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Abstract
The paper describes a model-integrated program

synthesis environment for computer-based system
applications. In Model-Integrated Program Synthesis
(MIPS), domain-specific, multiple-view models represent
the software, its environment and their relationships.
Model interpreters translate the models into the input
languages of static and dynamic analysis tools, and
application specific model interpreters synthesize
software applications. The components of the system are
built in the framework of the layered Multigraph
Architecture, which separates the generic and
domain/application specific components, and defines
interfaces for expandability.

1. Introduction
The practice of using models in the full lifecycle of

computer-based systems has been increasingly accepted.
Multiple-aspect models are extensively used in
requirement specification. Models are created and
refined during design, and they are used in the
verification of the design. Systems engineering tools use
models for performance, reliability and safety analysis.
It is a general trend that design-time models are
increasingly used during system operation for model-
based monitoring, control and diagnostics.

One of the important characteristics of computer-
based systems is the tight integration of "physical" and
"information" processes. This tight integration makes the
application of a common description of these processes
not only practical but mandatory. The common
description means that software components are
modelled as parts of the overall system, using concepts,
relations and model structuring principles that are
meaningful for the design and analysis of the whole
system. Since computer-based systems are very
multifarious, and software components play a rapidly

increasing role in their operation, the modeling
paradigms offered by conventional programming
environments are not satisfactory. Typical programming
environments support hierarchical structure and
homogeneous decomposition [1] which is far from the
heterogeneity and semantic richness of representations
routinely used in many engineering domains.The
challenge is to adopt domain specific, established
modeling paradigms for representing software
components, while preserving the capability of
translating these models into executable code.

The long term goal of our research at the
Measurement and Computing Systems Laboratory of
Vanderbilt University has been the development of a
broadly applicable software technology for the design
and implementation of complex, computer-integrated
systems. The specific applications driving our research
during the past decade have been: (a) on-line problem-
solving environments for chemical plants, (b) fault
detection, isolation and recovery (FDIR) systems for
aerospace systems, (c) real-time facility monitoring and
signal analysis for propulsion system testing, and (d)
information systems for discrete manufacturing.
Recurring requirements in all of these systems have
been the tight conceptual relationship between the
computer applications and their environment, high
complexity of the systems, the need for adapting the
application to changing end-user requirements and
operating conditions, cost sensitivity, and stringent
reliability and dependability criteria of military and
industrial applications.

This paper discusses the model-integrated program
synthesis component of the technology. In Model-
Integrated Program Synthesis (MIPS), domain-specific,
multiple-view models represent the software, its
environment and their relationships. Model interpreters
translate the models into the input languages of static
and dynamic analysis tools, and application specific
model interpreters synthesize software applications. Our



framework for model-integrated program synthesis, the
Multigraph Architecture (MGA), is discussed in Section
2. In Section 3, we summarize related efforts in model-
based software synthesis. The overview of several MGA
applications is provided in Section 4. The paper is
concluded by looking at future research goals.

2. Multigraph Architecture
Model-integrated program synthesis requires domain

specific tools for: (1) building, testing, and storing
models, (2) transforming the models into executable
applications and/or extracting information for system
engineering analysis tools, and (3) integrating
applications on heterogeneous parallel/distributed
computing platforms [2,3]. The high development cost
of these tools would make their application prohibitive
in many computer-based system applications. Therefore
we have followed an architecture-based approach, which
separates the generic and domain/application specific
components, and defines interfaces for expandability.
The MGA has the following three levels of abstraction
(see Figure 1):

2.1 Application Level
The Application Level represents the synthesized

software applications. The executable programs are
specified in terms of the Multigraph Computational
Model (MCM). The MCM is a macro-dataflow model

which represents the synthesized programs as attributed,
directed, bipartite graphs [3]. The MGK is a runtime
system for the model, and provides aunified system
integration layer above heterogeneous computing
environments including open system platforms, high
performance, parallel/distributed computers and signal
processors [2,4]. The elementary computations, which
are scheduled by the MGK, are carefully defined,
reusable code components that are part of application-
specific run-time libraries. The MGK is implemented as
an overlay above operating and communication systems.
The MGK is supported on standard platforms (UNIX,
WINDOWS-NT, WINDOWS-95, etc. operating systems
and TCP/IP, MPI communication systems).

