) hypothesis, m is the number of faults,
and ∆sfi [n] = sfi [n]− s[n] represents the deviation in the
measurement as a result of the fault.

We formulate the detection problem for three different
fault profiles. The detector needs to estimate a variety of
parameters for each fault type, and the detection problem
for each fault is defined by the fault profile and the set of
parameters associated with the profile.

Fig. 3. Idealized fault profiles. Noise is removed from the
residual signal for clarity.

3.3 Fault Profiles

Abrupt Persistent The abrupt persistent fault profile,
shown in Figure 3A, is characterized by the nominal signal
changing by an unknown positive or negative additive fixed
value. For an abrupt persistent fault the detector needs to
estimate the fault time of injection, tinj , and the change
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in the magnitude of the signal, A, caused by the abrupt
fault. The residual signal for the fault is expressed as:

r[n] = A+ w[n]. (3)

Abrupt Intermittent An abrupt intermittent fault pro-
file, shown in Figure 3B, is modeled as a repeated abrupt
persistent fault that resets itself after a random time
interval. The fault persistence time, ∆tfi, and the inter-
arrival time, ∆tni, for each fault repetition are drawn from
exponential distributions of exp(µf , tf ) and exp(µn, tn),
respectively. The change in residual signal magnitude, A,
caused by the fault is drawn from a Gaussian distribution
with mean µA and variance σ2

A. The detector needs to
estimate the fault time of injection, tinj , the mean residual
signal magnitude, µA, mean persistence time for the fault,
µf , and mean inter-arrival time for the fault, µn.

The residual signal for the fault can be expressed as:

r[n] = AZ[n] + w[n], (4)

where the function Z[n] is a binary random process repre-
senting the presence or absence of the fault, defined by:

Z[n] =

{
0 fault absent

1 fault present
. (5)

Incipient An incipient fault profile, shown in Figure 3C,
is a linear change (positive or negative) in the sensor signal.
Incipient faults can be approximated by a linear profile,
because they evolve slowly in time. For an incipient fault
the detector needs to estimate the time of injection, tinj ,
and the slope of the signal, M . The residual signal for the
fault can be expressed as:

r[n] = Bn+ w[n] (6)

where B = MTs, M is a constant representing the slope
of the drift, and Ts is the sampling period.

4. TECHNICAL APPROACH

The detector architecture is shown in Figure 4. The
detector receives inputs of a residual data set, r. It detects
faults using a Generalized Liklihood Ratio (GLR) test
statistic, where the unknown parameters are replaced by
their respective Maximum Likelihood (ML) estimates. If
there is a fault the detector outputs the change in the
residual magnitude, ∆A, and the fault injection time,
tinj , to the data vector catalog. The catalog tracks the
individual inputs over time and stores them as vectors. The
fault profiler uses the vector of residual magnitudes, Â, to
determine the type of fault. The type of fault, residual
magnitude vector, and the vector of fault times, T̂, are
given to the residual parameter estimator, which estimates
the relevant parameters for the fault, θ1. The parameters
and the change of the residual magnitude are passed out
of the detector.

It is important to note a key characteristic of our detector
implementation. After a fault is detected, the detector
resets and uses the estimated residual signal magnitude,
Â, as its new baseline and starts sampling from this reset
point, ignoring the residual data it was given previously.
This allows each fault type to generate its own fault profile,
which is used to tell the different fault types apart.

