
[image: image1.jpg]VANDERBILT UNIVERSITY
”

INSTITUTE FOR SOFTWARE
INTEGRATED SYSTEMS

Institute for Software-Integrated Systems

Technical Report

TR#:

ISIS-09-106
Title:
A State Transfer Framework for Object Oriented Fault-Tolerance
Authors:
Friedhelm Wolf, Jaiganesh Balasubramanian, Aniruddha Gokhale, Douglas C. Schmidt
Copyright (C) ISIS/Vanderbilt University, 2009
1 Introduction
FLARe [1] is used as lightweight fault-tolerance middleware in DRE systems. This report discusses the design of Components with HEterogeneous State Synchronization

(CHESS). FLARes mechanism for state transfer and synchronization.

Passive replication schemes as used in FLARe depend on backup replicas that can take over processing quickly when a failure occurs. This includes deployment of backup instances of the same application and then failover when an error is detected. Since most replicas have a unique internal state, they need to be synchronized frequently. State can change through client invocations or other system events or timed signals.

This makes it necessary to synchronize the internal states of replicas representing the same logical application. Replicas have to be ready to respond to requests any time and this requires that their internal state is up-to-date. are in the correct state to respond to the next request in case of a failure. CHESS is a framework that is responsible for state dissemination of replica objects. The design of CHESS aims at making state synchronization as transparent to the developer

as possible while providing enough flexibility to account for varying types of internal state.

The remainder of this report is structured as follows: Section 2 states the problems that exist in defining a general framework for state transfer. Section 3 describes design

of CHESS by presenting design challenges and how the solutions that are applied in CHESS to overcome them. Section 4 gives a summary of the resulting systems and its

benefits.
2 Problem Statement

Providing a generic mechanism for state replication is a challenging task due to the wide range of differences in how application state can look like.

As CHESS focuses on passive replicaion schemes replicas need to exchange information about their state to preserve consistency. CHESS uses the common checkpointing approach to do so: all relevant state information of an application is gathered and captured in form of a so called snapshot (i.e. structured data or memory dumps).

Designing a generic mechanism requires trade-offs based on different characteristics of internal application state. This includes different approaches for timing, such as time triggered approaches that periodically take new snapshots or event triggered approaches take snapshots that initiate snapshots based on notifications or messages. Depending

on the replication style snapshots are directly distributed to all replicas through dedicated communication mechanisms like multicast messages (warm passive) or they are

stored in a central repository and transferred to the replica only prior to a fail-over (cold passive).

These are just examples for different ways to disseminate state. To evaluate CHESS in a structured and comprehensive way, we now introduce a simple taxonomy for state

characteristics. The following list categorizes state across different dimensions that we will use in the solution section to evaluate the different solution aspects.
1. The Location of state in relation to the component implementation is a crucial aspect and limitation for generic state replication approaches. The most common case is state that is internal to the application, being captured in local variables, members of classes that implement the component or component attributes. However in complex DRE systems it is possible that components access system resources or middleware infrastructures (e.g. a database persistency layer) which is external. A special case of external state is shared state where several components use a system resource (e.g. shared memory) together. Simply including external and especially shared state into the snapshot would lead to duplicates and merging conflicts in the replicas and needs to be given careful consideration.
2. The Size of the internal application state can vary greatly. On the one side of the spectrum there are stateless applications that have no state to be preserved from invocation to invocation. Other components keep state information that is comparatively small (e.g. configuration values or counters). In other application domains state data includes large amounts of data (e.g. received streaming data, multimedia content, in-memory databases).
3. Complexity and Distribution are two tightly coupled properties of application state information. Distribution means that the application can contain very different types of state that is not stored within a single data structure but rather is distributed throughout the application structure. The greater the degree of distribution the harder and more time consuming it is to create a snapshot or to restore state from a snapshot. This also applies for complexity: On the one hand there are very simple data structures like basic types that are very easily copied to or extracted from a snapshot. As the complexity increases for sequential containers like errors or lists of items, these operations get more time consuming. Associative containers and structures with arbitrary member data types and big hierarchical depth have even higher performance costs for snapshot creation.
4. Dynamics of Changes: Not only the form of state differs greatly from application to application, but also the frequency by which state is altered and needs to be check-pointed. Some applications alter and store their state only once at initialization. Other applications undergo many state changes in their lifetime. These changes can occur due to external input or internal mechanisms like time-triggered events. Many applications change their state based on incoming requests. Depending on the system characteristics this can happen very rarely (e.g. in applications only used for maintenance) or with a high rate of invocations in the range of microseconds (e.g. for streaming of satellite telemetry data). A generic replication mechanism like CHESS, therefore needs to offer the flexibility to specify the timing characteristics for state synchronization.
3 Solution

