
Diagnosis of Discrete Event Systems Using
Ordered Binary Decision Diagrams

Janos Sztipanovits and Amit Misra

Measurement and Computing Systems Laboratory
Vanderbilt University
Nashville, TN 37235

email: [sztipaj | misra]@vuse.vanderbilt.edu
Phone : (615)322-3455

Fax : (615)343-6702

Abstract
Diagnostic methods for engineering systems are
typically model-based: functional and/or fault models
are used to diagnose the root cause of anomalies.
Discrete models are abstractions of systems in a
discretized input, output and state space. These
models provide an accurate description for a broad
category of systems (switching networks, digital
systems, etc.) but can also be used for approximating
the behavior of continuous or hybrid systems.
Diagnosis tasks require the exploration of the discrete
state space, which  frequently leads to a combinatorial
explosion of alternatives.  This paper describes an
approach, which transforms domain specific discrete
failure propagation models or physical models into
relational models, and performs  diagnosis
symbolically. The underlying theory is based on
Ordered Binary Decision Diagram (OBDD)
representations and related algorithms.

Introduction

Safe and reliable operation is a primary goal in many
engineering systems.  Equipment has been constructed and
operated to satisfy strict safety standards, fail-safe and fool-
proof design, ample design margin, inherent safety,
automated emergency mechanism, instrumentation with
redundancy, etc. During the last two decades, Fault
Detection and Diagnosis (FDD) has also been introduced
with the aim of minimizing the potential damage by early
detection and warning. Although a considerable research
activity has focused on the development of  FDD
techniques in specific system  categories, the  complex
issues of system-wide FDD in large-scale, heterogeneous
systems has many unsolved problems.

Our previous experience in the development and testing
of  real-time diagnostic and monitoring systems for
aerospace [MIS92] [MIS94], electric utility [PAD91] and
chemical process applications [KAR95] have shown  that
the selection of a suitable modeling discipline plays
critical role in obtaining a practical, usable solution in this
system category. Our research focused on  problems with
the following general characteristics:

• The plants are  complex, heterogeneous systems. The
size of the models is typically very large.

• The fault diagnostic system must handle component
faults and input disturbances.

• The plant is a dynamic system. The ultimate  goal of the
real-time diagnostics is the prevention of the development
of critical situations, therefore the diagnosis cannot be
based on the observation of a new steady-state behavior
after the fault occurred.

In order to satisfy these requirements, we have
developed a multiple-aspect modeling approach. The
structure of the plants was represented in a functional and a
physical hierarchy [MIS94]. The behavior was modeled as
a finite state temporal automata using timed failure
propagation graphs [SZT93].  The diagnosis and
diagnosability analysis algorithms were implemented as
efficient graph algorithms leading to acceptable
performance even in large-scale applications such as the
International Space Station  Alpha (ISSA) project
[CAR96].

This paper discusses a new approach for diagnostics and
diagnosability analysis using finite state automata, or
Discrete Event System (DES) models. The essence of the
proposed approach is to change system representation into
relational models and use Ordered Binary Decision
Diagrams (OBDD) based symbolic calculations [REB86]
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for diagnosis and diagnosability analysis. The result  of
using symbolic manipulations is a significant improvement
in scalability and an opportunity for using discretized
models for very large-scale problem domains. In Section 2
we present a brief overview of the relevant approaches. In
Section 3 we summarize the OBDD representation. Section
4 discusses system modeling using the OBDD
representation and Section 5 discusses the new category of
algorithms in the OBDD framework.

Background

Model-based diagnostic systems work with a “model” (a
suitable representation) of the system.  The level of details
in the models is determined by the required diagnostic
resolution and mode of operation. Model-based diagnostic
systems interpret the observed discrepancies in the context
of the system model,  and hence, there is no need to
generate and store large fault-symptom libraries.  There are
primarily two approaches that have traditionally been used
in diagnosis -- functional modeling  and fault modeling.

Functional models (also called behavioral models)
describe the “nominal” behavior of the system, i.e., how the
system is supposed to behave when no faults are present.
The level of abstraction in the functional models can vary
from system to system, depending on the application --
from analytical models using state-space representation to
qualitative models.  The functionality can be described
using just input/output relationships as in [KUI87], using a
mathematical description, or  using  a set of connected
components and causal sequences which give a description
of how the system behaves [ESC87] [KW87] and [RD84] .