2.2 Model-Integrated Program Synthesis (MIPS)
Level

The MIPS Level includes generic, customizable,
domain-specific tools for model building, model
analysis, and application synthesis. The generic
components of the architecture are the following: (1)
customizableGraphical Model Builder (GMB)[5], (2)
Object-Oriented Database (OODB)for storing and
accessing models. The current version of GMB (called
XVPE) is customized through the Editor Description
Language (EDL) [5], which defines the modeling
paradigm and the related graphical notations. The
OODB is configured by means of the Object



Description Language (ODL) of ODMG-93. The domain
specific components include: (3)MGA analysis tools
and external analysis tools,and (4)model interpreters
that synthesize applications (executable models), or
translate models into input data structures of the analysis
tools (analysis models). Internal tools are designed for
specific MGA-MIPS environment, and typically include
a model interpreter, analysis algorithms and user
interface. External tools are different COTS or research
tools that perform some static or dynamic analysis based
on a domain independent abstract model. For example,
the Stochastic Petri Net Package (SPNP) uses a domain
independent modeling concept (Generalized Stochastic
Petri Net) and analysis algorithms for performance
analysis. An MGA model interpreter translates domain
specific models into the input language of SPNP [6].

The MIPS level components are modular, and
connected through standard interfaces (Figure 1). We
have adopted the ODMG-93 standard for interfacing the
model database to the GMB and to the model
interpreters. This standard allows the use of COTS
OODB packages as model database. The Common
Model Interface (CMI) is the specification of the object
types of the given modeling paradigm forming a unified
Tool-Software-Bus. (The CMI is the C++ header file
generated by the schema translator of the OODB. This
header file includes the class definition of the model
objects accessible as persistent objects in the Model
Database.) The MGA allows concurrent access to the
Model Database by the GMB, and by various systems
engineering analysis tools (and program synthesis tools).
This is a necessity in large-scale engineering problems
where several engineering groups work concurrently on
various aspects of the same system. From the
operational point of view, the MIPS-level architecture is
designed as a distributed object system, where the
communicating "macro objects" are: GMB, OODB, and
the Model Interpreters. For intertool communication, we
have selected the CORBA standard.

The domain specific MIPS environments are
integrated tool suites supporting model building, model
analysis, and program synthesis. In our experience,
computer-based systems (e.g. aircrafts, manufacturing
systems, chemical plants) are frequently dominated by
some mature engineering discipline such as aerospace
engineering, mechanical engineering, or chemical
engineering. The modeling paradigms used for
representing structural and behavioral aspects of these
systems are "non-negotiable". The modeling tools must
accommodate to the domain, otherwise they lose
relevance - and customers.

Domain specific MIPS environments may differ from
each other to a great extent. For example, the modeling

paradigm (concepts, relationships, model composition
principles and model integrity constraints) used in
modeling the fault detection, isolation and recovery
properties of the International Space Station Alpha
(ISSA) (one of the MGA applications, described in a
companion paper [7]) is completely different from that
of used in modeling chemical plants, processes, and
problem solving activities [8]. Similarly, the model
interpreter used for synthesizing real-time diagnostic
systems is quite different from the one synthesizing an
embedded process simulation. MIPS environments
change not only across domains, but they must evolve
inside a domain as well. For example, as the modeling
effort progressed in the ISSA program, accumulated
insight and increased understanding triggered several
major revisions in the modeling paradigm. The
environment and the models must evolve with these
changing concepts, because the models represent a
significant investment. Our challenge has been to create
a software infrastructure, which enables the inexpensive
construction of reliable domain specific MIPS
environments, and provides efficient support for their
evolution.

2.3 Meta-Level
The third level of the MGA is a metaprogramming

interface providing: (a) support for the specification of
domain-specific modeling paradigms and model
interpreters using a declarative language, (b) meta-level
translators to generate configuration files for the GMB
and OODB from the modeling paradigm specification,
and (c) tools for writing model interpreters.

The metaprogramming interface introduces an
additional level of abstraction in MGA. The central
concepts are meta-models (models of models), which
are the specifications of modeling paradigms and model
interpreters. The meta-models define the semantics of
domain specific modeling languages [5]. The semantics
of modeling paradigms are defined by the constraints
within the domain models with respect to the concepts,
relations, model composition principles and domain-
specific integrity constraints. In this approach,
applications are "executable instances" of domain
models and the domain models are "instances" of
meta-models.