The design of CHESS is presented by describing how chess addresses the challenges of (1) providing a common interface for exchanging diverse state snapshots, (2) satisfying varying timing requirements and (3) supporting different protocols for state dissemination. Each part consists of a statement summarizing the challenge, a description of how CHESS addresses this challenge and an evaluation how the solution of CHESS affects the different dimensions of state characteristics.
3.1 Providing a Common Interface for Exchanging Diverse State Snapshots

Challenge: As described earlier the structure and complexity of state snapshots vary greatly and are tightly coupled to the application implementation. It is therefore impossible

to design an interface through which state snapshots are passed as strongly typed parameters. First generation distributed systems tended to solve this problem by

passing simple byte streams and leaving the time consuming task of marshaling, demarshaling, type checking and alignment adaptions to the application developer.

Solution: Pass state snapshot as CORBA Any. To achieve platform and language neutrality for the state extraction mechanism and integration the necessary interfaces are declared in CORBAs interface definition language (IDL). IDL defines a special basic type any that allows dynamic insertion of any data type, while still preserving type-safety. For this purpose a type code field within the any is maintained and code for type checking, marshalling and demarshaling is generated by the IDL compiler.

This allows to separate different obligations in the process of state distribution: The application itself has to perform the insertion operation of its internal state into an any object and also the extraction operation to retrieve new state instances from an any value. The middleware can then distribute the Any value transparently without knowledge about the internal structure of the snapshot. CORBA Anys can only contain data defined in IDL. The application developer is responsible for declaring of an IDL data type that represents the complete state, so that it can be inserted into an any data-type.

Figure 1 shows the obligations of an application to make its internal state available to the state synchronization mechanism. An application has to implement these methods to

interact with the state synchronization mechanism. If the framework needs to extract state from an application that is a primary replica, it will call get_state(). All backup replicas will receive state updates through the set_state()method.

[image: image2]
Evaluation: This approaches’ main strength is that it addresses the dimension of complexity and distribution through separation of concerns. It shields the generic dissemination mechanism from the internal structure of the application state but also supports the application developer by using the CORBA Any data type that provides extraction and insertion operators and therefore simplifies the gathering and composition of a state snapshot.
The dimension of size has a strong influence on the performance of this approach: Transmitting any data has a certain overhead since type information has to be embedded on the sender side and extracted on the receiver side. CHESS does not interfere with the dimension of state location. By making it the responsibility of the application developer to serialize state, he has the freedom to choose whether and how to integrate external and shared state into the snapshot.
The dimension of the dynamics of changes is mainly addressed by other parts of CHESS. However the time for serialization of a snapshots affects the overall timing behavior of state dissemination.
[image: image3.emf]
Figure 2: State transmission sequence
3.2 Satisfying varying Timing Requirements

Challenge: Applications may have very different requirements for when snapshots shall be distributed from the primary replica to backup replicas. There are two main types of timing behavior: (1) cyclic timing where state is updated based on a given time interval and (2) acyclic timing where specific events like a client request trigger the state synchronization. Middleware mechanisms could automatically determine when to disseminate state for cyclic timing behavior and then use the get_state() and set_state()methods as callback methods to automate the process. However since the timing cannot be predicted in the acyclic case it needs active involvement of applications to disseminate state at the right time. Combining both cases into a general framework mechanism is needed to ease the burden of the application developer without restricting timing schemes.
Solution: Separation of concerns between triggering state synchronization and state retrieval allows to treat both cases in a uniform way. This approach includes several steps of interaction between an application and a state transfer agent which is a part of the CHESS infrastructure. Each process containing CHESS object replicas also hosts

a state transfer agent that is responsible for all replication related functionality and therefore removes this obligation from the application developer.

The sequence of interactions as described in figure 2 provides a mechanism for flexible and generic state dissemination.
1. Registration of application objects with the state transfer agent through a unique application id allows the manager to retrieve state from the application when needed. The registration needs to be done during the activation of the object.

2. The state transfer agent exposes the interface method state_changed (in string id) that allows the application object to indicate a change of its internal state. This then triggers state synchronization. The id parameter is needed by the agent to identify the object within a process.