Using functional models to diagnose faults has its own
problems, the foremost being the accuracy and validity of
models,  particularly in the presence of faults.  This makes
them usable primarily for stable systems with a well
defined and simple domain theory, which maintains  clear
relationship between characteristics of physical
components  and system behavior.  Furthermore, while the
models are good for identifying the presence of a
malfunction (using simulation or analytical methods), they
are not necessarily helpful in diagnosing, i.e., locating the
faulty component.  This is because using functional models
can lead to an explosion in the number of possible
hypotheses, thereby rendering diagnosis intractable.

Fault models describe the expected system behavior in
the presence of faults. This may be done as an extension of
functional models to “off-nominal” regions, or by focusing
only on the behavior in failure space. Fault models allow
expression of a-priori knowledge about the typical ways in
which  components may fail or are designed to fail. Ishida
et al. describe a topological approach to fault diagnosis in
[IAT85].  Their fault model consists of faults, symptoms
and an incidence matrix describing the binary relations

between the faults and the symptom.  The work done by
Kumagai et. al. [KIT86],  and Narayanan et al. [NV87]
uses directed graphs to represent the relationships between
faults and their manifestations.

Modeling methods used in diagnostics can also be
categorized according to the selected  formalism. Along
this dimension, models can be static (steady state) or
dynamic, continuous and discrete. Static or dynamic
continuous models are frequently used in diagnosing
incipient  faults in systems using parameter identification
methods [PFC89]. Static or dynamic discrete models
describe system behavior in a discretized input/output  and
state space. Recently, there has been intensive research on
diagnosis using discrete event system (DES) formalism
[SLS96]. There are several  functional modeling
approaches that use continuous models to represent
nominal behaviors, but the diagnostic reasoning is based on
a discretized  error space between the model and the
observed behavior  [BY93].

While discrete models are not suitable for diagnosing
incipient failures in continuous systems, they have several
advantages that explain their popularity. In diagnosing
large-scale, heterogeneous systems, the level of
discretization can be conveniently used to adjust modeling
accuracy [SZT93] and control the cost of modeling.
Discrete models are efficient in diagnosing abrupt
component failures if the failure effect is pronounced. Most
of the widely used fault analysis techniques, such as fault
trees, FMEA analysis techniques are based on static,
discrete models. Dynamic discrete models (DES or finite
state automaton models) can provide quite an accurate
description of system dynamics, therefore they have great
significance in diagnosis. The general problem with
discrete models in diagnosis and safety analysis is
combinatorial explosion. Recently proposed techniques,
such as in [SLS96], suffer from serious scalability
problems, and cannot be used with complex discrete
models, representing  realistic systems.

The primary contribution of our research is to provide a
formalism and a reasoning technique for  static and
dynamic discrete models which significantly improve
scalability.

Ordered Binary Decision Diagrams (OBDD)

Diagnosis and fault analysis tasks with discrete models are
formulated in terms of operations over finite domains.
Combinatorial explosion is the result of the exponential
increase in the number of discrete elements (states,
hypotheses, etc.) during operations, which sooner or later
makes the individual access to the elements unfeasible. By
introducing a binary encoding , the  individual elements,
sets of elements, and relations among them can be
expressed as Boolean functions. For example, the 2100
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states of a  finite state automaton can be encoded with
binary variables {s(1),…,s(100)} forming a binary state
vector s. The Boolean functions

 f1[s(1),…,s(100)]=s(1)’∧s(23)∧s(99) and
f2[s(1),…,s(100)]=s(1)∧s(22)∧s(89)

represent two subsets, S1 and S2, of the 2100 states
including  297  elements each.  The set S3=S1∪S2 can be
derived symbolically as the disjunction of the two Boolean
functions:

f3[s(1),…,s(100)]= f1[s(1),…,s(100)]∨
 f2[s(1),…,s(100)]= s(23)∧s(99)∨s(22)∧s(89)

without the need to enumerate and compare the individual
elements - which would be a formidable task otherwise. In
general, using Boolean function representations,  we can
express operations and algorithms in diagnosis and safety
analysis in  symbolic form, by means of symbolic Boolean
function manipulations.