Currently MGA has a simple, preliminary version of
the metaprogramming interface which is not satisfactory
due to the following problems: (1) We use a declarative
language for defining modeling paradigms. This
language is not rich enough to provide a rigorous,
concise specification for complex model semantics. (2)
The currently used formalism does not support the
validation of complex paradigms. (3) There is no
support for the formal specification of the semantics of



the model interpreters and execution environments.
Consequently, validation and verification of model
interpreters and execution environments is relatively
difficult and requires in-depth knowledge of the
technology. Finding solution for these problems is one
of our active research areas.

2.4 Model-based program synthesis
A key characteristic of the MGA is its support for

the synthesis of applications from models. Program
synthesis is performed by the model interpreters. Figure
2 shows the elements of the model interpretation process
with a single interpreter (complex systems consisting of
several integrated applications are typically generated by
multiple model interpreters - one for each component
application - but using the same integrated model set).

During application synthesis, the model interpreter
traverses the model database from the root of the model
hierarchy. It incrementally builds the actual executable
system in the MGK environment using the "Builder
Interface" of the MGK by creating and connecting the
elementary components of the MGK processing network
(actor and data nodes) [2]. Parallel with the executable
system, the model interpreter also creates a "builder
object network". The relationship between the builder
object network and the models is determined by the
model composition principles. For example, in modeling
paradigms employing a hierarchical module
interconnection composition method, there is one builder
object for each compound and primitive module in the
model hierarchy. The builder objects have three roles.
(1) They store references to the appropriate objects and
levels in the model database. (2) They store references
to all the components of the MGK processing network
(actor and data nodes) that are relevant to the given
level of the hierarchy. (3) They maintain connections to
the processing network for receiving events that trigger
reconfiguration.

In most of our applications, themodel database,
model interpretersand thebuilder object networkare in
one process (and computing node), while the component
applications are synthesized in separate processes
(running on the same, or different computing nodes).
The execution environment is decoupled from the
modeling environment to maintain real-time behavior.
The model interpreter accesses the model database
through the transaction mechanisms of the OODB (as
defined by the ODMG’93 standard).

After the synthesized application started, it runs
under the control of MGK. The MGK schedules the
elementary computations according to the graph
topology defined, and according to the control principle
(if-any or if-all) of the elementary nodes. Re-synthesis

can be triggered by the user (after changing the model
some way) or by the application (after detecting a
significant event requiring changes in the structure ofthe
executing system). User-initiated changes are typically
the result of incremental changes in the models, and
therefore correspond toevolutionary system behavior.
The changes triggered by events in the execution system
are typically fast reactions to detected changes in the
environment (e.g. sensor failure), therefore this behavior
can be consideredstructural adaptation[3]. During re-
synthesis of the application, the model interpretation re-
starts from a particular level of the model hierarchy
(identified by a builder object). The interpreter builds a
new version of the processing network through the
builder interface (without suspending the rest of the
application) and the builder object network. Using an
MGK control protocol [2], the interpreter switches over
from the old version of the processing network to the
new computational structure. The programming
language used for implementing the elementary
computation modules (i.e. the run-time library for the
execution environment) has impact on the capability for
reconfiguration. In static languages, such as C and C++,
the MGK, and all relevant low-level computation
primitives are linked together and form an MGK-C or
MGK-C++ process. Through the builder interface, the
model interpreters are able to modify data structures and
the graph topology using the pre-linked primitives, but
cannot dynamically add computational primitives. Using
dynamic languages supporting late binding and dynamic
linking/loading, MGK processes can be created that
allow the upgrading of the low-level primitives as well.
In earlier MGA implementations this capability was
provided in LISP environments. It is one of our goals to
create and evaluate the performance of an MGK
environment using one of the modern dynamic
languages, such as Java or Dylan.



2.5 Software Engineering Process with MGA
In the three-level architecture described above, the

following three user groups are identified: (1) end-users,
interacting with the synthesized applications through
operator interfaces, (2) domain engineers, (and possibly
end-users) using customized MIPS environments to
create, modify models and to evolve, adapt applications,
and (3) a small group of software/systems engineers
designing and building domain specific MIPS
environments by means of the meta-level tools of the
MGA. The type of activities, the required expertise, and
the characteristics of the tools is strongly different for
these user groups.

I. Building MIPS Environments

Step 1: Specification and validation of the modeling
paradigm: This step requires understanding the
concepts, relationships, model composition
principles, and integrity constraints of the domain.
This phase is supported by the metaprogramming
interface of MGA.