3. It is the agents responsibility to react on the notification about a state change and retrieve the state from the object that issued the notification. This is done by calling back the get_state() method described earlier.
4. As the final step the state transfer agent will then distribute state to backup replicas in form of a CORBA Any instance using a suitable communication mechanism.
Evaluation: This solution mainly addresses the dimension of dynamics of changes. CHESS makes triggering of state synchronization the responsibility of the application developer. The trade-off for this approach is additional effort for the developer to issue the change notifications whenever they are necessary. On the other hand this gives great flexibility in controlling which application state changes really require state synchronization. This allows for the most efficient usage of resources, since updates are only performed if they are necessary. Through the separation of concerns between state change notification and the actual execution of the state dissemination the effort for the developer is greatly reduced. CHESS shields the replica implementation from the actual distribution of snapshot data to backup replicas.
3.3 Support for Different Protocols for State Synchronization

Challenge: There is no one-size-fits-all communication mechanism to disseminate state. Depending on size and timing requirements and the scheme of state dissemination, different communication mechanisms are needed to provide optimal performance. Small snapshots of applications with high reliability requirements need to be transferred through synchronous peer-to-peer protocols with error correction capabilities. Larger snapshots, especially when transmitted to a large number of replicas need efficient protocols like group communication protocols and multicast messages. In systems with cold passive semantics where replicas only need to update their state in a failure case a central persistent storage solution for state storage and retrieval is more adequate. Directly encoding the type of communication mechanism into the applications’ implementation results in a tight coupling between business logic and transport mechanism and therefore complicates development and adaption of the application.
Solution: Applying the Strategy pattern. CHESS uses the strategy pattern [2, pp.315f] to allow for a a flexible choice of the used protocol at run-time. The state dissemination mechanism is represented by an object interface that provides unified access to all variants of state dissemination. This pattern can be applied to shield the application developer

from the concrete protocol for state dissemination and integrate it into the state transfer agent. On replica registration the application can set a policy to determine which mechanism will be used by the agent. The agent then will instantiate the appropriate concrete strategy object instance and associate it with the application to use with every dissemination of state information.
Figure 3 shows how the strategy pattern was applied in CHESS to support two different communication mechanisms. Namely synchronous CORBA calls and multicast communication based on OMGs Data Distribution Service (DDS). The design of CHESS easily allows to extend the framework with additional communication protocols, e.g. message-based mechanisms or database storage. The abstract strategy interface benefits from the earlier design decision to use the CORBA Any data type to represent snapshots. This reduces the complexity of the interface methods. However it also creates the necessity to extract the data from the any object and transform it into the appropriate form in each concrete strategy class. One example for this is shown in case of DDS communication in figure 3.
The design above allows for choosing a different communication mechanism for each replica within the process. At registration time the state transfer agent will create the

appropriate concrete strategy based on a registration parameter. When the application later notifies the agent about state changes, it will pass the state to the appropriate object using the ReplicationStrategy interface.
[image: image4.emf]
Figure 3: The strategy pattern applied to state synchronization
Evaluation: The flexible mechanism for heterogeneous protocols within CHESS addresses the dimensions of size, complexity and change dynamics. It allows to transparently apply protocols suited for particular state characteristics. This flexibility enables trade-offs between the following aspects:

1. Short delivery times need to be ensured for applications with high update rates where the dimension of change dynamics is important. However with growing size and complexity of state snapshots it is harder to provide short delivery times. Connection oriented protocols are well suited for fast delivery of small amounts of data.

2. High network throughput is necessary for snapshots with large sizes. However timely delivery can suffer from protocols that maximize throughput. Group communication mechanisms are well suited for sending large state to several receivers.

3. Reliable delivery is needed in systems were state consistency has to be guaranteed under all crcumstances. This usually is done through error correction codes and retransmission of lost packets. Therefore trade-offs have to be made between efficient and reliable delivery protocols. The strategy pattern allows to make these trade-offs on a per object basis and therefore accounts for heterogeneous environments and systems with highly diverse state characteristics per application object.
4 Summary
The CHESS framework eases the burden of the application developer through appropriate mechanisms and smart design decisions. It automates registration of object instances within the local process space, the initialization and use of concrete transport protocols, connections management between replica objects and the actual dissemination of state. At the same time CHESS accounts for the great variations of state characteristics by leaving flexibility in serialization of state, timing of state synchronization and choice of the appropriate protocol.
References
[1] J. Balasubramanian, S. Tambe, C. Lu, A. Gokhale, C. Gill, and D. C. Schmidt.

Adaptive Failover for Real-time Middleware with Passive Replication. In Proceedings of the 15th Real-time and Embedded Applications Symposium (RTAS), San Francisco, CA, Apr. 2009.
[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.
[3] Pascal Felber and Priya Narasimhan. Experiences, Approaches and Challenges in
building Fault-tolerant CORBA Systems. Computers, IEEE Transactions on, 54(5):497–511, May 2004.
 interface ReplicatedApplication

 {

 	 void set_state (in any state_value);

 any get_state ();

 };

Figure 1: Callback interface for state replication

- 6 -