OBDD-s provide a symbolic representation for Boolean
functions in the form of directed acyclic graphs [REB86].
They are a restricted, canonical form version of Binary
Decision Diagrams (BDD) [LEE59]. Bryant [REB89]
described a set of algorithms that implement operations on
Boolean functions as graph algorithms on OBDDs. Taking
advantage of the efficient symbolic manipulations,
researchers have solved a wide range of problems in
hardware verification, testing, real-time systems, and
mathematical logic using OBDDs that would have been
otherwise impossible due to combinatorial explosion.
Symbolic model checking is extensively used in hardware
design (see, e.g., [BCL93]), and has shown to be efficient
in state space sizes 10120 and beyond.

Discrete Event System and Relational Models
for Diagnosis

A broad category of systems, such as digital hardware,
switching, distribution, and communication  networks, etc.,
are  naturally modeled as DES. Beyond this, the behavior
of continuous systems can also be approximated  with DES
models.

                FS                  FI

     X                           Y                          Z

 Y                    Z

                                  f                      h
            FS                         FI   X

DES Model:   Relational Model

(X,FS,Y,f); system model     f⊆ X×FS×Y;   f(x,fS,y);  system model

(Y,FI,Z,g); observation model    h⊆ Y×FI×Z;   h(y,fI,z);  observation model

Figure 1: DES and relational models of static systems

The DES model of a static system (system without
memory) is shown on the left side of Figure 1. Since our
purpose with modeling is sensor-based diagnosis, the
model is divided into a System model and an  Observation
model. The system model represents a mapping between
the elements of the input set X, fault set FS,  and the
elements of the output set Y: f:  X×FS → Y.  In this
approach, the component faults are considered as
additional inputs to the system. It is also possible to model
the abnormal (out of range) inputs as elements of the X
input set, creating a ‘normal’ and ‘faulty’ partition in X.
The observation model describes a mapping between the Y
output set  of the system, and the actually observed outputs,
Z; h:  Y×FI → Z.  The set FI  collects the observation faults
(or instrumentation faults) that can potentially corrupt the
observations. We assume that both f and h can represent
many-to-many mapping, i.e. they are not necessarily
functions. This allows non-deterministic modeling, which
is particularly important in large-scale systems. Non-
deterministic constructs allow the expression of
uncertainties in the outcome of inputs due to noises or non-
modeled  behaviors.

The right side of  Figure 1 shows the equivalent
Relational Model of a static system. In the relational
model, the f and h mappings  are   considered   to  be  the
f⊆ X×FS×Y and h⊆ Y×FS×Z  relations. The significance of
the relational representation is that it directly  shows that
the models can be re-written as Boolean functions by
introducing some binary encoding for the  sets X×FS×Y and
Y×FI×Z.  The Boolean functions f(x,fS,y) and  h(y,fI,z)
evaluate to true for those elements of X×FS×Y and Y×FI×Z
(encoded by the Boolean vectors  (x,fS,y) and  (y,fI,z)),
which are related by the f and h relations.

The DES model and relational model  of a dynamic
system is somewhat more complicated, as shown in Figure
2.
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f(x,fs,s,s’);

           g⊆ S× FY×X×Y;  output relation
           g(s,fy,x,y)

(Y,FI ,Z,h);  observation model            h ⊆ Y×FI×Z; observation relation
           h(y,fI,z)

Figure 2: DES and relation models for dynamic systems

In dynamic systems, the DES model is the (X,FY ,FS

,S,Γ,f,s0,Y,g) finite state automata (see e.g. [CC93], where:

  X  is the input event set,

  FS ,FY are the sets of  transition faults and output faults,
both considered to be input events,

  S is the state set,

  (s) is a set of feasible or enabled events, defined for all
s∈S with Γ (s)∈ X,

  f is a state transition function, f: X×FS×S→S’, defined
only for x∈Γ(s) when the state is s,

  s0 is the initial state,

  Y is the output set, and

  g is an output function, g: X×FY×S→Y, defined only for
x∈Γ(s) when the state is s.