4.1 Detector Derivation

The majority of this derivation is taken from [Basseville
and Nikiforov, 1993]. We designate the Log Likelihood
Ratio (LLR) for observations r from time j up to time
k by:

Skj (θ1) =

k∑
i=j

ln
pθ1(r[i])

pθ0(r[i])
(7)

where θ0 and θ1 are the set of parameters that character-
ize the distributions of observations, pθ0 and pθ1 , before
and after the change, respectively, and r[i] is the signal
residual. pθ0 is assumed known from the nominal system
behavior data and is a Gaussian distribution with zero
mean and variance σ2

n, while pθ1 is assumed unknown. We
know σ2

n from the nominal system data. In addition, the
change time is unknown to the detector. These parame-
ters are substituted by their ML estimates, and the test
statistic is given by:

gk = max
1≤j≤k

sup
θ1

Skj (θ1). (8)

The detection time, ta, is the minimum value of k at which
gk > h, where h is the detector threshold.

ta = min

{
k| max

1≤j≤k
Skj ≥ h

}
(9)

The conditional ML estimate for the change time is the
value of j at which the maximum value of gk is reached.
Therefore, the conditional ML estimate for the change
magnitude and time are given by:

(t̂inj , θ̂1) = arg max
1≤j≤ta

sup
θ1

ta∑
i=j

ln
pθ1(r[i])

pθ0(r[i])
(10)

where t̂0 is the estimated fault injection time.

Abrupt Persistent Fault Detection After a fault both
the change magnitude, θ1 = Â, and the change time are
unknown. After simplifications, the LLR can be written
as:

Skj =
Â

σ2
n

k∑
i=j

(
r[i]− Â

2

)
(11)

and the test statistic is:

gk =
1

2σ2
n

max
1≤j≤k

1

k − j + 1

 k∑
i=j

r[i]

2

H1

≷
H0

γ (12)

where γ is the abrupt fault detection threshold and H1

and H0 are the two fault hypothesis from (2).

Since we reset the GLRT detector after each fault is
declared, after the first fault, assuming no fault alarms,
no more faults will be detected. This type of fault will
have a single element in its detection profile:

sgn(Â) = {1} (13)

where sgn is the sign function.

Abrupt Intermittent Fault Detection In an intermittent
fault multiple abrupt fault instances will be detected, so
the detection problem and the test statistic are the same
as the abrupt persistent fault case. Since both A for the
abrupt persistent fault, and µA for the abrupt intermittent
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Fig. 4. Fault detector architecture.

fault are unknown, there is no way to differentiate between
the two types of faults using only the GLR test. We are
able to discriminate between the two fault types because
the detector resets its baseline measurement to the new
faulty residual magnitude after each fault. Therefore, each
two consecutive faults will have opposite signs for Â. We
can summarize the detection profile by sgn(Â). The fault
profile, assuming positive residual change magnitude and
no false alarms is given by:

sgn(Â) = {1 -1 1 -1 1 . . . } . (14)

A threshold count can be set for how many fault instances
are required before declaring a fault to be intermittent.

Incipient Fault Detection Since the incipient fault is
characterized by a continuous increase in the signal mag-
nitude, the application of the LRT for abrupt faults will
detect consecutive changes in one direction only. This is
due to the reset of the LRT after it finds a fault; it will reset
repeatedly as the signal continues to increase. Therefore,
the detection profile for incipient faults, assuming positive
residual change magnitude, is given by:

sgn(Â) = {1 1 1 1 . . . } . (15)

Similarly, a threshold can be set for how many fault in-
stances are required before declaring a fault to be incipient.
Our detection approach will also work on a non-linear
signal, except that the signal model will contain more
unknowns than the simple slope presented here.

4.2 Residual Parameter Estimation

In this section we present expressions for residual param-
eter estimators for each fault type. The results are drawn
directly from classical estimation theory techniques [Kay,
1993].

Abrupt Persistent Faults The detection algorithm re-
turns the fault injection time, tinj , and the residual sig-

nal magnitude, Â, which are the only parameters to be
estimated for this fault type.