Step 2: Customization of the GMB and the model
database: This step is completed by meta-level
translators generating the configuration file of the
GMB, the ODL representation of the database
schema, and the OODB-GMB interface code.

Step 3:Specification, validation and implementation of
model interpreters: This step requires understanding
the relationship between domain models and the
application category to be synthesized. The current
version of the metaprogramming interface includes
only limited support for writing model interpreters.

Step 4:Design and implementation of run-time libraries
for each application category. Typical run-time
libraries are composed of software modules of
subroutine-size, with standard interfaces to the
Multigraph Kernel.

II. Building Applications

Step 1: Building domain specific models. Using the
customized GMB model building tool, domain
engineers build multiple-view models of systems to
be synthesized.

Step 2: Verification and validation of models.
Applications are synthesized from the information
captured in the domain models. Currently, we use
two methods for model verification and validation.
Static model checking tests the models against
certain consistency and model integrity criteria.
Static model checking is done partially during model
building and partially during model interpretation.
Dynamic model checking requires simulation and

performance evaluation tools that are part of a MIPS
tool suite (see examples in the companion paper
[7]). Verification and model validation is tightly
integrated with model building, and forms an
iterative process.

.Step 3:Application synthesis. Models are processed by
application specific model interpreters that
synthesize the applications. In model-integrated
program synthesis there is no major difference
between "fast prototyping" and rapid-
implementation: the generated software is production
quality. The support for dynamic (incremental)
application synthesis allows iterations, refinements
in the models and in the generated applications even
after post deployment.

Step 4:System integration. Since different applications
are built by their respective models interpreters
using the same integrated model set, system
integration is a highly automatic process which is
merged with Step 3.

3. Related Work
Our research shares ideas and builds on results of

several important directions in software engineering.
Here, we only to those research areas whose objectives
have essential commonalities with ours.

The significance of using models in software
engineering is well explained and demonstrated by Harel
[9]. The model-based approachhas become a
particularly rich, productive research area in
object-oriented software engineering and has already
made significant impact on today’s software engineering
[10]. One of the fundamental goals of the research is to
identify general modeling paradigms to be used in the
design and analysis of complex systems. Different
approaches are proposed for modeling functional
structure, static and dynamic behavior, physical
structure, inter-object communication using multiple
views [10], finite state machines [11], etc. The MGA
approach is profoundly different from the object
modeling methods. The modeling paradigm is
customizable, which may or may not include
specialization/generalization. The relationship between
the model objects and the run-time objects (the
synthesized application) can be very complex - as
determined by the solution strategy which is captured by
the model interpreters. From the same model set, many
applications can be generated by means of different
model interpreters. The differences do not mean that
MGA-based MIPS environments do not take advantage
of the object technology. In fact, object-oriented
programming and object modeling is extensively used in



he implementationof MGA tools.
The increased emphasis on software architectures

has stimulated considerable amount of work on
Architecture Description Languages (ADL). ADL-s
focus on the higher-level structural representation of
applications, allowing programmers to design and
analyze the overall structure of applications without
dealing with the implementational details of software
modules. The Domain Specific Software Architecture
(DSSA) program of ARPA underlined the significance
of domain specific ADL-s offering semantic models,
notational conventions directly relevant to a domain.
Examples for results on software architectures include
the introduction of the concept of architectural styles
and classification of software architectures [12], and
ADL-s such as Rapide [13], MetaH/ControlH [14], and
Onika/Chimera [15]. MGA does and will benefit from
these results in many ways and has similarities to
individual approaches and methods.

4. Applications
There are several major, existing applications of

model integrated computing and MGA in the aerospace
and manufacturing industries. A summary of selected
MGA applications developed in the past 4 years are

shown in Table 1.

4.1 MGA-DTOOL/MGA-RDS: A Model-Based
Engineering Environment for FDIR in Aerospace

MGA is the software framework of a model-based
robust diagnostic system (MGA-RDS) and
diagnosability/test ability analysis tool (MGA-DTOOL)
used by theBoeing Companyin the International Space
Station Alpha (ISSA) Program. In this application, the
multiple-view modeling environment supports the
functional, physical, and behavioralmodeling of ISSA
system components. Additional modeling views support
the representation of fault detection activities and
operator communication schemes. Tools of the modeling
environment allow graphical model building, support
extensive model consistency checking, and provide
interfaces to related models, such as FMEA models
available in engineering databases. The system has
several model interpreters. The model interpreter for the
Diagnosability/Testability Analysis Tool [16] extracts
relevant information from the multiple-view models and
synthesizes data structures required by DTOOL.
DTOOL evaluates detectability, distinguishability, and
predictability of faults given on-line sensor allocation
and built-in-test (BIT) coverage, generates optimum test



sequences, and provides advice for additional
sensors/BIT coverage to meet defined criteria. A
different family of model interpreters automatically
generates executable code for the real-time diagnostic
system from the same integrated model-set, allowing
significant savings in system/software engineering time.
Details of this application are described in a companion
paper in this proceedings [7].