In order to model partial observations of the state
trajectory independently from the outputs of the dynamic
system, we use again the h:  Y×FI → Z observation model
describing the mapping between the Y outputs, FI

instrumentation faults, and the Z observations. The finite
state automaton formalism also allows the representation of
non-deterministic state machines, which is an important
requirement for modeling large-scale systems.

The right side of Figure 2 shows the equivalent relational
models. Similarly to the static system models, the
f(x,fs,s’,s),  g(s,fy,x,y) and h(y,fI,z) functions are the Boolean
function representations of the relations over the binary
encoded Boolean vectors x,fs,s’,s,fy,y,fI, and z.

Although it is not the purpose of this discussion, it is
worthwhile to note that  DES (or relational) models
preserve composability and can be constructed in a
modular fashion using either component oriented modeling
approach [SLS96] or process-oriented modeling approach
[SZT93].

Diagnostic reasoning using OBDD-s

The application of OBDD-s for diagnostic reasoning
includes the following steps:
1. Mapping the DES or relational models into OBDD-s:
This step can be completed automatically. In the
framework of the Multigraph Architecture (MGA), the
discrete behavioral models used for diagnosis or safety
analysis are usually domain specific [SZT95]. The domain
specific models can be translated into an OBDD
representation using model interpreters. An example for
converting  relay logic diagrams into  OBDD
representations is described in [SZT96].
2. Diagnosability and safety analysis: Diagnosability and
safety analysis are accomplished symbolically, using the
OBDD representations. Diagnosability  and safety criteria
are expressed in the form of  logic relationships on the
discrete state trajectories generated by the models, and
these relationships are checked using OBDD algorithms.
3. Diagnosis: In the MGA framework, the diagnostic
software is built in two steps. First, a generic run-time
support is created. The run-time support includes a
diagnostic engine implemented with OBDD algorithms.
Second, the software synthesis component  of the MGA
(one particular form of model interpreters): (a) configures
the run-time system using the MGA computational model,
and  (b) synthesizes the OBDD data structures for the
models.

The core components of the diagnostic reasoning are the
algorithms  that  compute the sets using the relational
models.

Diagnostic reasoning in static systems
Although it seems to be restrictive, static system models
are widely used in engineering practice. Fault trees, AND-
OR graphs, most of the rule-based models can be
considered as  some form of the static models.  Using the
relational model formulation described above, the
following calculations can be performed using OBDD
algorithms.

a) Observed output calculation
Given the set of  input X, and the sets of  faults FS and

FI,  the set of outputs Y and the set of observations Z can be
calculated by the following formulae:

Y =f(X,FS)={y|∃x, fS[(x∈X)∧(fS∈ FS)∧(x, fS,y)∈f]};    (1)
Z=h(Y,FI)={z|∃y,fI[(y∈Y)∧(fI∈ FI)∧(y, fI,z)∈h]};

The required variable quantification and logic operations
are executed symbolically. The resulting f(X,FS) and
h(Y,FI) mappings propagate the elements of the input sets
‘forward’ in the relational model.
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b) Diagnosis
Solution of the diagnosis  problem  requires the

calculation of the hypothesis set  D, defined on X×FS×FI

given  a set of observations Z:

d(Z)={x,fS,,fI|∃y,z[(z∈Z)∧(y, fI,z)∈h∧(x, fS,y)∈f]}      (2)

The diagnostic mapping is derived as a combination of
the functional composition of the relations f and h, and
variable quantification. The d(Z) mapping propagates the Z
observations ‘backwards’ to obtain the set of admissible
d∈X×FS×FI elements forming together the diagnosis. The
result of the diagnosis, the D hypothesis set, includes all of
those d∈X×FS×FI  hypotheses that are consistent with the Z
observations. Those elements for which  fS={0} and fI={0},
the corresponding x input values represent inputs for fault
free operations. It is interesting to note that the symbolic
computation derives in one step the symbolic
representation (i.e. the OBDD) of the full D(Z) hypothesis
set, including all of the multiple fault combinations.

c) Safety analysis
Safety analysis requires the testing of the models against

selected safety criteria. Here we demonstrate the use of
symbolic model checking in one particular problem, to test
distinguishability of faults. A system and its observation
model provide single-fault distinguishability, if all possible
observations are unique to the single faults. Let ifs∈
X×FS×fI be inputs to the system with a single fault, i.e.,
each ifs includes  exactly one fS or fI  faults.  The condition
for single fault distinguishability can be expressed
symbolically in the following manner:

d°( h° f) (ifs)= ifs ;   ∀ ifs∈ X×FS×FI               (3)

That is, the diagnosis relation d is the inverse of the
composition of  the h° f relations for all single fault inputs.
Similar symbolic expressions can be derived for multiple
fault distinguishability, fault masking, fault detectability
and other safety characteristics of the models.