Abrupt Intermittent Faults The parameters to be esti-
mated are:

(1) Fault Injection Time. The fault detection algo-
rithm returns a vector of all the fault injection times.
In the case of intermittent faults the fault injection
time is the time instant at which the first fault takes
place:

t̂inj = T̂[1]. (16)

(2) Mean Residual Signal Magnitude. The residual
signal magnitude is drawn from a Gaussian distri-
bution. Therefore, the ML estimator for its mean

µ̂A is just the arithmetic mean of the residual signal
magnitude vector Â:

µ̂A = Ā =
1

size(Â)

size(Â)∑
i=1

Â[i] i = 1, 3, 5, . . . . (17)

(3) Mean Time Between Faults. The inter-arrival
times can be calculated from the vector T as:

T̂n = T̂[i+ 1]− T̂[i] i = 2, 4, 6, . . . . (18)

The inter-arrival time has an exponential distribu-
tion. Therefore, the ML estimator for its mean is just
the arithmetic mean of T̂n:

µ̂n = T̄n =
1

size(T̂n)

size(T̂n)∑
i=1

T̂n[i]. (19)

(4) Mean Fault Duration. Similarly, the fault dura-
tions are calculated as follows:

T̂f = T̂[i+ 1]− T̂[i] i = 1, 3, 5, . . . (20)

and the ML estimator is given by:

µ̂f = T̄f =
1

size(T̂f )

size(T̂f )∑
i=1

T̂f [i]. (21)

Incipient Faults The parameters to be estimated are:

(1) Fault Injection Time. Similar to the case of an
abrupt intermittent fault, we define the fault injection
time as the time instant at which the first fault takes
place:

t̂inj = T̂[1]. (22)
(2) Drift Slope. We note from (6) that the observations

represent a linear model in the unknown parameter
B. To show that, we write the vector form of (6):

r = HB + w (23)

where H = [0 1 2 . . . N ]. We note that sample
0 corresponds to the time instant tinj and sample
N corresponds to the time instant NTs, where Ts is
the sampling period and N is the total number of
samples used in the estimation process. The solution
of the estimation problem for the linear model in (23)
results in the Minimum Variance Unbiased Estimator
(MVUE):

B̂ =
(
HTH

)−1
HT r (24)

using the expression for H we obtain:

B̂ =

∑N−1
n=0 nr[n]∑N−1
n=0 n

2
. (25)

4.3 Detector Enhancements

The incipient fault detection scheme presented was based
on a heuristic approach of repetitive change detection.
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This process is suboptimal, since it assumes the data
model for the abrupt fault. A more accurate method is
to run two binary hypothesis tests in parallel, one for each
fault type (abrupt and incipient). In the likely event that
both detectors will fire a detection event, an additional
LRT is performed between the data models of the abrupt
and incipient faults to decide which fault is the most likely
one. The data samples that are used in this LRT are the
ones after the latest fault is declared, and the length of the
data samples used is to be decided based on the required
accuracy. This enhanced detection scheme is depicted in
Figure 5. The abrupt fault detector has the same design

Fig. 5. Enhanced detector design for efficient detection of
incipient faults.

as the one presented above and we need to design the
incipient fault detector and the fault selector. We start
with the incipient fault detector, where we have the binary
composite hypothesis testing problem:

H0 : r[n] = w[n]

H1 : r[n] = Bn+ w[n]. (26)

We calculate the LLR as above, noting that the ML
estimator for B is given by (25). It is straightforward to
show that the test statistic is given by:

gk =
1

2σ2
n

max
1≤j≤k

1∑k
i=j i

2

 k∑
i=j

ir[i]

2

H1

≷
H0

γc (27)

where γc is the incipient fault detection threshold, and H1

and H0 are the fault hypothesis from (26).

When the fault selector receives an alarm from one of the
fault detectors, it carries out an LRT between the two fault
distributions:

H0 : r[n] = A+ w[n]

H1 : r[n] = Bn+ w[n] (28)

The LRT produces the following test statistic, after sub-
stituting for the ML estimators for A and B:

gk =
1

2σ2
n


(∑N−1

n=0 nr[n]
)2

∑N−1
n=0 n

2
−

(∑N−1
n=0 r[n]

)2
N

 H1

≷
H0

γic

(29)

where γic is the decision threshold between the two fault
detectors, and H1 and H0 are the fault hypothesis from
(28).