4.2 Problem Solving Environment for Chemical
Industry

The Intelligent Process Control System (IPCS) is an
on-line problem solving environment and decision
support tool for process and production management.
The central concepts of IPCS aremodelsof the plant
and process engineeringactivities.Plant models include
a variety of modeling views, including process flow
sheets, static and dynamic process equations, finite state
models, failure propagations, equipment structure, etc.
Activity models cover a wide range of tasks related to
process and production management, such as analysis of
process operation, diagnosis of process faults, testing
and modifying control strategies and others. These
activities extensively utilize plant and process
information which is represented in plant models, and
access to the available process monitoring and control
functionalities, such as process historian and DCS.
Activity models may include explicit references to the
utilized plant model elements and the specification of
logical and physical interfaces to other software
packages which implement different monitoring and
control functionalities. The activity models are
automatically translated into executable software by
IPCS, which performs the modeled activity. The IPCS
system is actively used at Du Pont Old Hickory, TN
plant for the development of commercial applications,
including monitoring, sensor data validation, on-line
process simulation, and process diagnosis [8].

4.3 CADDMAS: Computer Assisted Dynamic Data
Monitoring and Analysis System

MGA is the underlying software technology for the
Computer Aided Dynamic Data Monitoring System
(CADDMAS) developed in close cooperation with the
USAF Arnold Engineering and Development Center
(AEDC). CADDMAS provides real-time vibration
analysis for 48 channels of 50 kHz bandwidth using a
heterogeneous network of nearly 100 processors [2,17].
Different versions of the CADDMAS are now being
applied as primary on-line test systems in the turbine
engine testing facilities of AEDC. The 50 kHz
bandwidth CADDMAS, which has been recently
completed, provides 2 GFlops computation throughput.

In the CADDMAS application, the MGA modeling
environment supports the hierarchical modeling of
signal flow graphs, hardware resources, and resource
limitations [2]. A model interpreter synthesizes the
complex executable program and configures the parallel
computing platform. Several other model interpreters
generate input data for analyzer tools. For example, one
of the interpreters generates a Stochastic Petri Net
(SPN) model of the executable system. It is evaluated
by a SPNP solver, providing performance evaluation of
the system before its actual implementation [6].

4.4 DATVAL: Data Validation System for Turbine
Engine Testing

A model-based, real-time data validation system is
under development using MGA, which detects
anomalies in sensor data and isolates the most plausible
source of faults. The data validation system utilizes
massive amount of information about the test article and
the testing facility. The modeling paradigm of the full
system will include multiple view models of the facility,
the test article, and will configure the real-time
validation program on a distributed workstation network.

5. Conclusion
Model-integrated program synthesis seems to be an

important component of the technology of computer-
based systems. The basic idea is to represent these
systems by means domain specific modeling paradigms
tailored to the characteristics of the system and not to
the implementation techniques of its components.
Carefully designed modeling paradigms facilitate the
analysis of system-wide properties which are the most
interesting aspects of this system category. Model-
integrated program synthesis generates applications
directly from domain models drastically reducing
software cost. The applications showed the following
advantages:

Modeling paradigm specifications and domain
models quickly become a valuable asset. The
technology enables many different forms of
interaction, communication, and commercial
endeavor with the models.
Maintained models of manufacturing processes help
industry to conform to environmental regulations
(e.g. chemical industry) and allow keeping problem
solving activities consistent with the
changing/evolving plants.
Model-integrated programming environments are
effective tools for teaching problem solving
strategies. Technical difficulties related to using,
integrating, and managing large software systems do
not avert students from focusing on problems



instead of collateral technical issues.

Besides building new integrated environments in a
wide range of application domains, our current effort
focuses on the development of an advanced
metaprogramming interface, which will support formal
verification of modeling paradigms and model
interpreters.
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