Diagnostic reasoning in dynamic systems
The primary difficulty in dynamic systems is that the
diagnosis must be performed by using the partial
observations of the system trajectory. Particularly in the
case of non-deterministic models, the diagnostic reasoning
has acute scaling problems. The symbolic form of the
algorithms has similar form to that of the  static systems.

a) Observed output calculation
Given the set of  input X and the sets of  faults FS,  FY

and  FI,  the sets of  next states S’, outputs Y and

observations Z can be calculated by the following
expression:

S=f(X,FS,S)={s’|∃x,fS,s[(x∈X)∧(fS∈FS)∧(s∈S)∧(x,fS,s,s’)∈f]};
Y=g(X,FY,S)={y|∃x,fY,s[(x∈X)∧(fY∈FY)∧(s∈S)∧(x,fY,s,y)∈g]};
Z=h(Y,FI)={z|∃y,fI[(y∈Y)∧(fI∈ FI)∧(y, fI,z)∈h]};               (4)

The symbolic expression above calculates a one-step
propagation forward in the state automata. The result is a
new set of possible states S’, and the related Y outputs and
Z observations. The set of reachable states can be found by
computing the transitive closure of f using fixed-point
calculation, i.e. to find an S for which f(X,FS,S)=S.  This is
particularly important in safety analysis, where safety
requirements frequently impose constraints on the
reachability  set of the state automata.

b) Diagnosis
There are several ways to perform diagnosis in dynamic

systems. In off-line diagnosis, observations are collected
and analyzed independently from the operation of the
system. In on-line diagnosis, the diagnostic system runs
parallel with the system, and refines the hypothesis set as
new observations are collected. As an example, we
describe an on-line diagnosis method using symbolic
expressions.  The on-line diagnostic system re-calculates
the hypothesis set D⊂X×FS×FY×FI×S  whenever a new
observation event(s) arrives:

Dj+1=d(Dj,Zj+1)=
     {x,fS,,fY,fI,s’|∃s,y,z[(z∈Zj+1)∧(y,fI,z)∈h∧(fI∈ FI,j)∧
     ∧(s,fy,x,y)∈g∧(x∈Xj)∧(fY∈ FY,j)∧(x, fS,,s,s’)∈f∧(fS∈ FS,j)]}  (5)

The (x∈Xj), (fS∈ FS,j), (fY∈ FY,j), and  (fI∈ FI,) conditions
assume that during the observation the faults (including
possibly faulty x inputs) are persistent. If this assumption
cannot be made, the conditions must be eliminated from the
reasoning. Receiving newer and newer observations, the
diagnostic algorithm will converge to a hypothesis set
which includes all possible explanations for the observed
trajectory. These explanations extend to the multiple fault
hypotheses as well.

Criteria for fault distinguishability can be derived the
same way as it was described for static systems.

It is important to mention that the diagnostic algorithms
of  (2) and (5)  (and all of the other expressions above) are
computed symbolically. Symbolic computation here means
that all of the sets and relations are represented as OBDDs
and the logic and quantification operators are executed by
manipulating the OBDDs by means of a small set of
efficient algorithms [REB86].
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Summary

Diagnosis and safety analysis using discrete event system
models  is a difficult problem due to the combinatorial
explosion of the state and event sets derived during the
analysis. The problem can be significantly reduced by
using relational models and OBDD representations.
Although symbolic manipulations offer tremendous
advantage in diagnostic reasoning, scalability remains an
important issue in analyzing large-scale systems. The size
of OBDD data structures is sensitive to the ordering of the
Boolean variables, which indicates the need for the
development of good heuristics while mapping the models
into OBDD representations. Our experiences with
diagnosing a discrete controller implemented with a relay
logic network [BSS95] has shown the feasibility of the
approach.
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