Equations (12), (27), and (29) make up the different
components in Figure 5, where (12) is the abrupt fault
detector, (27) is the incipient fault detector, and (29)
is the fault selector. The abrupt fault detector and the

incipient fault detector run in parallel, each comparing one
faulty case to the null hypothesis (no fault case). The fault
selector is only used when both detectors detect a fault,
and is used to determine which fault scenario is the most
likely. An adjustable delay τ , may be introduced into the
fault selector, to take into account the probability that one
detector produces a fault before the other one. When both
detectors find a fault, the fault injection time is considered
to be the maximum of the two fault injection times. Also,
the number of samples, N , is adjustable, based on the
required probability of detection for a given probability of
false alarm rate.

5. EXPERIMENTAL RESULTS

The DXC’10 competition has 154 fault scenarios. In each
scenario, a single fault in one of the system components is
injected. The fault types include abrupt, abrupt intermit-
tent, drift. There are pictures of faults below. The incip-
ient fault is the most challenging to detect quickly, since
drift slope is very small compared to the noise variance.
Table 1 shows the performance of the detector with the
competition scenarios.

Fig. 6. IT281 Abrupt fault. Â = −0.05.

Fig. 7. IT281 Abrupt intermittent fault. µ̂A = −0.19,
µ̂f = 3.21, and µ̂n = 16.14.

The detector performed reasonably well for abrupt persis-
tent faults. Most of the missed detections in this case were
because of improper tuning of the detector. In the fault
scenarios presented, different noise levels were associated
with the same sensor in different scenarios. Since the
detector threshold was fixed, based on the training data
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Fault Type Total Scenarios Detected Undetected PD Remedy

Abrupt Persistent 37 29 8 0.783 Adaptive threshold

Abrupt Intermittent 35 25 10 0.714 Lower threshold

Incipient 37 19 18 0.513 Enhanced detector

Incipient with Incipient Detector 37 34 3 0.919 None required

Table 1. Detector performance, NASA DXC’10 competition.

Fig. 8. IT281 Incipient fault. M = 0.001.

set, the detector was not able to cope with the change in
variance from one fault scenario to the other. The solution
of the problem is to use an adaptive threshold, where the
algorithm automatically sets the detector threshold based
on the estimated variance value for the incoming data set.

The detector performance for abrupt intermittent faults
was worse than for abrupt persistent faults. The per-
formance for intermittent faults cannot be better than
persistent faults since missing an abrupt fault leads also
to an intermittent fault miss. The excess performance
degradation is because the threshold value was set higher
than necessary. That was mainly to accommodate for false
alarms from the change detector. This problem could be
addressed by lowering the threshold and reducing the false
alarm rate simultaneously. The false alarm rate can be
reduced by proper detector tuning.

We note that the detector performed poorly for the incip-
ient faults, because we relied on the heuristic approach of
multiple change detections in one direction as an incipient
fault profile. Unfortunately, most of the fault scenarios in
the competition for incipient faults had very small drift
slope and a limited data set, where the data set was not
long enough for the detector to detect enough changes
to declare an incipient fault. For this reason, most of
the undetected incipient faults were reported as abrupt
persistent. When the incipient detector and fault selector
described in (27) and (29) were added to the overal fault
detection model the results for detecting incipient faults
improved dramatically, as shown in the last row of Table 1.

6. CONCLUSION

Statistical models are powerful in designing fault detectors
for physical systems, provided that a data set is available
for the nominal system behavior and the set of faults of
interest. We presented a general fault detection algorithm,
based on change detection theory, which is capable of
detecting abrupt, intermittent, and incipient faults.

Several enhancements are possible for the presented al-
gorithm. An adaptive threshold that changes with the
noise variance level could increase the probability of de-
tection. The distinction between abrupt persistent and
intermittent faults could be enhanced by reducing the false
alarm rate of the change detector. Recursive detection
and estimation statistics are also important in practical
implementations to speed up the decision process, allowing
for early fault declaration and parameter estimation.
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